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Quantities are defined operationally which qualify as measures of complexity 
of patterns arising in physical situations. Their main features, distinguishing 
them from previously used quantities, are the following: (1) they are measure- 
theoretic concepts, more closely related to Shannon entropy than to computa- 
tional complexity; and (2) they are observables related to ensembles of patterns, 
not to individual patterns. Indeed, they are essentially Shannon information 
needed to specify not individual patterns, but either measure-theoretic or alge- 
braic properties of ensembles of patterns arising in a priori translationally 
invariant situations. Numerical estimates of these complexities are given for 
several examples of patterns created by maps and by cellular automata. 

1. I N T R O D U C T I O N  

Sciences like b io logy  or  in fo rma t ion  theory  have always been  confron-  
ted  with the  p r o b l e m  o f  descr ib ing  complex  systems.  Physics has long been  
able  to avo id  complex  s i tua t ions  and  to concent ra te  on systems that  are 
compara t i ve ly  s imple ,  e i ther  s ince few degrees  o f  f r eedom were involved  
or  s ince in systems with large numbers  o f  degrees  o f  f r eedom one can app ly  
centra l  l imit  theorems.  But recent ly  it has  become  clear  that  bo th  reasons  
are not  sufficient to avo id  complex  behavior :  on the one hand ,  even very 
s imple  systems with few degrees  of  f r eedom can show very complex  behav io r  
if  they  are " c h a o t i c "  (Schuster ,  1984; G u c k e n h e i m e r  and  Holmes ,  1983); 
on the o ther  hand ,  systems with many  degrees  o f  f reedom,  such as ce l lu lar  
a u t o m a t a  (Wol f ram,  1983), can behave  such that  centra l  l imit  theorems  
need not  be app l i c ab l e  (Wol f ram,  1984b). Na tu ra l  s i tuat ions  where  these 
p rob l ems  a p p e a r  are, e.g., t ime series f rom non l inea r  e lec t ronic  circuits,  the 
pa t t e rn  o f  the  reversals  o f  the  ear th ' s  magne t i c  field, and  spa t ia l  pa t te rns  
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in Bernard experiments and in not-well-stirred oscillating chemical 
reactions. 

One characteristic common to all these instances is that the complexity 
is self-generated, in the sense that the formulation of the problem is transla- 
tionally invariant and the observed structure arises from a spontaneous 
breakdown of translational invariance. 

Confronted with situations that intuitively are judged as "complex," 
one of the first reactions should be to quantify this judgment by defining 
an observable. This is what the present paper aims at. 

Indeed, there have been several attempts to define complexity formally, 
although all of them have severe drawbacks when applied to the problems 
at hand. Also, they are widely ignored by active researchers in the field of 
self-generated complexity, and the notion of complexity is sometimes used 
to mean different things. The present paper was most influenced by the 
seminal work by Wolfram (1984b). But the notion closest to the present 
approach is described in a small booklet (van Emden, 1976) by a taxonomist 
interested in finding the least complex scheme to organize living species. 
A similar approach toward measuring the structure of living beings is due 
to Chaitin (1979). 

Much better known is the concept of  computational complexity (Hop- 
croft and Ullman, 1979), and it might at first seem natural to take over the 
concepts used there. This was indeed done quite successfully in Wolfram 
(1984b), but, as we shall show, that approach has certain drawbacks. The 
main problem is that computation theory deals mainly with the possible 
and not with the probable (although practitioners of course also apply ad 
hoc probabilistic concepts there!). It is an algebraic theory and not a 
measure-theoretic one. This can be seen, e.g., from Hofstadter's (1979) 
book, which does not once mention the notions of entropy or Shannon 
information, although its index has about 1500 other entries. For applica- 
tions to physics, this is disastrous: a theorist of  complexity, confronted with 
the problem of describing an ideal gas, could not use even such basic notions 
as temperature or pressure. Thus, our first requirement of physically useful 
measures of complexity is that they be probabilistic. 

The other problem is a conundrum probably known for some time to 
many, although it seems to have appeared in print only recently (Hogg and 
Huberman, 1985). It is that the intuitive notion of complexity of a pattern 
does not agree with the only objective definition of the complexity of any 
specific pattern that seems possible. 2 This latter definition is due to Kol- 
mogorov (Alekseev and Yakobson, 1981). The Kolmogorov complexity of  
a pattern is essentially the length of the shortest program on a general- 
purpose computer needed to generate that pattern, divided by the size of 
2See note added in proof. 
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the pattern itself. (In order to make this meaningful, one has to take the 
limit of infinitely large patterns. We assume that we should take this limit 
anyhow, throughout the following.) Thus, it is some kind of  information 
per "pixel" or per "letter" stored in that pattern, and in the cases in which 
we are interested it seems to agree with the Shannon information (Shannon 
and Weaver, 1949) or specific entropy. Kolmogorov complexity seems to 
be the quantity most closely related to the intuitive notion of randomness, 
not of complexity. See Section 6 for a further discussion of this point. 

Compare now the three patterns shown in Fig. 1. Fig. lc is made b y  
using a random number generator. Kolmogorov complexity and Shannon 
entropy are biggest for it, and smallest for Fig. la. On the other hand, 
most people will intuitively call Fig. lb the most complex, since it seems 
to have more "structure." Thus, complexity in the intuitive sense is not 
monotonically increasing with entropy or "disorder." Instead, it is small 
for completely ordered and for completely disordered patterns, and has a 
maximum in between (Hogg and Huberman 1985). This agrees with the 
notion that living mattter should be more complex than both perfect crystals 
and random glasses, say. 

The solution of this puzzle is the well-known ability of humans to make 
abstractions, i.e., to distinguish intuitively between "important"  and "unim- 
portant" features. For instance, when one is shown pictures of animals, one 
immediately recognizes the concepts "dog,"  "cat ,"  etc., although the 
individual pictures showing dogs might in other respects be very different. 
So one immediately classifies the pictures into sets, with pictures within 
one set considered as equivalent. Moreover, these sets carry probability 
measures (since one expects not all kinds of dogs to appear equally often, 
and to be seen equally likely from all angles). Thus, one actually has 
ensembles: when calling a random pattern complex or not, one actually 
means that the ensemble of  all "similar" patterns (whatever that means in 
detail) is complex or not complex. After all, if the pattern in Fig. lc were 
made with a good random number generator, the chance of producing 
precisely Fig. lc would be exactly the same as that to produce Figs. la or 
lb (namely 2 -n, where N is the total number of pixels). If we call the latter 
more "complex,"  it really means that we consider it implicitly to belong to 
a different ensemble, and it is this ensemble that has different complexity. 

Thus it is clear that our measures of complexity will be the Shannon 
information needed to describe properties of ensembles of patterns. This 
still does not specify these measures completely. 

Before going on, we have to restrict ourselves to a situation typical for 
the self-generated patterns in which we are interested. Although this need 
not always be the case (Fig. lb is a counterexample), we assume that 
our ensembles (not the individual patterns!) are translationally invariant, 
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and the patterns can be extended toward infinity, with everywhere the same 
average features. 

The easiest situation, studied in most of  this paper, prevails in the case 
of  one-dimensional patterns, consisting just of  (infinite) strings of  "letters" 
(pixels, digits, spins, etc.; higher dimensional patterns could also be trans- 
lated into strings, but translational invariance would be lost thereby). Let 
us discuss the one-dimensional case first, with higher dimensions deferred 
to Section 4. 

Also, we shall only be concerned with discrete patterns. Questions 
related to the discretization of  continuous patterns will not be discussed. 

In a first approach,  we are interested in describing only the sets making 
up the ensemble, disregarding probabilities. Consider an infinite string 
{sili e Z} of "letters." We are then interested in deciding whether or not 
this string belongs to some set defined by a suitable grammar. Assume that 
we have checked that the string up to si does belong to the set, and we 
want to check S~+l, s~+2, and so on. For checking S~+a, we of course have 
to know something about  the previous letters. We define as the set complexity 
(SC) the average Shannon information needed to be stored for that. Notice 
that this is not the information per letter needed to specify the particular 
sequence considered, since we do not want to actually specify s~+l. Rather, 
it is a measure of  how complicated the grammar  was. For the regular 
grammars (Hopcroft  and Ullman, 1979), the SC is easily seen to be a lower 
bound to the complexity defined by Wolfram (1984b). The latter, which we 
call algorithmic complexity (AC), is related to the SC in a way similar to 
the relation between topological and metric entropies of  dynamical systems 
(Eckmann and Ruelle, 1985). More details will be given in Section 2. 

The other way to define complexity measure-theoretically, discussed 
in Section 3, again uses the same sequence . . . ,  si, s~+l, . . ,  as above. Now, 
however, we are not content with verifying that the entire sequence is 
grammatically correct; we also want it to be "stylistically" correct, i.e., we 
want it to have the right statistical properties. So we not only have to exclude 
"wrong"  letters, we also want to predict the actual ones as well as possible. 
I f  the language has positive entropy, we cannot predict s~+~ from {sl, si_~,.. .} 
completely, of  course, but we can make optimal predictions in the sense of  
minimal uncertainty. For such an optimal prediction we again have to store 
some minimal information about s~, S~_l, etc. The average of this latter 
information is called the true measure complexity (TMC) in the following. 

The last complexity-like observable we shall discuss is the effective 
measure complexity (EMC).  It is not the information needed to be stored 
for an optimal prediction, but it is the "value" of  that information in helping 
to predict. At first sight, one might be tempted to believe that the stored 
information could always be used so efficiently that it is equal to the decrease 
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of uncertainty in the prediction. As we shall see in Section 4, this is not the 
case. The EMC, defined as the minimal information that would have to be 
stored for optimal predictions if it could be used with 100% efficiency, is 
sometimes strictly less than the TMC. 

Among these four measures of complexity (SC, AC, TMC, and EMC), 
it is the last that we believe to be the most interesting in physics, since it 
seems to be the only one observable in general situations where the grammar 
is not known, i.e., where one does not yet understand the mechanism 
generating the patterns. 

After introducing these concepts more formally in Sections 2-4, we 
discuss numerical examples in Section 5. These are, on the one hand, 
symbolic sequences generated by generating partitions in one-dimensional 
maps, and on the other hand they are time and space patterns generated 
by one-dimensional cellular automata. 

In physics, it appears very often that a problem is characterized by 
several length scales, and this naturally suggests relevant ensembles. Com- 
pare, e.g., the complexities of a silicium crystal with with an array of 
computer chips on it, and of an equally large piece of glass. On the atomic 
level, the glass is more random and might well be more complex than the 
single crystal of the chip. But interest in most cases will not be in the atomic 
properties, but rather in the complexity of the layout of the chip. Thus, 
relevant ensembles are those where a '~ is done with a 
resolution of  ~100 ~ .  For the glass, the ensemble is then essentially the 
canonical ensemble of thermodynamics, and it has all complexities zero. 
In the case of the chips, the ensemble has positive complexities. This is not 
all, however. Each ensemble is again an element of a set (of all coarse- 
grained states), and we can consider now ensembles of coarse-grained states 
(i.e., of  different layouts). It is these latter that we mean when when we say 
that the chips are complex but not random: the set of all functional layouts 
is much harder to describe than the set of all (random) layouts, although 
each single functional layout has vanishing entropy, being a periodic array 
of identical chips. 

This example also shows that the most intriguing cases are those with 
large complexity and small entropy. Our most interesting numerical results 
in Section 5 thus concern patterns arising from a random input and having 
zero entropy but infinite complexity, the latter measured by the EMC. 

Finally, we should mention that very similar constructs can also be 
applied to the problem of  coding and decoding. The encoding complexity 
of a code is the average amount of information by which the sent encoded 
message lags behind the message received by the encoder. It is also the 
average amount of information that the encoder has to store during the 
process of encoding. The decoding complexity is obviously defined in an 
analogous way. 
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2. A L G O R I T H M I C  AND SET COMPLEXITIES  

We consider a set Y. of  k symbols si ("a lphabet")  and strings 
� 9  si, s~+~ . . . .  of  arbitrary length formed from these symbols. The index i 
will be called " t ime" in the following. Not all strings are allowed. Instead, 
one assumes a set of  rules ( "grammar")  which are to be strictly followed 
in the allowed strings. In addition, we assume that a probabili ty measure 
is given on the allowed strings. Notice that we could take the grammatical 
rules as part  of  the definition of the probabili ty measure. We shall not do 
that, and consider the grammar  as separate in order to stay as close to 
algorithmic complexity theory as possible. More strongly, we shall demand 
that if any string is strictly forbidden, then this is always due to the grammar  
and not due to a vanishing measure. We shall sometimes call the weighted 
set of  all strings a "style," in order to distinguish it from the " language" 
defined by the grammar  alone. In the terminology of physics, we are dealing 
with an ensemble of  (string) patterns. 

Our next assumptions are that both the grammar  and the probabili ty 
measure are invariant under time translations, and that the ensemble is 
ergodic. By the latter we mean that the probabili ty measures on all finite 
substrings of  any fixed infinite string are the same as the probability measures 
on all substrings of all infinite strings. Thus, we assume that we can study 
the ensemble numerically by studying one very long string only. In the 
examples studied in the next section, this seems to be the case. 

Notice that the assumption of ergodicity is much less important and 
subtle than the assumption of translation invariance (or "stationarity").  In 
a nonergodic case, the ergodic components are in general enumerable, and 
we can just study each component  by itself. To see the nontriviality of  the 
assumption of stationarity, consider, e.g., a language where in each (infinite) 
sequence the letter "A"  must occur exactly three times. Since these occurren- 
ces could be anywhere, one might at first argue that this is a stationary 
ensemble. Actually, it is not: after "A"  has occurred three times, the effective 
grammar  can be simplified from "A should occur three times" to "A is 
forbidden," and an optimal test for correctness of  the sequence changes 
after the third occurrence. More generally, we demand that the grammar  
(and the probabili ty measure) are such that they cannot be simplified during 
the observation of a sequence due to the occurrence of some special "signal." 

2.1. Regular Languages 

We consider first the case that the grammar  is regular. Then, it can be 
implemented by a deterministic finite automaton (Hopcroft  and Ullman, 
1979) in the following sense�9 There is a finite directed graph with N nodes 
and with at most k arcs, labeled by different letters from the alphabet,  
leaving each node. As one scans the string, one simultaneously moves from 
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node to node by the following rule: if the node p has been reached at time 
i, then the letter s~+l is allowed for the next step if and only if there is an 
arc labeled "s~+l" starting from p. Depending on the letter actually observed, 
one follows the corresponding arc to the next node and repeats the same 
procedure [notice that this way of using an automaton for defining a set of 
strings is different from that used, e.g., in Christol et al. (1980) and Allouche 
and Cosnard (1984)]. 

Among all automata corresponding to a given language, there is one 
that is minimal in the sense that its graph contains the smallest number N 
of nodes. It is log(N) which is defined as the complexity of the language 
in Wolfram (1984b), and called AC in the present paper. It is easy to see 
that it is an upper bound on the SC, defined as the smallest average Shannon 
entropy stored about the past string for verifying the correctness of the 
future string. Indeed, the only information stored about the past is the 
actual position in the graph. Denoting the frequency of being at node i 
( i =  1 , . . . ,  N)  as p(i), then 

SC = -  ~ p(i) logp(i) (1) 
nodes 

If all nodes had an equal occupation probability, this would just be log(N).  
There is a subtlety in this argument. Usually (Hopcroft  and Ullman, 

1979) one considers only languages of one-sided infinite strings. For these, 
there exists an algorithm which yields both the minimal automaton and the 
starting point on the automaton. In many cases, it might happen that this 
automaton contains a part which contains the starting point and is connected 
to the bulk of the graph only by arcs leading away from the start. An 
example representing the set of all strings of "0" and ' f '  and containing 
no blocks 010 or 111 is shown in Fig. 2a, while another example correspond- 
ing to exclude blocks 111 and l10*(10*)2nll is shown in Fig. 2b [Wolfram 
(1984b); the notation 0* indicates any number of O's, and (. �9 . )" indicates 
a string of n blocks 1 0 . . .  0]. According to our definition, we would not 
call the movement in these graphs stationary. Instead, we could cut off the 
transient parts, and use only the reduced graphs shown in Figs. 3a and 3b. 
Notice that the reduction was much more severe in Fig. 3b than in Fig. 3a. 
In the latter, the transient part had to be left immediately, while in the 
former the cut-off part alone could accept all strings without two l 's in 
succession. In a similar way, we can have automata where the end point 
(defined as that point where the string is ultimately rejected as forbidden) 
is in a transient part which can only be entered but not left again. An 
example is presented in Fig. 4. Here, we shall again reduce the graph by 
truncating it, rendering the situation stationary (which, in our strict sense, 
it was not before reduction). 



Toward a Quantitative Theory of Self-Generated Complexity 915 

1 0 

1 
~0 

o b 

Fig. 2. Deterministic automata accepting strings (a) without sequences . . .010. . .  and 
.. .  111...,  (b) without an odd number of isolated l's between any two occurrences of 
neighboring pairs of l's. Here and in subsequent figures the encircled node represents the 
starting point. 

F o r  in fo rma t ion  theore t i c  a rguments  us ing doub ly - in f in i t e  strings,  the 
r educed  graphs  o f  Fig. 3 are cer ta in ly  sufficient. The p r o b l e m  with them is 
that  we d o n ' t  have a genera l  p r o o f  that  they  are indeed  the min ima l  ones 
( there might  be o ther  a u t o m a t a  whose  graphs  had  been  bigger  before  
reduc t ion  but  af ter  r educ t ion  have become  smal ler) ,  and  we d o n ' t  any  more  
have an a lgor i thm te l l ing us where  we are in the graph  at any given t ime. 
But even if  we don ' t  have an a lgor i thm for that ,  we can learn  where  we are 
by observ ing  the string, for  a lmos t  all strings. Anyhow,  the logar i thm of  the 
number  o f  nodes  in the r educed  g raph  is an u p p e r  b o u n d  on the SC. 

v ~ v 

1 

o% 0 

1 

a b 

Fig. 3. Reduced automata obtained by truncating the transient parts in Fig. 2. Notice that 
these automata are no longer strictly deterministic, since the starting point is not defined. 
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1 

1 
CI 

Fig. 4. 

1 

1 
b 

(a) Automaton accepting all strings with at most one isolated 1. (b) Reduced automaton 
accepting no isolated l's at all. 

Obviously, the AC is related to the SC in a way similar to the relation 
between the topological and the metric entropies of dynamical systems 
(Eckmann and Ruelle, 1985). There, one considers symbolic sequences 
generated by partitions of state space. While the metric entropy is a measure 
for the information stored in the sequence, the topological entropy counts 
just the number of different sequences independently of any probability 
measure. At least in simple cases like iterated maps of an interval onto 
itself, there exists always a measure such that both entropies are the same, 
i.e., for which all sequences are roughly equally probable. 

We shall now show that no analogous result can hold for complexities: 
there exist regular grammars for which there doesn't exist any probability 
measure for which AC = SC. The proof proceeds by giving counter examples. 
The simplest counter example is shown in Fig. 5, representing strings with 
O's and l 's  only occurring in pairs. For this graph, one has 

SC = log 8 < AC = log 3 (2) 

So our next obvious question is whether there exists any grammar and 
style for which both complexities are equal. We conjecture that this never 

0 1 

0 1 
Fig. 5. Automaton accepting only pairs of l's and zeros. 
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happens (except for graphs with a single node or a single loop), although 
both can become arbitrarily close. If we have SC = AC, then each node in 
the corresponding graph must be visited equally often. There do exist graphs 
with closed loops visiting every node exactly once, and a path always 
following this loop (or these loops) would seem to qualify. But in all studied 
cases such a path corresponds to a string that obeys stricter rules than 
specified in the grammar, and it is to be excluded for that reason (all strictly 
obeyed rules are included in the grammar by assumption). Furthermore, 
due to the assumption of stationarity, excursions from the above loops 
cannot occur less and less frequently with time. Instead, they must occur 
with some finite probability, supporting our conjecture. 

Numerical simulations of strings created by cellular automata and 
reported in Section 5.2.1 show indeed that the SC is always considerably 
lower than the AC. 

Estimating the SC is not as straightforward as determining the AC. If 
the grammar is not known, there does not exist any algorithm to compute 
either: if some sequence has not yet been observed, one can never be sure 
that it is indeed strictly forbidden and not just very unlikely (this does not 
mean of course that one cannot make guesses about the grammar; such 
guesses ought to become more and more reliable with the length of  the 
observed string). If the grammar is known, there exists an algorithm yielding 
the minimal automaton and thus also AC (modulo the problem of reduction 
discussed above). But in general, this minimal graph need not always give 
the smallest SC. There might exist other automata with larger graphs but 
where fewer of the nodes are visited frequently. 

The last question is, Why should we be more interested in probabilistic 
quantities at all? One might argue that, after all, the most important problem 
consists in deciding whether an observed sequence follows a certain gram- 
mar or not, and the importance of the complexity is that it tells us the size 
of the smallest computer able to do that. But the last remark is not really 
true. Instead of using for each sequence its own computer, one can imagine 
a large, general-purpose computer (or a network of computers) performing 
several such tasks in parallel, with arbitrarily much cheap storage available 
for slow input/output ,  and with the amount of fast storage attributed to 
each task depending on its demand. In this case, the verification of an 
observed string would proceed by storing the entire graph in slow storage, 
and fetching only those parts presently needed. The cost for that is, in the 
limit of  very complex grammars, proportional to the effort necessary to 
address the region of slow storage where the relevant portion of the graph 
is located, times the probability that this portion is required. This is precisely 
the SC as we defined it, provided the storage of the automata in slow 
memory is optimal. 
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Fig. 6. Infinite automaton accepting only strings 
of the form 1~01~21m01m2... with n>0, m> 
0 , . . . ,  

Q0 2 :0 
b o 

I Q1 Q2 

1 b I b 2 

1 % 

t~ 
b 3 

2.2. More Complex Languages 

Regular languages are the only ones for which a finite automaton can 
be given that checks any string. Thus, the AC for nonregular languages 
[Context-free, context-senstive, or type-0 (Hopcroft  and Ullman, 1979)] is 
always infinite. This does not mean that their SC is also infinite. For instance, 
one can imagine a case of  infinite automata with a suitable probabili ty 
measure defined on their nodes, such that equation (1) gives a finite result. 

Consider, e.g., the infinite automaton shown in Fig. 6. It accepts all 
sequences of  the structure 1n01~21m01m2 . . . .  This is clearly not a regular 
language, and thus AC--oo. Assume now that the probability measure is 
such that "1" and "0"  appear  with equal probabili ty whenever the latter is 
allowed to appear  at all. For the probabilities p(node)  this implies 

p(ak)  =p(bk )  for all k 
(3) 

p(ak+1) = p (ak ) / 2  for all k 

This is solved to give p(ak)=p(bk)=2 -k-2, whence 

SC <- - ~ p( i )  logp( i ) - - - log 8 (4) 
n o d e s  

The infinite ladder in Fig. 6 is of course very reminiscent of  the stack 
of a pushdown automaton,  and it was intended to be so: pushdown and 
Turing automata together with their stacks and tapes can be considered as 
special infinite automata. Seen from that point of  view, the computational 
complexity of  an algorithm running on these machines is very similar to 
our AC (except that in defining the AC we do not specify in any way the 
architecture of  the machine, whence computational complexity can only be 
an upper  bound to the AC). The reasons (given in the last subsection) for 
considering the SC as being at least as relevant as the AC are valid also in 
the present, more general case- -provided a stationary probability measure 
exists. 

3. MEASURE COMPLEXITIES 

In this section, we shall primarily not be interested in verifying the 
grammatical correctness of  strings. Instead, we are interested in predicting 
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optimally the conditional probabili ty p(Si+l [Si, Si--l,...) of occurrence of 
the letter s~+~ at some i+1 ,  being given the string up to s~. We call the 
minimal average Shannon information about {si, S~_l,...} needed for that 
the true measure complexity (TMC). 

Predicting p(s~+~[s~, s i_l , . . . )  is certainly not less difficult than predict- 
ing which p(s~+~ I s~, si_~, �9 are equaI to zero. Assume now that there is 
no finite substring that is allowed to occur but does so only with zero 
probability. Then the TMC is at least as big as the information needed for 
excluding wrong s;+fs, which by definition is the SC, and we have the 
inequality 

TMC -> SC (5) 

But the assumption that no nonforbidden substring occurs with zero proba- 
bility is part  of  our assumption of stationarity: if that would happen,  the 
chance to encounter such a substring would have to decrease with time, 
and we would not call the probabili ty measure stationary. 

Estimating the TMC for an observed string is as difficult as estimating 
the set and algorithmic complexities. But a more easily obtained lower limit 
is provided by the effective measure complexity (EMC). Its definition is as 
follows. 

We call p{S} the probabili ty to observe a substring S = {s i , . . . ,  s~+N_~} 
of length N. It is by assumption independent of  i. The Shannon entropy 
stored in such a substring is 

HN = -•  pN{S} log pN{S} (6) 
S 

For N = 0, we define Ho = 0. Then the additional information needed to 
predict s~+N, already being given S, is equal to 

hN = HN+~ -- HN (7) 

We shall call this the Nth-order  block entropy. 
It is well known that the block entropies decrease with N. Indeed, it 

is intuitively obvious that the uncertainty about s~+N cannot increase if 
more and more of its predecessors are known. More precisely, the difference 

/~hN = hN-~ - hN (8) 

is just the average amount  by which the uncertainty of  si+N decreases due 
to knowledge of sl. At least this amount  of  information about si has to be 
stored in order to make an optimal prediction of s~+N, and can be discarded 
after si+N has been observed: its influence in determining all subsequent 
letters following is taken care of  by s~+N. 

So we have, at any time i and for every N, at least an amount  ~hN of  
information that we have to store N time steps. The minimal total amount  
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of information stored at any time for optimal predictions is thus 

TMC -> 5~ N6hN = Y. S ( h N _ l  - hN) = EMC (9) 
N N d e f  

This can also be written as 
CX3 

E M C =  2 ( h N - h )  (10) 
N = O  

with 

h = lim h N (11) 
S ~ c o  

being the Shannon entropy per letter. In the case of  dynamical systems, the 
latter is called the metric (Kolmogorov-Sinai)  entropy (Eckmann and 
Ruelle, 1985). 

One might believe that the information stored could always be selected 
optimally such that its amount is equal to the amount  of  actually needed 
information, and that thus always EMC = TMC. This is not true. The reason 
is that for optimal selection one has to code the information properly, and 
the encoding itself would require additional information to be stored. 

As an example, consider the language defined by Fig. 7, with proba- 
bility q to choose "0" when being at node a. One finds in this case 
p~ = 1 / ( l + q )  and 

ho = SC -- log(1 + q) - q log  q (12) 
l + q  

and 

h l = h = l - q l o g ( 1 - q )  - q logq  (13) 
l + q  l + q  

giving EMC = h o -  h < TMC for all q. 

As another example, let us discuss the language accepted by Fig. 5. 
We assume the probability measure such that whenever a choice between 
"1" and "0"  is possible, the chance for either is 1/2. Then, one has SC = 3/2 
bits and h = 1/2 bit /step,  since one bit is needed every second time to fix 
the string. Measured in bits per time steps, the block entropies are computed 

Fig. 7. Automaton accepting all strings without pairs 
of neighboring zeros. 

1 0 C2C>  
1 
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as 

h0= 1 

1 1 3 
heN-- 2 2 u 1 ~-2N+----~log23, N>--I (14) 

1 
h2N_ 1 = h - h2N +2--- ff 

Inserting this into equation (9), we find that EMC = SC = 3/2. 
In both examples, the information needed to predict the string optimally 

is equal to the information needed to exclude wrong strings, and thus 
TMC = SC. This derives from the fact that in both examples there is only 
one node where a choice is possible, and whenever this choice is possible, 
it is made with the same probabilities. 

More generally, inequality (5) always is an equality if the probabilities 
in every node where a choice is possible depend only upon the node. Since 
such probabili ty measures exist for any grammar,  we see that for any 
grammar  there exist measures for which (5) is saturated. 

Another feature seen in the second example is that the block entropies 
hN converge exponentially toward h. This is expected to be the typical 
behavior in the case of  regular grammars and short-range probability correla- 
tions. In cases where the EMC is infinite, we cannot have exponential 
convergence. The simplest alternative would then be power-law behavior. 
We shall present numerical data in the next section that indeed suggest 
power laws with anomalous exponents. 

The simplest situation prevails in the case of  Markov processes, of  which 
Figure 7 is an example. In a Markov process of  order n, the block prob- 
abilities pn+~(sl , . . . ,  s,+~) satisfy the relations 

p , + I ( S l , . . . , S , + I ) = p , ( s , + I ] S 2 , . . . , s n ) p , ( s l , . . . , S , )  (15) 

As is well known, in a Markov process of  order n, all block entropies hu 
are equal to h for N > n. Thus, Markov processes can be characterized as 
those processes that for given probabilities p n ( s l , . . . ,  sn) with fixed n have 
maximal entropy and minimal effective measure complexity. 

Using mutual Shannon information as measure of  complexity goes 
back, to our knowledge, to van Emden (1975). He did not, however, define 
an observable as we did. Instead, he called a system complex in a qualitative 
sense if the "interactions" between its parts, measured via mutual informa- 
tions, were large. 

Before leaving this section, let us make some comments about estimates 
of  EMC from experimental data. Equation (9) shows that knowing precisely 
the value of h is essential. I f  h is overestimated due to an overlooked decay 
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of the hN for large N, the EMC is underestimated. Thus, unless h =0 ,  
phenomenological  estimates of EMC can only represent lower limits. Notice 
that in the case of  the other complexities the situation is worse: there, 
overlooked small effects can influence estimates of complexities in both 
directions. 

4. H I G H E R  D I M E N S I O N A L  PATTERNS 

In more than one dimension, it is not immediately obvious how the 
concept of  an automaton scanning a pattern is to be implemented. The first 
attempt might consist in scanning it in some definite way, e.g., along a 
spiral, as indicated in Fig. 8a (with an arbitrarily chosen starting point). 
One problem is that the grammar generated in this way will in general not 
be stationary. More serious (but related to this) is that all nontrivial patterns 
will have infinite complexity when defined this way. The reason is that 
whenever correlations between neighboring points are not zero (even in 
one direction only), it will ultimately take infinitely many steps to go from 
one neighbor to the next. 

In view of this problem, one might give up the idea of scanning the 
pattern. After all, the notion of Kolmogorov complexity of  an ensemble 
that we want somehow to implement does not seem to require any scanning. 
Thus, a second way to define measure complexities is the following: after 
having chosen a random site i, we want to predict the letter at this site 
optimally, using knowledge about the letters at all other sites. To do this, 
we consider a sequence of increasing neighborhoods { Uk] k ~ N} of site i, 
such that two successive neighborhoods differ by just one site j. We call 
h(Uk) the uncertainty about site i when knowing all sites in Uk\i, and 
define 6hi(Uk) = h(Uk+l) - h(Uk). The effective path-independent measure 
complexity is then defined as in Section 3. It is the average over all i of  
inf[~j rqc3hj(Uk)], where r U is the distance between sites i and j, and the 
infimum is taken over all sequences { Uk}. 

In many cases, this definition seems to be very natural. But one problem 
is that it leads to finite complexities for all space-time patterns created by 
discrete local rules such as cellular automata.  Moreover, one can have the 
somewhat paradoxical case of  space-time patterns with smaller complexities 
than their sections at fixed time. It is not clear whether this represents a 
drawback of the definition of path-independent measure complexities or 
not. One might take the point of  view that this increase of complexity when 
considering only part of  a pattern illustrates just the way complexity is 
generated in general: by making unaccessible such information that would 
make predictions easy. Another problem is that there does not seem to exist 
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Fig. 8. (a) Possible (bad) way of  scanning a two-dimensional pattern. (b) Path for a space-time 
scan yielding finite complexities for all 1D cellular automata  with nearest neighbor rules. 
During the scan, the information picked up at time t -  1 is used to predict the state at t. 

any natural way to define path-independent  algorithmic and set com- 
plexities, or true measure complexities. 

Finally, a third possibility consists in scanning the pattern as we had 
tried first, but without prescribing the path along which it should be scanned. 
Instead, when looking for the minimal information or for the smallest 
automaton needed to continue the scan, we could also minimize with respect 
to possible paths (this minimal information must of  course include the 
information needed to continue the path). I f  we allow multiple visits to a 
site in order to recall information stored there, this is not so different from 
the path-independent  method,  and it also gives finite complexities in the 
case of  discrete local rules. For example, for any cellular automaton in one 
space dimension with a nearest neighbor rule, the path shown in Fig. 8b 
gives finite complexities. 
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Once having decided on how to scan, the rest is straightforward in 
principle, and the definitions and inequalities of  Sections 2 and 3 can be 
carried over immediately. We shall not go into details, since we shall not 
study any application. Also, while presenting no problems in principle, 
finding the most efficient path might be a formidable task in practice. 
Certainly no algorithm exists for it in general. 

5. APPLICATIONS 

5.1. One-Dimensional Maps 

In this section, we shall study families of maps X n .  1 =fo(xn) of  the 
interval [ - 1 ,  1] onto itself, of the type of the logistic map 

f ~ ( x )  : 1 - a x  2 (16) 

More precisely, we demand that (for all considered values of  the parameter  
a) f~(x) has a quadratic maximum at x = 0 with f~(0) = 1, that d f a / d x  is 
positive (negative) for x < 0 (x > 0), and that fo (x) has negative Schwarzian 
derivative (Collet and Eckmann, 1980). As a function of a, we assume that 
fa(1) is monotonically decreasing such that there is a maximal value area x 
at which x, = 1 is mapped  onto x,+l = - 1 ,  while x, = 1 is mapped onto 
positive values for sufficiently small values of  a. 

Such maps have attractors which either are periodic orbits, chaotic 
attractors with a completely continuous measure, or Cantor sets. The latter, 
studied in particular by Feigenbaum (1978, 1979), occur at infinitely many 
values of  a, all of  which are cumulation points of bifurcation points. The 
former two both occur on sets of a values of positive measure. 

The sequence {xi; i ~ N, xi c [ -1 ,  1]} of continuous variables is mapped  
onto a sequence ("it inerary") of  discrete variables s~ = 0, 1 by 

xi < 0<--> s~ = 0 
(17) 

Xi>~O<--->si: l 

and it is this itinerary that we shall study in the following. 
The set of  all possible strings {si} thus generated for a fixed map is 

given by the following theorem [Collet and Eckmann (1980); the simplified 
version presented here is due to Allouche and Cosnard (1984) and Dias de 
Deus et al. (1984)]. Starting from any sequence S={s~}, define first a 
sequence A . S  by 

i 

( A . S ) i  = Y, sk mod 2 (18) 
k : l  

and define y ( S )  as the number ~ [0, 1] whose binary representation is just 
y ( S )  = (O.SlS2S3 �9 �9 ")z. Finally, the "kneading sequence" T is defined as the 
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sequence {ti} generated by xl = 1, and starting with t~ = 1. Then, a sequence 
S is allowed if and only if 

1 - y (A .  T) <- y(A.{s~s,+~ si+ 2 . �9 �9 st+ n }) <- y (A .  T) (19) 

for all i and all n. 
In the following, we shall study special cases of  a. 

5.1.1. Fully Developed Chaos and Band-Merging Points 

The simplest si tuation--apart  from the periodic regime below the first 
Feigenbaum point--prevails at am~x. In this case, called fully developed 
chaos, the intervals [ - I ,  0] and [0, 1] are both mapped one-to-one onto 
[ -1 ,  1]. The kneading sequence is 1 0 0 . . . ,  and hence all sequences are 
allowed itineraries. Thus the grammar is trivial, the topological entropy 
is one bit/iteration, and both set complexities are zero. The measure- 
complexity is not zero in general, but is finite. Indeed, it was shown by 
Gy6rgyi and Szepfalusy (1985) that the block entropies hu converge in this 
case exponentially with N. 

A very similar situation prevails at the so-called band-merging points 
(Grossmann and Thomae, 1977). At these points, a suitable iterate of the 
map is equivalent to a fully developed chaotic map on some subinterval of 
[ -1 ,  1]. 

5.1.2. Periodic Windows 

Let us next study the case where the attractor is periodic, but where 
the algorithmic entropy is nonzero. The set of all itineraries is in this case 
a finite-complement (and thus regular) language (Block et al., 1980). 

For the period-3 window, e.g., all sequences with blocks "00" are 
forbidden after the first occurrence of  "1." The graph accepting this can 
be truncated, and after truncation we have the automaton shown in 
Fig. 7. 

Starting with a random point (with respect to Lebesgue measure), the 
orbit is attracted toward the periodic orbit with probability 1; thus the 
itinerary is not a stationary sequence. But there are orbits (with starting 
point of Lebesgue measure zero) that generate nontrivial itineraries with 
stationary probability measures. We shall not go further into detail, since 
the results are well known (Block et al., 1980). 

5.1.3. Typical Chaotic Maps 

At parameter values where the map is chaotic but not fully developed, 
the block entropies typically converge very irregularly (Crutchfield and 
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Packard, 1983). Three examples obtaineci by straightforward simulations 
are shown in Fig. 9. The values of h used in the figure are obtained from 
measuring simultaneously the Lyapunov exponents (which are equal to h 
for 1D maps). Although the convergence is too irregular to make strong 
statements about asymptotic behavior, we see that an exponential 

hN - h = c o n s t  X e - N h / 2  (20)  

provides a reasonable fit, indicating a finite EMC. The same behavior is 
found for Henon's map (Grassberger and Kantz, 1985), although there the 
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Fig. 9. Differences h N - h for the logistic map (5 .1)  with parameter values ( O )  a = 1.89, ( A )  

a = 1.90, a n d  ( O )  a = 1.91, each obtained from 5 • l0 s iterations and plotted on a logarithmic 
scale. The entropy h was obtained in all three cases from the Lyapunov exponent. Statistical 
errors are less than the size of  the symbols. 
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numerical results are less reliable. It was conjectured by Gy6rgy and Szep- 
falusy (1985) and proven there for Markov partitions, but Markov partitions 
are not easy to find for typical chaotic maps; our partition is certainly not 
Markov. Anyhow, we have strong evidence that the EMC is finite for typical 
chaotic 1D maps, and is approximately proportional to 1/h. 

On the other hand, the algorithmic complexity should be infinite for 
nearly all chaotic parameter values. This follows simply from the fact that 
typically the kneading sequence is not periodic, whence one has to test 
infinitely long strings to verify equation (19) in the worst case. 

5.1.4. Feigenbaum Points 

The most interesting case is that of the accumulation points of bifurca- 
tions studied by Feigenbaum (1978, 1979). 

There, we have h --- 0, i.e., all orbits are nonchaotic. The block entropies 
hN for N = 2 '~ are easily obtained as follows. First, one has p2(11) = P2(10) = 
p2(01) = 1/3, giving He = log 3. Next, if N is even and >2,  then due to the 
Cantor structure of the attractor one finds HN = HN/2+ 1, giving 

1 
h N - - - -  for N ~  (21) 

N 

and 

E M C =  Y~ hN=oo (22) 
N - O  

Thus, all itineraries at the Feigenbaum point have zero entropy, but 
infinite complexity, in agreement with the naive intuition. 

In general we might conclude that for 1D maps the EMC seems to 
agree better with the intuitive concept of complexity than either the AC or 
the SC. 

5.2. Cel lular  Automata 

In this section, we shall discuss one-dimensional cellular automata 
(CA) with two states per site ("0," " i " ) ,  and nearest neighbor rules. Such 
rules are called "elementary" in Wolfram (1983). 

In principle, we could (and should) discuss the two-dimensional pat- 
terns created by these CA in space-time. We shall not do this, because of 
the technical problems discussed in Section 4. Instead, we shall first study 
set complexities of spatial patterns created by "legal" rules [in the sense 
of Wolfram (1983)] after finite numbers of  iterations. After that, effective 
measure complexities of  spatial, temporal, and more general one- 
dimensional patterns will be discussed for two different types of  rules. In 
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Fig. 10. Algorithmic complexities (horizontal bars) and set complexities crosses; both 
measured in bits) of spatial patterns generated after two time steps by "legal elementary" 1D 
cellular automata, plotted versus the number of the CA in the notation of Wolfram (1983). 
Slatting configurations consisted of completely random strings. Values for the SC are actually 
upper limits only, since the accepting automata might not be optimal for the SC. 

the last case we shall encounter again patterns with zero entropy, but infinite 
complexity. 

Individual CAs will be denoted by numbers following Wolfram (1983). 

5.Z1.  A lgor i thmic  and  Se t  Complexi t ies  

In this subsection, we first follow Wolfram (1984b) in constructing 
minimal deterministic automata recognizing the spatial strings 
{" �9 �9 si-lsisi+l �9 �9 "} generated after two and three iterations. More iterations 
would of course be extremely useful, since visual inspection indicates that 
typical behavior is often seen only much later. Unfortunately, for the more 
complex rules the size of these automata (i.e., the algorithmic complexity 
in our notation) increases so fast with the number of time steps that at 
present this seems impossible. 

After having obtained these accepting automata, we took very long 
random strings (length = 5000x size of accepting automaton) as starting 
configurations, and estimated from this the set complexity. Results are 
shown in Fig. 10 (for two time steps) and in Fig. 11 (for three time steps). 

Let us make a few comments about these data: 
1. In all cases, set complexities are strictly smaller than algorithmic 

complexities, in agreement with our general statement in Section 2. 
2. There are some rules (94, 104, 164, and 218) which have fairly large 

AC, although they seem to settle on atr ival  (periodic) time behavior. We 
find that their SC is suppressed compared to the AC more than the average. 
We furthermore expect  that their complexities will increase less rapidly 
with time than for the rules showing complex time behavior. 
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Fig. 11. Same as Figure 9, but after three time steps. 

3. For other rules, such as 50, 132, 178,222, and 232, the AC are much 
smaller, although the patterns look very similar to those of the previous 
group. Indeed, their SC are much less suppressed that in the previous group. 

4. In cases, e.g., rules 32, 72, 128, and 160, the asymptotic patterns 
seem to be completely trivial, consisting only of zeros. This triviality is not 
directly reflected in the AC, which seems to increase with t, but it is seen 
in a decrease of SC. 

5. The biggest complexities are shown by rules with aperiodic behavior, 
as we should have expected (rules 18, 22, 122, 126, 146, 182, and, to some 
lesser extent, 54). As shown by Grassberger (1984), rule 22 should be the 
most complex among these. This is not clearly borne out in Figures 9 and 
10, neither by the AC nor by the SC. 

Summarizing, we might say that in these cases the SC corresponds 
better to the naive expectations from visual inspections. But the difference 
is less than what one might have hoped, presumably due to the small number 
of time steps. 

5.2.2. Measure Complexities; Asymmetric Rules 

Next we study EMC for cellular automata for which all random strings 
{ s l , . . . ,  su} appear equally often in the stationary distributions, i.e., 

pu(s~, . . . ,  sN) = 2 -N (23) 

For these rules, we shall study both timelike sequences and sequences taken 
along a diagonal line i - t  = const (Sinai, 1985). 

The first class of rules satisfying equation (23) are "additive" rules 
such as rules 90 and 150. They also have zero complexity for timelike 
sequences and thus they are of no interest for us. 
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Patterns generated by CA rules (a) 30, (b) 45, (c) 120, (d) 210. time is increasing 
from top down. 

The other class, studied in the following, consists of rules of the type 
(Packard, 1983; Wolfram, 1985) 

si( t + 1) = Si_l( t ) X O R  f ( s , (  t ), si+l( t) ) (24) 

where f (s ,  s') is a nontrivial mapping from {0, 1} x {0, 1} to {0, 1}, i .e . , f( .  �9 -) 
is not equal to a constant (0 or 1) nor equal to s, l - s ,  s', o r a l - s ' .  It is 
easy to see (Wolfram, 1985) that for all such rules one has equation (23). 

The rules we shall study here are rule 30 [ f ( s ,  s') = s OR s'),  rule 45 
I f ( s ,  s ' ) =  s OR NOT s'], rule 120 I f ( s ,  s ' ) =  s AND s'], and rule 210 
I f ( s ,  s') = s AND NOT s']. Patterns generated by these rules are shown in 
Fig. 12. All other rules satisfying (24) are either "totalistic" [allowing 
thus a fairly complete treatment (Martin et al,, 1984)] or trivial or related 
to these rules by exchanging 0 and 1. 

For these rules, all temporal strings {s~(t) , . . . ,  si(t + T -  1)} occur also 
with equal probability 2 -T. But from the dynamical systems point of view, 
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more interesting than such sequences are rectangular N • T blocks 

SN, T ----{[S,(t),..., S,N-1(t)],..., [(s,(t+ 7"--1) , . . . ,  Si+N-~(t+ T -  1)]} 
(25) 

or similar trapezoidal blocks with sj(t + k) replaced by Sj+k(t + k). Consider 
the entropies 

HN, T = - -Z  PN, T( SN, T) log PN, T(SN, T) (26) 
S 

One expects (Wolfram, 1984a; Sinai, 1985) that these tend toward T.h when 
first T and then N tend toward infinity, with h being the time and diagonal 
entropy, respectively. Alternatively, define block entropies 

hN, T = HN, T+I -- HN, T (27) 

Then one can show generally that all hN, T are nonnegative and decreasing 
with T, and that 

h =  lira hN, T (28) 
N,T~oo 

irrespective of the order in which the limit is taken. 
For all rules satisfying equation (24) the limit N need not be taken in 

equation (28). Instead, it is sufficient to take N = 2. This follows simply 
from the observation that if a strip of width N = 2 and of length T is known, 
further columns of length T - 1 ,  T - 2 , . . .  to the left of it can immediately 
be obtained by inverting equation (24). Thus, the information HN, T cannot 
grow faster than H2, T with T. 

Numerical results for h2,7- were obtained by exact enumerations. Results 
are shown in Fig. 13 for the temporal block entropies and in Fig. 14 for 
the diagonal entropies. 

As seen from Fig. 12, rule 210 leads to periodic stripes of variable 
width and period. Accordingly, the EMC for this rule is finite both for 
diagonal and timelike blocks (the latter are not shown in Fig. 13). Also, 
the diagonal metric entropy is zero, although the diagonal topological 
entropy is equal to one. This seems to be bigger than the diagonal topological 
entropies of the other three rules. 

For the other rules 30, 45, and 120 we find that temporal metric entropies 
are exactly one, within the estimated errors, while diagonal metric entropies 
are less than one (they are indicated by arrows in Fig. 14). For the 
temporal block entropies we find, more precisely, 

h2.T = h + cons t /T  ~ (29) 

with c~ =0.6+0.1 (rules 30, 45) and c~ =1.0+0.1 (rule 120), respectively, 
and with h = 1. The convergence of diagonal entropies is also compatible 
with this power law, with the same exponents a, although errors are too 
large to allow a more definite statement. 
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Anyhow,  our results show that the E M C  is infinite for all three rules 
30, 45, and 120, both for temporal  and for diagonal  strings. 

5.2.3. Measure Complexities; Rule 22 

The last example that has been studied in detail is rule 22. It was 
chosen since among  all " legal"  (in particular, symmetric) rules it seems to 
show the most  complex behavior.  It can also be formulated as 

1 if si_l(t)+si(t)+Si+l(t)=l 
si(t+ 1) = (30) 

0 else 
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Fig. 14. Diagonal block entropies h2, T measuring the information increase in columns parallel 
to lines i - t  = const for the four rules shown in Fig. 12. The arrows indicate the estimates 
of  limN~oo hN. 

A pattern generated with this rule from a random start is shown in 
Fig. 15. Visual impression does not suggest any long-range effects in this 
and in similar patterns generated from other random configurations. 
Nevertheless,  more detailed studies, which shall be published elsewhere 
(Grassberger, 1986), indicate that there are such long-range effects, reminis- 
cent of  critical phenomena.  In the remainder of  this section, we shall present 
alternative indications o f  such effects based on EMCs. 
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Fig.  15. Space-time pattern generated by rule 22 f r o m  random start. 

Since we do not know exactly the invariant measure for rule 22, we 
cannot use exact enumeration as in the last subsection. Instead, we perfor- 
med Monte Carlo estimates, based on very large lattices (up to 30,000 time 
steps and 36,000 lattice sites wide). Results for temporal block entropies 
hN.T are presented in Fig. 16 for N =  1-5. Results for N = 2 ,  together 
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:5 10 
2 

09 

0.8 
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temporal block e n t r o p i e s  

~ o 

~ 0 ~ 0  

1~0 1 ~5 
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Fig. 16. Temporal block entropies, rule 22. The spatial width of the blocks is N = 1-5. 
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Fig. 17. (O) Spatial block entropies hN and (+) temporal block entropies hN. T with width 
N=  2 for rule 22, on a doubly logarithmic scale. Temporal entropies are in natural units 
(bits x log 2), in order to fit on the same scale. 

with spatial block entropies,  are presented on a doubly  logari thmic scale 
in Fig. 17. Error  bars in both figures are much smaller than the symbols.  

The first thing to notice is that  again it seems that the limit N - - > ~  in 
equat ion (28) is reached already for  N = 2. The second observat ion is that  
a l though the decrease o f  the block entropies with block length is very weak 
[so that it had been over looked in Grassberger  (1984)], it is very steady 
and does not  show any tendency  to vanish soon. Indeed,  best fits were 
obtained with power  laws (29) with h = 0 in both cases, and with a = 0.18 
for temporal  entropies and c~ =0.06 for spatial entropies (see Fig. 17). 
Deviations f rom such a power  taw are larger for  spatial block entropies 
than for  temporal  ones. 

I f  our  interpretat ion o f  the data shown in Fig. 17 is correct, we have 
found  a second example (in addit ion to Fe igenbaum's  map)  with infinite 
EMC but zero randomness .  In that case, it seems natural to call rule 22 a 
deterministic critical phenomenon .  Notice that it would be a quite unusual  
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critical phenomenon, in the sense that it contains no continuous control 
parameter and no obvious order parameter. 

6. DISCUSSION 

In this paper, we have introduced several quantities which can serve 
as measures of complexity of ensembles of patterns. More precisely, we 
discussed only one-dimensional patterns in any detail. Such ensembles can 
then be considered as formal languages, endowed with probabilities which 
turn them into "styles." 

In the simplest cases, a formal grammar is defined by a transition graph. 
If  also the probability measure depends only on the graph in the sense that 
branching probabilities depend only on the actual node, then we have found 

EMC-< TMC = SC < AC (31) 

If the branching probabilities are not single-valued functions of the nodes 
in the transition graph, then the central equality in (31) is replaced by an 
inequality TMC > SC. H e r e ,  EMC and TMC stand for etiective and true 
metric complexity, respectively, SC for set complexity, and AC for algorith- 
mic complexity. All except the latter are related to Shannon entropies (and 
thus metric quantities), while the latter is a purely algorithmic concept and 
agrees with the complexity introduced by Wolfram (1984b). The EMC seems 
the only measure of complexity that is observable if the grammar is not 
known (except for the path-independent complexities mentioned briefly in 
Section 4). It is thus considered as the most relevant of the measures of 
complexity studied in the present paper. It is essentially a weighted sum 
over mutual information between distant letters. 

The naturalness of our definition is indicated by the fact that the EMC 
was infinite in two cases that were also judged complex intuitively: the 
kneading sequence of the Feigenbaum map (Section 5.1) and some patterns 
created by cellular automata (Section 5.2). In both cases, we found scaling 
laws like those typical of critical phenomena. 

Other most interesting examples to study would be natural languages 
and sequences of DNA. We conjecture that we should find similar scaling 
laws there, too. Unfortunately, existing numerical studies do not seem of 
sufficient detail to decide this question. 

We mentioned in the introduction the concept of Kolmogorov com- 
plexity. In contrast to the quantities discussed in the present paper, this is 
not attached to an ensemble of strings, but to individual (infinite) strings: 
like Shannon entropy, it measures an amount of information per letter 
needed to specify a string; our complexities, in contrast, were informations 
per letter needed to guarantee that the string belongs to the ensemble, without 
specifying it further (except for the EMC, which was introduced as a lower 
estimate for such an information). 
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The difference between Kolmogorov complexity and Shannon entropy 
is that the latter is a measure-theoretic concept while the former is not. 
There are thus cases where the two do not match. But I claim that this 
happens only if the ensemble of strings one is considering is not stationary 
in the strong sense given in Section 2. Consider, e.g., the string of digits of 
pi, 3.141592 . . . .  The most efficient program to compute N digits on a 
general-purpose computer increases slower than linearly with N, and thus 
the Kolmogorov complexity of pi is zero. Nevertheless, by regarding 
sufficiently many digits, one gets the impression that they are more or less 
random [or "normal;"  see Wagoner (1985)]. In order to test the latter, one 
has to do statistics over many short substrings, and verify that all different 
substrings of  the same length occur with the same frequency. In this way, 
one discards the beginning of the string, which on the other hand is the 
crucial part in determining the Kolmogorov complexity: the shortest pro- 
grams to generate other substrings of length N will in general not be shorter 
than O(N) .  It is for this and similar examples (e.g., sequences of gaps 
between successive prime numbers or between energy levels of quantum 
systems) that we restricted ourselves to strictly stationary ensembles. There, 
a distinction between Shannon information and Kolmogorov complexity 
does not seem necessary. Notice that, although the concept of Kolmogorov 
complexity does not involve an a priori probability measure, it induces such 
a measure (Chaitin, 1979), Otherwise, it could not be equivalent to Shannon 
information, of course. 

As already mentioned in the introduction, the idea of using mutual 
informations (like our EMC) to measure complexity of structures is not 
new. Within the framework of Shannon informations, we encountered it 
first in van Emden (1975). Using Kolmogorov complexity instead of Shan- 
non information, it was proposed independently in Chaitin (1979). Accord- 
ing to what we said above, we conjecture that the approaches of van Emden 
and of  Chaitin are equivalent when applied to strictly stationary ensembles 
if the measure induced by the Kolmogorov complexity is equal to the true 
one. 

ACKNOWLEDGMENTS 

For stimulating discussions on the subjects of the present paper, I am 
most indebted to T. v o n d e r  Twer, S. Wolfram, P. Szepfalusy, R. Dilao, 
J. Keymer, and H. Kantz. I also thank H. Kantz for a careful reading of 
the manuscript. I also want to acknowledge a very stimulating correspon- 
dence with J. Ford on the question of  Kolmogorov complexity versus 
Shannon information. Finally, it is a pleasure to thank J. Dias de Deus for 
inviting me to an exciting meeting on cellular automata in Lisbon. The 
present paper is partly based on a talk given there. 



938 Grassberger 

NOTE ADDED IN PROOF 

Unfortunately, I was unaware of the notion of "logical depth" of C. H. 
Bennett (in Emerging Syntheses in Science, D. Pines, ed., 1985) which 
measures essentially the time needed to run the shortest program producing 
the pattern. 

REFERENCES 

Alekseev, V. M., and Yakobson, M. V. (1981). Physics Reports, 75, 287. 
Allouche, J.-P., and Cosnard, M. (1984). Grenoble preprint. 
Block, L., et al. (1980). Periodic points and topological entropy of 1-dimensional maps, in 

Lecture Notes in Mathematics, No. 819, Springer, Berlin, 1980, p. 18. 
Chaitin, G. J. (1979). Toward a mathematical definition of 'life', in The Maximum Entropy 

Principle, R. D. Levine and M. Tribus, eds., MIT Press, Cambridge, Massachusetts. 
Christol, G., Kamae, T., Mendes France, M., and Rauzy, G. (1980). Bulletin Societ~ 

Mathematique France, 108, 401. 
Collet, P., and Eckmann, J.-P. (1980). Iterated Maps on the Interval as Dynamical Systems, 

Birkhauser, Boston. 
Crutchfield, J. P., and Packard, N. H. (1983). Physica, 7D, 201. 
Dias de Deus, J., Dilao, R., and Noronha da Costa, A. (1984). Lissabon preprint. 
Eckmann, J. P., and Ruelle, D. (1985). Review of Modern Physics, 57, 617. 
Feigenbaum, M. (1978). Journal of Statistical Physics, 19, 25. 
Feigenbaum, M. (1979). Journal of Statistical Physics, 21,669. 
Grassberger, P. (1984). Physica, 10D, 52. 
Grassberger, P., and Kantz, H. (1985). Physics Letters, l13A, 235. 
Grossmann, S., and Thomae, S. (1977). Zeitschriftfiir Naturforschung, 32a, 1353. 
Guckenheimer, J., and Holmes, P. (1983). Non-linear Oscillations, Dynamical Systems, and 

Bifurcations of Vector Fields, Springer, New York. 
GySrgyi, G., and Szepfalusy, P. (1985). Physical Review A, 31, 3477; and to be published. 
Hofstadter, D. R. (1979). G6del, Escher, Bach, Vintage Books, New York. 
Hogg, T., and Huberman, B. A. (1985). Order, complexity, and disorder, Palo Alto preprint. 
Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory, Lanaguages, and 

Computation, Addison-Wesley. 
Martin, O., Odlyzko, A., and Wolfram, S. (1984). Communication in Mathematical Physics, 93, 

219. 
Packard, N. (1983). Complexity of growing patterns in cellular automata, Institute of Advanced 

Study preprint. 
Schuster, H. G. (1984). Deterministic Chaos, Physik-Verlag, Weinheim, West Germany. 
Shannon, C. E., and Weaver, W. (1949). The Mathematical Theory of Communication, University 

of Illinois Press, Urbana, Illinois. 
Sinai, Ya. (1985). Commentarii Mathematici Helvetici, 60, 173. 
Van Emden, M. H. (1975). An Analysis of Complexity, Mathematical Centre Tracts, Amsterdam. 
Wagoner, S. (1985). Is pi normal;, Mathematical Intelligencer, 7, 65. 
Wolfram, S. (1983). Review of Modern Physics, 55, 601 (1983). 
Wolfram, S. (1984a). Physica, 10D, 1. 
Wolfram, S. (1984b). Communications in Mathematical Physics, 96, 15. 
Wolfram, S. (1985). Random sequence generation by cellular automata, Institute for Advanced 

Study preprint. 


