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We compare geometric calculus applied to Riemannian geometry with Cartan's  
exterior calculus method.  The correspondence between the two methods is clearly 
established. The results obtained by a package written in an algebraic language 
and doing general manipulat ions on multivectors are compared. We see that the 
geometric calculus is as powerful as exterior calculus. 

1. I N T R O D U C T I O N  

Let 

ds 2 = godx  i dx j (1) 

be the line element we want  to study. This may be written in a nonho lonomic  
base as follows: 

ds 2= ~7otoiw j (2) 

where ~u is a constant  metric and the to i are the basis 1-forms that Car tan ' s  
calculus takes as starting point.  These are defined by 

i h~dxJ (3) 

together  with the inverse t ransformat ions  

dx i= him j (4) 

with 

h~h] = ~ik (5) 

Geomet r ic  calculus deals in a very similar way with vectors and multi- 
vectors. We can in t roduce the vectors yi and e i corresponding,  respectively, 
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to the differential forms to i and d x (  These vectors  are l inked by the same 
relations as the differential forms,  i.e., 

3 i =  hi je  j (6) 

and their  inverse 

e i =  hi3` j (7) 

To the vectors  3̀ ~ we can associate " rec ip roca l "  vectors ~9 defined by the 
relat ion 

3`j. 3` '= ~/ (8) 

Similarly, to the vectors  e ~ are associated the vectors ej defined by 

e j .  e i = 8j ~ (9) 

The  indices of  the vectors  3' are raised and  lowered by the constant  metr ic  
r/ so that  

% = ~?uy j and %" 3`k = ~ij3` j "  Yk = ~ik (10) 

Similarly, the indices of  the vectors e are lowered and raised by the 
metric  g: 

el = &je  j and ei " ek = g•e j . ek = &k (11 )  

Hence  we can now write the relat ions be tween  the y, and the e, as follows: 

% = hi]ej (12) 

and their  inverse 

ei = hJiyj (13) 

The relat ions (11), (13), and (10) provide  the relat ion be tween the metr ic  
tensor  g~j and the coefficients hk i :  

go = ei " e; = h ki3`k " h ljy, = h kih S"rlkl (14) 

2. T H E  E X T E R I O R  D E R I V A T I V E  A N D  T H E  C O C U R L  

Car tan ' s  me thod  starts with the computa t ion  of  the exter ior  derivatives 
o f  the basis 1-forms to i, (3), written in terms of  the oJ i by means  of  the 
inverse relat ions (4). This leads to the first Car tan  structural  equat ion:  

d w  i = - � 8 9  Cik:O k ^ to t (15) 

where  the C~k~ are the structure coefficients. 
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By contracting with the constant metric r/0 one obtains the covariant 
form 

d to  i = - - l  Cikl(Dk A OO l (15') 

w i t h  Cik  I = 7~imCmkl .  

Similarly, in geometric calculus we start with the introduction of a 
differential operator d having the properties of  a vector and defined by 

d = e i O/Ox i (16) 

This operator  is used to compute what Hestenes calls the cocurl of the 
v e c t o r s  '~k, i.e., 

1 k y l  COcUrl(yk) = d ^ Yk = - -~CiklY ^ (17) 

In this formula,  the Yk are expressed in terms of the vectors e i and the final 
result is written in terms of the yi in the same way as the dwi were in terms 
of the to ~ in (15'). The operation " ^ "  is the outer product  of  Hestenes, 
which is equivalent to the exterior product,  so that (17) gives exactly the 
same result as (15'). 

Since the operator d is a vector, it can be expressed in the base formed 
by the yi by means of the relations (7). We then have 

D = hjiy j O/Ox i =  y ' X i  (18) 

with 

X j  = h / O / O x '  (19) 

From (3), (19), and (5) one deduces immediately 

o~'(xj) = h '~ dx k (hi  o/ ox')  

= h ' kh /8  k, = h'khj k = 6~ (20) 

So we see that the coefficients of  D in the base formed by the yJ are nothing 
else than the base vectors Xj dual to the basis 1-forms tM. This duality can 
be expressed in the geometric calculus formalism by 

Xj : 7j" D (21) 

3. C O N N E C T I O N S  AND CODERIVATIVE 

The second step in Cartan 's  method consists in the computat ion of the 
connection forms 

i i k 
w j = F jkw (22) 
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or  t h e  c o v a r i a n t  o n e s  

with 

r - = -  r ( i )jkr k 

Moussiaux and T o m b a l  

with 

The express ions  of  FO)jk in terms of  the CO. k is 

F(,)jk = �89 ( Ck~j + Cjik - C(ik ) (24) 

In geometr ic  calculus the second step is the compu ta t ion  of  the 2-vectors 
w(3"k) defined by 

o,(3'k) =�89 ^ d ^  3'j) �9 3 ' k - d  ^ 3'k 

= �89 T R I  �9 Yk - cocurl(yk)  (25) 

o r  

where vk,, = X i ( v k ) .  

T R I  = yJ ^ d ^ 3'j = 7 j ^ cocurl(3'j) (26) 

cocurl(3'j) is a 2-vector expressed  in terms of  3'" ^ 3'" so T R I  is a 3-vector 
expressed in the 3, i ^ 3'J ^ 3, k and TRI .  3'k is a 2-vector  expressed in the same 
base  as the cocurl. Hence  ~o(yk) is a 2-vector  of  the fo rm 

w (  3"k) = �89 3"k)y'  ^ 3"J (27) 

The mean ing  of  the coefficients wu(3"k) in (27) is easily found  by compar ing  
the fo rmula  for  the coderia t ive given by  Hes tenes  and  Sobcszyk (1984): 

~av = d a v + w ( a )  �9 v (28) 

with the classical fo rmula  giving the covar iant  derivative of  a differential 
1-form v a long the vector  a. 

In  (28), oJ(a) is a 2-vector-valued funct ion,  which is l inear in its 
a rgument  a, so we have 

w ( a )  = oJ(ak3"k) = akw(3"k)  =~a '  kojiA3'k)3', " i ^ 3'J (29) 

The second te rm of  (28) is easily compu ted  and we find 

w ( a ) .  v = wq(a )vJ3"  i = a k w u ( e k ) V J y  i (30) 

In classical differential geomet ry  the covar iant  derivative of  the fo rm 
v = VkW k along the vector  a = a k X k  is given by  

~ a D : a kl)k, iO) i - -  r J i k a  kl)j09 

k i Vav = a Dk, i O) -- r ( j ) i k a  kIAJto i (31) 



Geometric Calculus 617 

Comparison of (30) with the second term of (31) leads to the following 
fundamental relation: 

toU(yk) = F(,~jk (32) 

R e m a r k  The F(~)jk defined by (24) are antisymmetric on the indices i 
and j. 

The relation (32) shows that the connection coefficients F(i)jg appearing 
in Cartan's method are nothing else than the coefficients toe(yk) of the 
2-vector tO(Tk) given by the formula (27). Hence the computation of one 
of the to(Yk) by (26) gives all the F(i)jk corresponding to the chosen index k. 

4. S E C O N D  C A R T A N  S T R U C T U R A L  E Q U A T I O N  A N D  
C U R V A T U R E  

The second Caftan structural equation is given by 

0 ~ =  i - 1 d to :+ ta ' l  A toj (33) 

or in covariant 'form 

Oe = do e + wit A tom/0,.1 (33') 

The components of the Riemann tensor R)kt or Rokt appear as the coefficients 
i of the curvature 2-form Oj or O~, respectively, as seen from the relations 

O j  I n i  k I 
~ IK jkl O) A to 

o r  

Oe ___~Rekttol k A tO t (34) 

In geometric calculus we introduce a curvature 2-vector defined by 

R (  a A b)  = dote(b)  - dbto( a)  + to(a) x to(b) (35) 

where the quantities to(a) are defined by (29), do is what Hestenes calls 
the "fiducial derivative," and x is the "cross product" defined by 

A x B = 1 / 2 ( A B  - B A )  

i.e., the antisymmetrization of the geometric product (Hestenes and 
Sobcszyk, 1984). The fiducial derivative dote(b)  is given by 

d~to(b) ~ ' ?# = ~ d a t o q ( b ) y  A (36) 

with 

datoe(b) = a .  Dto0(b) - toe(b �9 Da) (37) 



618 Moussiaux and Tombal 

These  two relat ions enable  us to compute  the two first terms of  ( 3 5 ) ,  i .e . ,  

d,,to(b) - dbto(a) = �89 Dto0(b) - b .  Dto0(a ) )y i  ^ yJ - to([a, b])  (38) 

with [a, b] = a -  Db  - b .  D a  the ord inary  c o m m u t a t o r  o f  a and  b. 
I f  we take a = Yk and b = y~; then (37) becomes  

dyk to( yi)--dytto( yk) 

=~(Yk "Dtoij(%)--yl" Dt0/j(Yk))y i A yJ - -  to(['yk, 3//]) (39) 

The opera to r  Yk" D can be writ ten 

Yk" D = Yk" h/Co, = h/a/a,  = hk'O, = Xk (40) 

and  the c o m m u t a t o r  o f  "Yk and Yt is 

['Yk, VII = CmklYm 

The linearity of  to enables  us to compute  explicit ly the quant i ty  to([yk, y~]): 

to([y~, y,]) = t o ( c % y m )  = c % t o ( y m )  

.~,* 1 , , i y j  ( 4 1 )  = ~" kl2toij['~m)Y A 

Putting (40) and (41) into (39) gives 

dykto(y~)-dytto(yk) 1 yJ (42) =~Ho(yk, y,)yi  ^ 

with 

H0(Yk, Yt) = Xkto0(Yl) -- Xtto0(Yg) - C mklto0(Y,,) (43) 

We easily see that  HO(yk , Yt) is an t i symmetr ic  in the indices i, j and  k, I, 
so that  the quant i ty  (42) can be writ ten 

dyk to(Yt) -- dy, to(Yk) = E H q ( y k ,  yt )y  ~ A yJ (44) 
i<j 

To compute  explicit ly the last te rm of  (34), it is interesting to use the general  
fo rmula  giving the cross p roduc t  o f  two 2-vectors: 

( a ^ b ) •  ( c ^ d ) ) - b ^ ( a .  ( cAd) )  

=(b .  c)a ^ d - ( b .  d)a ^ c 

+(a .  d)b ^ c - ( a .  c)b A d (45) 

Therefore  

t o ( a ) x t o ( b )  ' i =~toij(a)tokt(b)(y A y J) • (yk ^ yt) (46) 

Using (45), we find 

( T i A  y j )  X ( y  k A y 1) = "rlJk(y i A "yl )~  ~ J l ( y i A  ,)/k) 

_ 7/,k(yj ^ y~) + , / i t (yj  ^ yk) (47) 
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Putting (47) into (46), we can then write the product to (a )x  to(b) as the 
2-vector 

to(a) x to(b) = L,t3" ^ 3" (48) 

with 

Lit = rlJktoij( a )tok,( b ) 

Since the product  y~ ̂  yt is antisymmetric, it is only the antisymmetric part 
of  L,  that contributes to (48). Therefore we can write 

to(a)  x to(b)  = �89 ^ yl  (49) 

with 

K,, = L .  - L .  = rlJktou( a )tok,( b ) -- rlJktolj( a )tok,( b ) 

and (49) becomes 

(50) 

w ( a )  x to(b)  = E K~jy' A yJ (51) 
i < j  

Putting the results obtained in (44) and (51) into (34), we are now able to 
write the curvature 2-vector: 

(52) R ( y k  ^ 3',) = Y, [Ho(3~k, T , ) + K u ( y k ,  y,)]g'  A yJ 
i < j  

This quantity corresponds exactly to the curvature 2-form given by the 
second Cartan structural equation (33'). The components Rokt of  the 
Riemann tensor are the coefficients of y~^ y j in R ( y k  ^ y~), which can 
therefore be written 

R(')'k ^ Yl) = Y~ Rijk/Y ~ A "),J (53) 
i< j  

The symmetries of Rijkl c o m e  of course from the symmetries of the quantities 
Hij and K w. 

5. CONCLUSIONS 

There are essentially two common methods to compute the fundamental 
quantities in differential geometry. The first is the tensorial method, which 
starts with the components of  the metric tensor g~ and /o r  the components 
of a tetrad and consists in the direct computation of  the components of  the 
Christoffel symbols, Riemann tensor, Ricci, scalar curvature, and so on. 



620 Moussiaux and Tombal 

This kind of computation has been widely explored in various algebraic 
programming languages, such as REDUCE,  MACSYMA (with the package 
CTENSR),  SHEEP, and STENSOR (which is specialized in indices manipu- 
lation) .2 

The second method is based on exterior calculus or Cartan calculus. 
This method is easier than the tensorial one when we want to make calcula- 
tions by hand, but this characteristic does not seem to have been exploited 
in algebraic programs (at present we only know of the program EXCALC 
written by E. Schruefer that tries to achieve this goal). One of  the funda- 
mental operations of exterior calculus is the exterior derivative. It is a 
well-defined, base-independent operation, which is translated into any pro- 
gramming language as a procedure. The approach in geometric calculus is 
quite different, in the sense that we can define as many differential operators 
we want because they are introduced as vectors with possibly complicated 
components (see, for example D in this paper) and the operation of 
differentiation performed depends on the product chosen between the 
vector-operator and the quantity we act upon (d ^ v is the curl or exterior 
derivative and d . v  is the divergence, for instance). As there are many 
different products in geometric calculus (Hestenes and Sobcszy, 1984), there 
are many different derivatives. For example, in this paper the components 
of  the operator D given by (4) have been chosen to deal more easily with 
the problem of moving frames. 

It seems to us that geometric calculus based on Clifford calculus 
provides us with more possibilities than Cartan's calculus because it manipu- 
lates multivectors, which are more general quantities than differential forms. 
Furthermore, it is easy to do exterior calculus with geometric calculus, but 
the converse is not generally true. 

All the quantities introduced in this paper have been computed in the 
part icularcase of the Kerr metric (and some others) with a package written 
in MACSYMA doing general manipulations on multivectors [a simpler 
application on the Schwarzschild metric can be found in (Moussiaux and 
Tombal, 1987)]. It is difficult to make a valid comparison of execution times 
between Cartan and geometric calculus for particular quantifies because 
the methods are quite different, but globally the geometric method is faster 
by a factor of two. We could say that the advantages largely depend on the 
choice of  the quantities we want: if we need, for example, only the com- 
ponent Flo3 of  the connection, then it is more effective to use the relation 
(24). Conversely, if we need the Fij3 for all i and j, then it is better to 

2REDUCE: User's Manual, Antony C. Hearn; SHEEP: I. Frick, Institute of Theoretical 
Physics, University of Stockholm; STENSOR: L. Hornfeld, University of Stockholm; MAC- 
SYMA: Reference Manual, Symbolics, Inc., MIT Cambridge, Massachusetts; EXCALC: 
User's Manual, Eberhard Schruefer, 1986. 
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compute the 2-vector try(y3) than (24) for all i and j. The same remark 
applies for other quantities, such as the Riemann tensor. 

A n o t h e r  aspect of  geometric calculus that seems promising is the 
possibility to compute quantities that do not exist or are less easily computed 
with another  method. The concept of"coder iva t ive"  of  a vector, for example,  
when generalized to any multivector as shown by the formula 8, ,A = 

d , A + t o ( a ) x A  will certainly provide us with a powerful technique for 
computing covariant derivatives. 

In a forthcoming paper  we will extend the theory given here to the 
more general case where the metric ~70 is no longer constant, as in the case, 
for example,  of  homogeneous cosmological models. 
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