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Abstract 

Protein kinase C (PKC) is a family of closely related lipid-dependent and diacyglycerol-activated isoenzymes 
known to play an important role in the signal transduction pathways involved in hormone release, mitogenesis 
and tumor promotion. Reversible activation of PKC by the second messengers diacylglycerol and calcium is 
an established model for the short term regulation of PKC in the immediate events of signal transduction. 
PKC can also be modulated long term by changes in the levels of activators or inhibitors for a prolonged 
period or by changes in the levels of functional PKC isoenzymes in the cell during development or in response 
to hormones and/or differentiation factors. Indeed, studies have indicated that the sustained activation or 
inhibition of PKC activity in vivo may play a critical role in regulation of long term cellular events such as 
proliferation, differentiation and tumorigenesis. In addition, these regulatory events are important in colon 
cancer, where a decrease in PKC activators and activity suggests PKC acts as an anti-oncogene, in breast 
cancer, where an increase in PKC activity suggests an oncogenic role for PKC, and in multidrug resistance 
(MDR) and metastasis where an increase in PKC activity correlates with increased resistance and metastatic 
potential. These studies highlight the importance and significance of regulation of PKC activity in vivo. 

Introduction 

Protein kinase C was initially discovered and char- 
acterized by Nishizuka and co-workers in 1977 as a 
proteolytically activated kinase [1]. PKC was then 
further characterized as a calcium and phospholipid 
(PL) dependent kinase [2]. Two major discoveries 
in the early 1980's established the importance of 
PKC in signal transduction and tumor promotion. 
The first was that the basal activity of PKC was 
stimulated by diacylglycerol (DAG), a product of 
the phosphatidylinositol (PI) cycle [3]. Shortly 
thereafter came the discovery that PKC was activa- 
ted by and was the major intracellular receptor for 
the tumor promoting phorbol esters [4, 5]. Other 
work in the early 1980's clarified the mechanisms by 
which calcium, phospholipid and DAG activated 
PKC in vitro, and led to the characterization of 

many activators, inhibitors, and substrates for PKC. 
At the same time the phenomena of autophospho- 
rylation, pseudosubstrate inhibition, translocation 
and down regulation of PKC were also elucidated 
and studied. 

Much of the early work characterizing the enzy- 
matic regulation of PKC assumed that PKC was a 
single enzymatic entity, however, cloning of PKC 
has revealed that PKC is a family of closely related 
isoenzymes; products of distinct genes (with the ex- 
ception of PKC ~3I and 13II which are derived via al- 
ternative splicing of a common gene). As of this 
date eleven different PKC isoenzymes have been 
cloned including the calcium-dependent isoen- 
zymes, cq 13I 13II, and 7, the calcium-independent 
isoenzymes 5, ~, rh e and tx and the atypical isoen- 
zymes ~ and i()~). 

The PKC isoenzymes are closely related structur- 
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ally; composed of a single polypeptide chain divid- 
ed into 2 domains: a regulatory domain at the amino 
terminus and a catalytic domain at the carboxyl ter- 
minus. The enzyme can be divided into 4 regions 
conserved across isoenzymes (C1-C4) and 5 varia- 
ble regions (VI-V5) which are variable between 
isoenzymes but conserved within an isoenzyme 
across species [6]. 

Functions for most of the regions of PKC have 
been proposed. The C1 region contains the pseudo- 
substrate site thought to inhibit the enzyme by bind- 
ing to the catalytic site [7]. The C1 region also con- 
tains the tandemly repeated cysteine rich regions 
which bind phorbol esters and DAG [8, 9]. PKC 
and )~ contain only one cysteine rich region, thus 
these isoforms are unresponsive to phorbol esters 
and DAG. Recently, expression of the second cyst- 
eine rich region of PKC ~, as a GST fusion protein 
along with mutational studies of this region have 
defined a 43 amino acid region (residues 102-144 of 
this isoform) which is sufficient for phorbol ester 
binding [10,11]. In addition, one cysteine rich region 
was sufficient for lipid dependent, stereospecific 
phorbol ester and DAG binding, although the low- 
er cooperativity and affinity of this binding com- 
pared to the intact PKC ~ leaves the possibility that 
two cysteine rich regions are necessary for efficient 
binding in vivo. The C2 region is thought to contain 
the calcium binding site since the calcium-inde- 
pendent enzymes lack this region, however, no clas- 
sical calcium binding sequences Such as an EF hand 
are present [12]. Recently mutational studies have 
suggested that the C2 region forms a calcium specif- 
ic binding domain with the C1 region [13]. The C3 
region contains an ATP binding site with three gly- 
cine residues and a downstream lysine except in 
PKC { where the last glycine is replaced by an ala- 
nine. The V3 region is the hinge region, cleaved by 
calpain or trypsin to separate PKC into a calcium, 
PL independent protein kinase and a phorbol ester 
receptor [12,14]. The other variable regions V1, V2, 
V4, V5 are conserved within an isoenzyme across 
species suggesting that they have functional roles 
that may distinguish the isoenzymes in terms of sub- 
strates, localization, or regulation. 

The various biochemical properties of PKC 
isoenzymes and regulation by lipid cofactors have 

been reviewed recently [15-18]. This review will 
concentrate on the role of PKC in regulating the 
long term cellular events, proliferation and differ- 
entiation, in both normal and transformed cells. We 
would like to contrast the classical mode of PKC ac- 
tivation (short term activation by second messen- 
gers which is critical for signal transduction and 
controlling short term events mediated by PKC 
such as secretion) with long-term regulation of 
PKC activity (by modulating the levels and activ- 
ities of various PKC isoenzymes and PKC activa- 
tors) which we believe is important for the regula- 
tion of long-term cellular events such as prolifera- 
tion and differentiation. Finally, we would like to 
highlight the importance of PKC and the regulation 
of PKC activity in cancer biology by examining the 
role of PKC in colon and breast cancer as well as the 
involvement of PKC in metastasis and multidrug 
resistance. 

Role of protein kinase C in signal transduction: 
transduction of mitogenic signals 

Regulation by DA G 

Physiologically, PKC is activated by the concerted 
action of PL and the second messenger, DAG. In 
addition, some isoenzymes (~, 13I, [3II and 5') are also 
calcium-dependent. The interactions between PKC 
and calcium PL, and DAG have been worked out 
using a mixed-micelle assay for PKC [19]. These 
studies suggest a two step mechanism for the activa- 
tion of PKC, one in which the enzyme associates 
with the membrane by association with PL and cal- 
cium and the second in which it becomes activated 
by DAG [19, 20]. Use of the mixed micelle assay has 
also allowed a detailed examination of the stoi- 
chiometry and specificity of the interaction be- 
tween PKC and DAG. These studies found that one 
molecule of DAG interacts with one molecule of 
PKC to cause activation. Also, the structure and 
stereospecificity of DAG are critical for its ability to 
activate PKC. Thus, even though sn-I,2-DAG is the 
active species, 1,3-DAG and sn-2,3-DAG are un- 
able to activate PKC [16]. 



Regulation by free fatty acids 

In addition to activation by calcium, PL, and DAG 
or phorbol esters, PKC can also be activated by cis- 
unsaturated fatty acids such as oleic and arachidon- 
ic acids (AA). Activation of PKC by fatty acids ap- 
pears to occur independently of PS [21] while the 
involvement of DAG has been the subject of con- 
troversy with some studies showing that fatty acid 
activation is independent of DAG [22] and others 
showing strong synergy between fatty acids and 
DAG [23, 24]. Studies on the effect of calcium have 
also yielded conflicting results with some reporting 
calcium-independent fatty acid activation [21] and 
others reporting calcium-dependent activation 
[22]. Studies in this laboratory have distinguished 
the mechanism of activation of PKC by fatty acids 
and interaction of PKC with fatty acids from that of 
calcium, PL and DAG in several ways. First, sodium 
oleate appears to be unable to inhibit phorbol ester 
binding to PKC indicating that fatty acids interact 
with PKC at a site distinct from the phorbol ester/ 
DAG binding site [24]. Second, certain PKC inhib- 
itors such as sphingosine as well as conditions 
known to inhibit PKC activity such as high ionic 
strength are unable to inhibit oleate-induced acti- 
vation of PKC to the same extent as PS/DAG-in- 
duced activation. Sodium oleate also does not in- 
duce autophosphorylation of PKC, fails to interact 
with membrane bound PKC, and does not cause ag- 
gregation of PKC with substrate. Finally, sodium 
oleate appears to activate preferentially soluble 
rather than membrane bound PKC [24]. Further 
studies have indicated that only free sodium oleate 
is able to activate soluble PKC [25]. 

Taken together, these results allowed a model for 
PKC activation to be formulated. As shown in Fig. 
1, binding of ligands to appropriate receptors leads 
to activation of phospholipase C (PLC) releasing 
inositol triphosphate (IP3) and DAG and/or activa- 
tion of phospholipase A 2 (PLA2), releasing arachi- 
donic acid. IP 3 interacts with its receptor to cause 
the release of intracellular calcium stores and a rise 
in intracellular calcium [26] which, among other 
things, may aid in recruiting cytosolic PKC to the 
membrane (translocation) where it remains inac- 
tive but primed for activation. On the membrane, 
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PKC interacts with 4 PL molecules, either via a cal- 
cium bridge or directly, and with one DAG to be- 
come a fully activated kinase now ready to phos- 
phorylate cellular proteins [27, 28]. Alternatively, 
free arachidonic acid can activate PKC in the cyto- 
sol. Thus, activation of PKC during signal transduc- 
tion can occur in two compartments with soluble 
PKC being the target for the second messenger ara- 
chidonic acid and membrane bound PKC being the 
target for the second messenger DAG [25]. The reg- 
ulation of PKC by the second messengers DAG and 
arachidonic acid has firmly established PKC's role 
in signal transduction. 

Transduction of rnitogenic signals of growth factors" 

Many of the signals transduced by PKC are mito- 
genic signals sent by growth factors (e.g. PDGF and 
EGF). PDGF binds to its high affinity receptor 
(PDGFR) and activates the receptor's intrinsic ty- 
rosine kinase activity to mediate a number of cellu- 
lar effects including initiation of DNA synthesis and 
induction of c-los and c-myc expression [29]. PKC 
has an integral role in the PDGF pathway as most of 
the processes initiated by PDGF treatment can be 
mimicked by the PKC activators PMA or synthetic 
diacylglycerol (AOG) and, conversely, these phe- 
nomena can be blocked by downregulation of PKC. 
In addition, PDGF stimulates PI turnover by acti- 
vating PLC-y resulting in increased DAG and intra- 
cellular calcium, the stimuli which activate PKC 
[30]. Thus, PDGF can activate PKC in vivo as mea- 
sured by the induction of phosphorylation of the 
MARCKS protein, a key substrate for PKC [29]. 
Mutational analysis of the PDGF tyrosine kinase 
domain has indicated that PI turnover via PLC gen- 
erating DAG and calcium is not sufficient for the 
mitogenic response and that another signal, per- 
haps via the associated PI-3 kinase activity, is neces- 
sary [31, 32]. PKC also has a role in the EGF signall- 
ing pathway. When PDGF stimulates the PKC 
pathway, the EGF signalling pathway is downreg- 
ulated [33]. The downregulation of this pathway, 
which can be mimicked by PMA, is due to a de- 
crease in the affinity of the EGF receptor for EGF 
without a decrease in receptor number. Further 
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Fig. 1. Protein kinase C mediated signal transduction and biology. The interaction of ligand with its respective receptor initiates the signal 
transduction cascade. Coupling with PLC results in generation of DAG which activates membrane associated PKC and IP 3 which in- 
creases intracellular calcium. Coupling to PLA 2 generates arachidonic acid (AA) which can activate cytosolic PKC. Activation of PKC 
results in the phosphorylation of physiological substrates which mediates the subsequent biology including modulation of membrane, 
cytoskeletal, cytosolic and intranuclear processes. The pathway of PKC mediated signal transduction to the nucleus via Raf, MEK and 

MAPK has recently been elucidated. 

studies have indicated that PKC directly phospho- 
rylates the EGF receptor, suggesting that activated 
PKC acts directly on the EGF receptor to decrease 
its affinity for EGF [33]. Mutational studies in 
which the residue (Thr654) on the EGFR phospho- 
rylated by PKC in vitro and in vivo is mutated to a 
tyrosine support this model [33]. However, muta- 
tion to alanine still allows downmodulation by PKC 
suggesting that other residues or another mecha- 
nism is also involved [34]. 

More recent studies have elucidated the molecul- 
ar details in pathways for transduction of mitogenic 
signals and have identified the possible role(s) for 
PKC in this pathway. As shown in Fig. 1, the binding 
of PDGF and other growth factors to their respec- 
tive receptors activates their tyrosine kinase activ- 

ity. This either directly or indirectly (through the 
GRB-2/Sos/Ras pathway) activates PLC to cause 
PI turnover and increases in DAG and intracellular 
calcium activating PKC [30, 35]. PKC is then able to 
phosphorylate and activate c-Raf-1, a serine-threo- 
nine protein kinase [36]. c-Raf-1 then phosphory- 
lutes and activates mitogen activated protein 
(MAP) kinase kinase (MEK) which subsequently 
phosphorylates MAP kinase leading to the direct 
phosphorylation of transcription factors such as Jun 
in the nucleus and activating the mitogenic program 
in the nucleus [37]. 



Role of protein kinase C in tumor promotion: 
PKC as the major cellular phorbol ester receptor 

Activation, translocation and downregulation 
of  PKC 

In 1982, Nishizuka and coworkers reported that 
PKC in association with PL was directly activated 
by the tumor-promoting phorbol esters [4]. In addi- 
tion, other studies showed that PKC was the major 
intracellular receptor for phorbol esters [5]. Phor- 
bol esters activate PKC in a manner analogous to 
the endogenous activator, DAG, except that phor- 
bol ester activation can be maintained for pro- 
longed periods of time due to their metabolic stabil- 
ity. Thus, prolonged stimulation of PKC has been 
proposed to be the mechanism for the tumor pro- 
moting action of the phorbol esters [4]. However, 
the action of phorbol ester on PKC results not only 
in activation, but also in translocation of PKC to the 
membrane and subsequent downregulation. This 
raises the possibility that tumor promotion may be a 
consequence of either prolonged activation or the 
subsequent inactivation of PKC by phorbol esters. 
In any case, the effect of phorbol esters on PKC was 
the first indication that prolonged activation or in- 
hibition of PKC activity could play a critical role in 
cell regulation. Since these initial reports, PKC has 
also been shown to be regulated by many other tu- 
mor promoters such as byrostatins, unsaturated 
free fatty acids, and possibly by additional organic 
compounds such as benzene, chloroform and car- 
bon tetrachloride [38-40], firming the link between 
PKC and tumor promotion. 

Role of  PKC in skin cancer~epithelial differentiation 

Long before phorbol esters were known to activate 
PKC, their role in the promotion of skin cancer in 
animal models had been well characterized. The 
ability of a single dose of PMA to induce skin cancer 
in an appropriately pre-treated mouse and also to 
completely downregulate PKC in a long term fash- 
ion (3-4 days) implicated PKC in this process [41]. 
Further studies have linked PKC, not only to skin 
cancer, but also to the normal processes of epithe- 
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lial growth and differentiation. Keratinocytes, 
which make up 99% of skin epithelium, undergo a 
defined process of growth and differentiation to 
continually supply fresh epithelium. At the epider- 
mal/dermal junction, basal cells continually divide 
to provide a source of cells which migrate to the sur- 
face as they differentiate from spinous, to granular 
to cornified keratinocytes [42]. In models of this dif- 
ferentiation process, induction of differentiation by 
increasing extracellular calcium causes an increase 
in H-specific PLC activity, increases in DAG and 
IP3, an increase in intracellular calcium, changes in 
PKC activity, alteration of PKC localization, and 
changes in markers of differentiation such as Fos 
expression. These studies implicate activation of 
the DAG/PKC pathway in association with differ- 
entiation. In intact epidermis, PKC activity has 
been shown to be linked to the specific transition 
from spinous to granular cells [43]. Recently, PKC q 
has been found primarily in epithelial cells (skin 
and lung) and localization studies have found PKC 
11 in the differentiating or differentiated epithelial 
cells but not in the basal undifferentiated layer [44]. 
In addition, subcellular localization studies have lo- 
calized PKC rl to the nucleus [45]. Thus, PKC ~1 ap- 
pears to be poised to have a role in epithelial differ- 
entiation. In vitro models of differentiation and 
transformation of keratinocytes have supported 
such a role. In one study in which keratinocytes 
were transformed with H-ras and calcium stimula- 
tion, levels of PKC q increased dramatically while 
levels of PKC ~ decreased [46]. In another study ex- 
amining terminal differentiation of keratinocytes 
by PMA, again PKC 11 levels were increased but 
both PKC o~ and 5 expression were decreased [47]. 
In another model, PKC has been implicated in the 
regulation of melanocyte growth since normal mel- 
anocytes require PMA to grow in culture while the 
growth of transformed melanocytes is repressed by 
PMA. In addition, a chronic decrease in PKC activ- 
ity, due to a decrease in PKC ~, 5 and e protein lev- 
els has been correlated with growth [48, 49]. Thus, 
in the epithelium, long-term changes in PKC activ- 
ity either through the action of phorbol esters or by 
specific changes in PKC isoenzyme levels leads to 
either growth in melanocytes, differentiation of 
keratinocytes or transformation. 
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Role of protein kinase C in differentiation and 
proliferation: long term regulation of PKC 
isoenzyme levels 

Overexpression of  PKC isoenzymes 

The initial studies on the ability of phorbol esters to 
cause tumors along with the cloning of PKC isoen- 
zymes led to studies examining the effects of over- 
expressing normal and mutant PKC isoenzymes in 
vitro. The first and most widely studied overexpres- 
sion was that of PKC [3I in a number of cell lines. 
Initially, PKC [3I was overexpressed in rat fibro- 
blasts where, along with a 20-50 fold increase in 
PKC activity, the cells were partially transformed as 
these cell grew to a higher saturation density, were 
more anchorage-independent and were able to 
form tumors in nude mice [50]. Shortly thereafter, 
PKC 7was overexpressed in NIH 3T3 cells resulting 
in cells with reduced growth factor requirements, 
growth to higher saturation density and formation 
of tumors in nude mice [51]. Normal and mutant 
PKC ~ was also overexpressed in fibroblasts with 
one study finding that mutant PKC a was trans- 
forming and a latter study disputing these results 
[52, 53]. Subsequent studies with PKC [3I showed 
that while PKC [3I is able to act as an oncogene in 
some cells (fibroblasts) it can have the opposite ef- 
fects in other cellular contexts. Thus, when PKC [3I 
was overexpressed in the colon cancer cell line 
HT29, the cells doubling time increased, they grew 
to a lower saturation density, had decreased anchor- 
age-dependent growth in vitro, and displayed re- 
duced tumorogenecity in nude mice [54]. Similar re- 
sults have been shown with overexpression of PKC 

in NIH-3T3 cells [55] while the overexpression in 
PKC e in NIH-3T3 cells and Rat 6 fibroblast cell 
lines was transforming as measured by decreased 
anchorage-independence and increased tumor for- 
mation in nude mice [55, 56]. Taken together these 
studies extend the observation that long-term 
changes in the levels of PKC isoenzymes and PKC 
activity could have profound effects on cellular pro- 
liferation and differentiation. 

Tissue-specific and developmentally regulated 
expression of  PKC isoenzymes 

The development of isoenzyme-specific antibodies 
and isoenzyme-specific nucleotide probes has al- 
lowed for the extensive investigation of the distri- 
bution and regulation of expression of PKC iso- 
enzymes by Western blot analysis, Northern blot 
analysis, in situ immunocytochemistry and in situ 
hybridization. Many observations have now con- 
firmed that PKC isoenzymes are differentially ex- 
pressed and that this expression can be regulated. 
The initial studies on the tissue expression of dis- 
tinct PKC isoenzymes revealed a highly variable 
distribution as summarized in Table 1. While some 
tissues such as brain contain all isoenzymes, others 
such as skin and skeletal muscle contain only a few. 
At the same time some isoenzymes such as o~ and 
are ubiquitously expressed while others such as ~/ 
and rl are expressed in only a few tissues. The cellu- 
lar localization of specific isoenzymes is also dis- 
tinct. For example although ~, [31, [311, ~/, ~ and ~ are 
all expressed in the cerebellum, ~, 7, ~, e, and ~ are in 
Purkinje cells while [3I is in the granular layer and 
[311 is in the molecular layer of the cerebellar cortex 
[57]. Studies on the levels of PKC isoenzymes dur- 
ing development revealed that the PKC genes are 
also expressed in a developmentally regulated fash- 
ion as summarized in Table 2. For example, with the 
PKC [33 gene products PKC [31 and [3II, low levels are 
observed in the fetal spleen and during the first 2 
weeks of life after which a rapid increase in expres- 
sion occurs. However, in the thymus, maximal lev- 
els occur shortly after birth with a decrease in ex- 
pression thereafter. These levels correspond to the 
developmental patterns of these two organs sug- 
gesting that PKC [31 and/or [311 play an important 
role in their development [58]. Interestingly, the de- 
crease in expression of PKC [3 in the thymus corre- 
lates with the involution of the thymus by regulated 
cell death or apoptosis. Since activated PKC has 
been demonstrated to protect against apoptosis and 
downregulation of PKC can enhance cell death 
[59], the decrease in PKC [3 expression provides an 
attractive mechanism for a decrease in PKC activity 
at the tissue level allowing involution and negative 
selection in the thymus to occur. 



Table 1. Tissue and ceil specific expression of protein kinase C isoenzymes 

PKC ot PKC [3I PKC {3II PKC 7 PKC ~3 PKC 8 PKC q PKC { PKC 0 PKC i ()~) 

Tissue 
Brain + + + + + + + + + + 

Liver + + + - + + + + + 
Spleen + + + - + + + + 
Heart + + + - + + + + + + 
Lung + + + - + + + + + + 
Kidney + + + - + + + + 
Pancreas + + + + + 
Skin - + + + + 
Adrenal gland + + + + + + + 
Pineal gland + - + + + 
Pituitary gland + + - + 
Ovary + + + - + + + + 
Testis + + + - + + + + 
Smooth muscle + + + + + 
Skeletal muscle + 
R e t i n a  + + + + + + 

Uterus + + 
Intestine + + 
Placenta + + 
Thymus + + + - - 
Primary cells 
B-lymphocytes + + + - + + + + 
T-lymphocytes + + + - + + + + 
Platelets + + + - + + + + 
Neutrophils + + + - 
Fibroblasts + - - - + + + 
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(+) indicates expression of the PKC isoenzyme in that particular tissue either at the mRNA or protein level as detected by Northern blot, 
Western blot, or in situ histochemical analysis. (-) data is only indicated where Northern blot analysis has failed to detect expression. Data 
is compiled from the following references ([137], [138], [139], [58], [140], [141], [142], [143], [144], [145], [14@ [147], [148], [149], [150], [151], 
[152] and [153]). For expression in cell lines see [18]. 

Regulated expression o f  P K C  isoenzyrnes 

T h e  d i s t i n c t  c e l l u l a r  e x p r e s s i o n  o f  P K C  i s o e n z y m e s ,  

t h e i r  d e v e l o p m e n t a l  r e g u l a t i o n ,  a n d  a b i l i t y  to  a l t e r  

ce l l  r e g u l a t i o n  w h e n  o v e r e x p r e s s e d  al l  s u g g e s t  t h a t  

t h e s e  i s o e n z y m e s  p l a y  d i s t i n c t  r o l e s  in vivo. M o r e -  

o v e r ,  c o n t r o l  o f  t h e  r e s p e c t i v e  l e v e l s  o f  P K C  i s o e n -  

z y m e s  m a y  b e  c r i t i ca l  f o r  p r o p e r  f u n c t i o n .  To  e x a m -  

i n e  th is ,  t h e  e x p r e s s i o n  o f  P K C  i s o e n z y m e s  a t  b o t h  

t h e  p r o t e i n  a n d  R N A  l e v e l  in  r e s p o n s e  to  v a r i o u s  

c e l l u l a r  s t i m u l i  h a v e  b e e n  e x a m i n e d .  T h e  r e s u l t s  o f  

t h e s e  s t u d i e s  a r e  s u m m a r i z e d  in  T a b l e  3. T w o  m a j o r  

t h e m e s  a r i s e  f r o m  t h e s e  s t u d i e s .  F i r s t ,  t h e  l e v e l s  o f  

d i s t i n c t  P K C  i s o e n z y m e s  c a n  b e  d r a m a t i c a l l y  

c h a n g e d  ( e i t h e r  i n c r e a s e d  o r  d e c r e a s e d )  in  r e -  

s p o n s e  to  a w i d e  v a r i e t y  o f  i n d u c e r s  a n d  in  a v a r i e t y  

o f  s i t u a t i o n s .  S t u d i e s  h a v e  f o u n d  c h a n g e s  in  e x p r e s -  

s i o n  o f  e v e r y  P K C  i s o e n z y m e  w h i c h  h a s  b e e n  b i o -  

c h e m i c a l l y  a n d  i m m u n o l o g i c a l l y  c h a r a c t e r i z e d  

(c~-TI) a n d  t h e  i n d u c e r s  v a r y  f r o m  d i f f e r e n t i a t i o n  in-  

d u c i n g  a g e n t s  s u c h  as r e t i n o i c  ac id  a n d  V i t a m i n  D 3  

to  i r o n / t r a n s f e r r i n ,  e t h a n o l  a n d  t r a n s f e c t i o n  w i t h  H -  

ras .  T h e  s e c o n d  f i n d i n g  is t h a t  t h e  m e c h a n i s m s  reg -  

u l a t i n g  t h e  l e v e l s  o f  spec i f i c  P K C  i s o e n z y m e s  s p a n  

t h e  e n t i r e  g a m m u t  o f  p o t e n t i a l  r e g u l a t o r y  m e c h a -  

n i s m s ,  f r o m  t r a n s c r i p t i o n a l  r e g u l a t i o n  o f  t h e  i nd i -  

v i d u a l  P K C  g e n e s ,  t o  r e g u l a t i o n  o f  t h e  p o s t - t r a n -  

s c r i p t i o n a l  p r o c e s s e s ,  m R N A  s p l i c i n g  a n d  m R N A  

s t a b i l i t y  as  we l l  as  t r a n s l a t i o n a l  a n d  p o s t - t r a n s l a -  

t i o n a l  c o n t r o l s .  
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Table 2. Developmental regulation of protein kinase C isoenzyme expression 

Organ, tissue, or cell PCK isoenzyme(s) Changes in mRNA expression Reference 
(species) 

Brain c¢ low at birth, increase after birth until 3 weeks [58] 
(rat) [3 low at birth, increase after birth until 3 weeks 

7 low until 1 week after birth, then increase until 2-3 weeks 

e~ low until 6 weeks after birth, then increase to 9 weeks (10 fold) [154] 
[3I low to absent until 6-9 weeks after birth then increase to adulthood (30 fold) 
[3II low until 6-9 weeks after birth then increase to adulthood (30 fold) 
7 low expression until increase in adulthood 

Brain 
(human) 

Cerebellum c¢ low at birth, increase after birth until 3 weeks [155] 
(rat) [3II high at birth, then decreases 

7 low at birth, increase until 2-3 weeks, then decrease 

low until 2 weeks after birth, then increases Spleen 13 
(rat) 

Spleen c¢ 
(mouse) 13 

Thymus [3 
(rat) 

Thymus 
(mouse) 

B-lymphocytes 
(mouse) 

Thalamus 
(mouse) 

low until 3 weeks after birth, then increase 
low until 3 weeks after birth, then increase 

high at birth, decrease thereafter 

high at birth, decrease thereafter 
high at birth, decrease thereafter 
high at birth, decrease thereafter 

increases from pre-B cell to plasma cell 
decreases from pre-B cell to plasma call 

absent in embryo, neonate, increases at 1-2 weeks until adulthood 

[58] 

[1421 

[58] 

[1421 

[1441 

[156] 

Role of regulation of PKC isoenzyme levels in 
differentiation and proliferation 

These studies have been particularly insightful into 
the mechanism of regulation of proliferation and 
differentiation by PKC isoenzymes. One important  
model  for the study of cellular differentiation and 
proliferation is the human promyelocytic leukemia 
cell line HL-60. HL-60 cells are largely undifferen- 
tiated cells that maintain the ability to undergo sev- 
eral different pathways of differentiation depend- 
ing on the inducer with which they are stimulated 
[60]. For example,  t rea tment  with 1,25-dihydroxy 
vitamin D 3 results in differentiation along the 
monocytic pathway while t rea tment  with P M A  re- 
sults in a macrophage-l ike phenotype.  Besides the 
capability of phorbol  esters to stimulate differentia- 

tion in this cell line, several lines of evidence impli- 
cated PKC in the differentiation o 2tL-60 cells. 
First, inhibitors of PKC such as sphingosine were 
able to block P M A  induced differentiation [61]. 
Second, continual exposure of HL-60 cells to dia- 
cylglycerol was able to mimic P M A  induce differ- 
entiation [62]. Finally, Vitamin D3-induced differ- 
entiation of HL-60 resulted in an increase in PKC 
protein as measured by an increase in phorbol  ester 

• 4 

receptors [63]. While investigating the mechanism 
of the increase in PKC protein levels we determined 

that transcriptional activation of the PKC ~z and 
PKC [~ genes resulted in an increase in steady state 
levels of PKC c¢ and PKC [3 m R N A  and thus in- 
creases in PKC o¢ and PKC [3 protein [64]. The 
increase in PKC protein resulted in an increase in 
PKC activity as measured by the increase in phos- 



phorylation of several PKC substrates in vivo. This 
long term increase in PKC activity occurred in the 
absence of changes in DAG levels. Thus, we pro- 
posed that while PKC activity may be increased in 
the short term by increasing DAG levels, more 
long-term regulation of PKC activity in the cell 
could be achieved by regulating the levels of PKC 
isoenzymes. In order to define the role of specific 
PKC isoenzymes in Vitamin D3 induced differen- 
tiation of HL-60 cells, we have used antisense tech- 
nology to selectively decrease PKC o~ or 13 (13I and 
13II) protein levels [65]. We have found that anti- 
sense to PKC [3 can abrogate the increase in PKC 13I 
and [3II expression and in turn inhibit Vitamin D 3- 
induced differentiation (up to 50%) without affect- 
ing proliferation. Importantly, although antisense 
to PKC c~ could decrease PKC e~ protein levels, this 
treatment had no effect on Vitamin D 3 induced dif- 
ferentiation. Thus we have demonstrated that the 
increase in PKC [3 gene expression leading to an in- 
crease in both PKC [3I and 13II protein levels is nec- 
essary for full induction of differentiation. At the 
same time we have been able to dissociate the ef- 
fects of PKC 13 on differentiation and proliferation 
in this cell line. 

Long-term alterations in PKC activity by alteration 
of levels of PKC activators and inhibitors 

Another mechanism for changing PKC activity on a 
long term basis, is to modulate the production of 
endogenous activators of PKC such as DAG and 
free fatty acids. Indeed, one effect of ras transfor- 
mation is a large increase in DAG production which 
could activate PKC for prolonged periods of time 
[66]. On the other hand, long term increases in 
DAG production could also mimic the action of 
long-term phorbol ester treatment by causing 
downregulation of PKC as has been shown in mela- 
noma cells [49]. The production of other activators 
of PKC, such as free fatty acids and lysoPC via the 
PLA 2 mediated breakdown of PC and longer term 
generation of DAG via the PLD mediated break- 
down of PC may also play an important role in long 
term alteration of PKC activity in vivo [67]. 

The activity of PKC is also known to be modulat- 
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ed in vivo by endogenous inhibitors. The presence 
of these endogenous inhibitors was first inferred 
from the observation that partial purification of 
PKC is required for accurate measurement of PKC 
activity in vitro. Indeed, several endogenous inhib- 
itors have been described and a few have been 
cloned and characterized. The best understood are 
the proteins in the 14-3-3 family of proteins which 
are ubiquitously expressed and potently and specif- 
ically inhibit PKC activity in vitro [68, 69]. Despite 
these studies, the investigation of endogenous in- 
hibitors of PKC has lagged behind those of activa- 
tors and thus, this area requires further investiga- 
tion. 

PK C in vo lvemen t  in h u m a n  cancers 

Besides being linked to the processes of tumor pro- 
motion, transformation and regulation of cellular 
differentiation and proliferation, PKC has been di- 
rectly linked to the pathogenesis of several human 
cancers including skin cancer as discussed above as 
well as colon cancer and breast cancer. 

Role of PKC in colon cancer 

Colon cancer, along with lung cancer and breast 
cancer, is one of the most common human malig- 
nancies and the second leading cause of cancer 
death in the United States. The risk factors for co- 
lon cancer include an increased consumption of 
dietary fat, decreased consumption of fiber and a 
history of colonic inflammatory disease or polypo- 
sis. Oncogenes such as ras, as well as the tumor sup- 
pressor genes p53, fap (familial adenomatous pol- 
yposis) and DCC (deleted in colon cancer) are also 
thought to be involved [70]. Recently, mutations in 
a DNA mismatch repair gene homologous to the 
mutS gene, have been linked to Hereditary Nonpol- 
yposis Colorectal Cancer, suggesting that antionco- 
genes may be involved here as well [71, 72]. Several 
experimental findings have also indicated that PKC 
is directly involved in colon carcinogenesis. First, 
unsaturated free fatty acids and bile acids, both of 
which are present in the colon, can act as tumor pro- 
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Table 3. Regulation of protein kinase C isoenzyme expression 

Cells, cell fine, or tissue Inducer(s), variable PKC Changes in expression Level/regulation Reference 
(species, tissue) and/or (Effect) Isoenzymes 

SHE fibroblasts ionizing radiation [3 increase (4-6 fold) mRNA/transcriptional [185] 
(syrian hamster, (transformation) 
embryo) 
R6 fibroblasts H-ras or v-src c~ increase (4-5 fold) mRNA/transcriptional [157, 158] 
(rat, embryo) transfection ~ increase (several fold) 

(transformation) E decrease (6-10 fold) 
Vitamin D3 a increase (12 fold) 
(differentiation) [3 increase (7 fold) 
iron/transferrin [3 increase O-fold) 
(proliferation) 

HL-60 
(human, leukemia) 
CCRF-CEM 
(human, T- 
lymphoblastoid) 
HL-60-PE 
(human, leukemia) 

B16 
(mouse, melanoma) 
BJA-B to IM-9 
(human, B- 
lymphoblastoid) 
Neura 2A 
(mouse, 
neuroblastoma) 
LAN-5 
(human, 
neuroblastoma) 
K22 epithelial 
(rat, liver) 
HL-525-PE 
(human, leukemia) 

Thymocytes 
(mouse, fresh) 

EL-4 PE 
(mouse, thymoma) 

CA cell line 
(human, B- 
lymphoblastoid) 
Xenopus embryo 

Y1 
(mouse, 
adrenocortical) 

long term PMA 
(Phorbol Ester 
Resistance) 
Retinoic Acid 
(differentiation) 
(differentiation?) 

mRNA/transcriptional [64] 

mRNA/transcriptional [159] 

[31,[3II increase (4-5 fold) mRNA/transcriptional [160] 
message stability 

8-Bromo cAMP ct 
(differentiation) E 

IFN- T or RA 
(differentiation) 

H-ras transfection & ct 
(transformation) 
long term PMA [3 
(Phorbol Ester 
Resistance) 
Concanavalin A, PMA c~ 

" [3 

Concanavalin A 
Concanavalin A, PMA 
(activation) 
long term PMA 
(Phorbol Ester 
Resistance) 
anti-HLA Class II Ab a 
(activation) [3 

(development) c~ 
[3 

Injection of PKC ~ [3 
mRNA 
(neural induction) 
overexpression of c~ 
apolipoprotein E 
(inhibition of 
steroidogenesis) 

et increase (10-12 fold) mRNA/transcriptional [161,162] 
post-transcriptional 

[3I decrease (3 fold) mRNA/alternative [163] 
13II increase (3 fold) splicing 

decrease mRNA/? [142] 
decrease 

increase (several fold) mRNA/? [164] 

increase (10-20 fold) mRNA/? [157] 

decrease (4-5 fold) mRNA/? [165] 

decrease (several fold) mRNA/? [166] 
decrease (several fold) 
increase (several fold) 
decrease (several fold) 
decrease (several fold) 

decrease (several fold) mRNA/? [186] 

increase (several fold) mRNA/? [167] 
increase (5-fold) 

increase (several fold) mRNA/? 
increase (several fold) 
decrease (several fold) mRNA/? 

[168] 

increase (several fold) mRNA/? [169] 



Table 3. Continued 

Cells, cell line, or tissue Inducer(s), variable PKC Changes in expression Level/regulation Reference 
(species, tissue) and/or (Effect) Isoenzymes 
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MCF-7 long term doxorubicin o~ increase (30 fold) mRNA/? [116] 
(human, breast cancer) (induction of MDR) 
Daudi IFN-c~ ~ increase (6 fold) mRNA/? [170] 
(haman, B- 
lymphoblatstoid) 
P-MM-4 (differentiation) [3 increase (several fold) mRNA/? [171] 
(human, melanoma) 
U937 PMA (long term) ot decrease (2 fold) mRNA/? [172] 
(human, monoblastoid) 13 decrease (2-3 fold) 

s decrease (2-3 fold) 
NCI H209 c-myc transfection 13 increase (5-10 fold) mRNA/? [173] 
(human, small cell lung (transformation) 
cancer) 
Rat Renal Mesangial PMA (long term) 

removal of PMA 

SaOS-2 PMA (long term) 
(human, osteosarcoma) 

MCF-7, MDA-MB-231 PMA 
(human, breast cancer) 

Jurkat-PE 
(human, T-cell) 

HL-60 
(human, leukemia) 

long term PMA 
(Phorbol Ester 
Resistance) 
DMSO, RA 
(differentiation) 

PC-12 
(human, 
pheochromocytoma) 

lymphocyte activated 
killer 
(mouse) 
K562 
(human, 
erythroleukemia) 

ethanol 
(upregulation of Ca 
channels) 
NGF 
(differentiation) 
Retinoic Acid 
(activation) 

PMA 
(differentiation) 

FELC 
(human, 
erythroleukemia) 

Sodium Butyrate 
(differentiation) 
hexamethylene 
bisacetamide 
(differentiation) 

c~ decreased faster protein/stability [174] 
decreased slower 

c~ slower increase protein/translational [174] 
a faster increase 
c~ decrease (several fold) protein/stability and [175] 
13 decrease (several fold) translational 
g decrease (several fold) 
o~ increase protein/post- [176] 

translational 
modification 

o: decrease (several fold) protein/? [177] 

increase (5-7fold) protein/? [i78] 
13 increase (5-fold) 

increase(2-fold) 
8 increase (50%) protein/? [179] 
s increase (50%) 

decrease protein/? [18o[ 
13II increase protein/? [181] 

increase (4 fold) protein/? [182] 

increase protein/? [183, I84] 
13II decrease 
e increase 

increase 
increase protein/? 

13II increase 
13II increase protein/? [184] 
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rooters and activate PKC [73]. Bile acids can also 
activate PKC indirectly as they stimulate PLC activ- 
ity and increase DAG production [74] while in- 
creases in calcium can block the tumor promoting 
effects of bile acids and fatty acids by sequestering 
them so that they can no longer activate PKC [75]. 
Second, levels of PKC activity as well as DAG levels 
are decreased in colon cancer relative to normal co- 
lon tissue [76, 77]. Third, the expression of the PKC 
[3 gene is decreased in colon cancer relative to nor- 
mal tissue [78] and finally, overexpression of PKC 
[3I in the colon cancer cell line HT-29, is able to act 
as a tumor suppressor as growth is inhibited and tu- 
morogenicity is decreased [54]. These data suggest 
that in colon cancer, PKC acts as a tumor suppres- 
sor, and by decreasing the levels of PKC activity, 
transformation can occur. Thus, long term stimula- 
tion of PKC at the protein level by the presence of 
increased amounts of the tumor promoting fatty 
acids and bile acids may initially activate PKC but 
then cause long-term downregulation of the en- 
zyme. Another  mechanism for decreasing PKC ac- 
tivity would be decreasing levels of the endogenous 
activator DAG, as has been shown to occur in colon 
cancer tissue. Finally, PKC activity levels could also 
be decreased by decreasing the expression of the 
PKC genes as has been shown for PKC 1~. 

Role of PKC in breast cancer 

Breast cancer is the most common malignancy in 
women, accounting for 32 % of cancer, however, ve- 
ry little is known about the oncogenic process in- 
volved. Risk factors include a family history of 
breast cancer, a history of benign proliferative dis- 
ease, ingestion of dietary fat and length of exposure 
to unopposed estrogen stimulus [79]. Many onco- 
genes are overexpressed in breast cancer including 
c-myc, Ha-ras, erb 13 and HER-2/neu. In addition, 
PKC is also overexpressed in breast cancer [80]. 
The level of expression of PKC is also altered de- 
pending of the estrogen receptor (ER) status of the 
breast cancer [81]. ER positive breast cancer carries 
a better prognosis as they tend to be less undiffer- 
entiated, respond to hormonal therapy and tend to 
metastasize and recur less frequently. This sub- 

group of breast cancer contains lower amounts of 
PKC than E R  negative breast cancer. Thus, a trend 
of increasing PKC activity as the breast cancer be- 
comes more undifferentiated is apparent. PKC has 
also been associated with breast cancer through in 
vitro studies investigating the proliferative status of 
breast cancer cell lines and the mechanism of acti- 
vation of tamoxifen, the potent anti-estrogen agent 
used to treat breast cancer. These studies have 
found that, although tamoxifen can inhibit the pro- 
liferation of breast cancer cells, not all of its actions 
can be explained by its blockade of estrogen recep- 
tors [82]. The finding that tamoxifen could directly 
inhibit PKC and that phorbol esters as well as DAG 
could inhibit proliferation and cause differentiation 
of breast cancer cells in vitro, suggested that PKC 
may contribute to the action of tamoxifen [83-86]. 
This argument is strengthened by the correlation 
between the potency of phorbol esters in inhibiting 
proliferation and their tumor-promoting and PKC- 
activating abilities. In addition, removal of phorbol 
esters caused a resumption in growth. Thus, for 
breast cancer, as opposed to colon cancer, an in- 
crease in PKC activity appears to correlate with en- 
hanced oncogenicity and inhibiting that activity by 
long term PMA treatment or treatment with PKC 
inhibitors can decrease proliferation and oncogen- 
icity. The mechanism for increasing PKC activity 
has not been established. However, most likely this 
will involve an increase in the expression of one or 
more of the PKC genes. These studies remain to be 
performed. 

Role of PKC in multidrug resistance 

Multi-Drug-Resistance (MDR) is a phenotype ex- 
pressed by some tumor cell populations upon expo- 
sure to cytotoxic drugs providing cells with resist- 
ance against not only the cytotoxic agent to which 
they were exposed but cross-resistance against 
other structurally and mechanistically diverse cyto- 
toxic natural products such as anthracyclines and 
Vinca alkaloids [87]. MDR has been associated with 
many changes in tumor cells including increased 
glutathione peroxidase activity, decreased levels 
and mutations in DNA topisomerases, decreased 



levels of cytochrome P450 enzymes, overexpression 
of the anionic isozyme of glutathione S-transferase, 
altered cell membrane lipid composition, and 
changes in the expression and activity of PKC 
isoenzymes [87-89). In addition to these changes, 
however, MDR is most closely associated with a de- 
crease in intracellular drug accumulation and the 
overexpression of a 170 kDa glycoprotein, P-glyco- 
protein. P-glycoprotein expression correlates with 
decreased intracellular drug accumulation and with 
the degree of drug resistance [90]. P-glycoprotein is 
highly homologous to bacterial transport proteins, 
is normally expressed at high levels in specialized 
epithelial cells with secretory or excretory functions 
[91, 92], is able to bind directly to various drugs [93] 
and contains an ATPase activity [94]. These studies 
have suggested that P-glycoprotein functions in 
MDR to pump the cytotoxic drugs out of the cell. 
Indeed, transfecting cells with the mdrl gene which 
encodes P-glycoprotein is sufficient to induce the 
MDR phenotype [95]. 

The MDR phenotype is also associated with 
changes in PKC activity and isoenzyme content and 
many lines of evidence implicate PKC in the regu- 
lation of this phenotype. First, drug resistant lines 
have altered levels of PKC and its activators includ- 
ing higher calcium content [96] and either higher 
[97-99] or lower [100, 101] PKC content than their 
parental lines. MDR cell lines also contain more 
PKC in the membrane fraction than parental cell 
lines suggesting intrinsic activation of PKC [98]. 
Second, activators of PKC are able to induce the 
MDR phenotype and enhance the phenotype of 
cells already expressing MDR. In some studies this 
is associated with increased phosphorylation of P- 
glycoprotein. These activators have included phor- 
bol esters [97], deoxycholate [102], and OAG [103]. 
Third, inhibitors of PKC such as staurosporine 
[104], H-7 [105], calphostin C [106], calcium channel 
blockers, phenothiazines, antiarrythmics [107], an- 
tiestrogens [85] and synthetic peptide inhibitors 
[108] are able to partially reverse MDR and inhibit 
P-glycoprotein phosphorylation. Fourth, PKC is 
able to phosphorylate P-glycoprotein in vitro on 
sites similar to the in vivo sites [109]. Fifth, overex- 
pression ofPKC ~ but not PKC yin cells expressing 
P-glycoprotein is able to enhance the MDR pheno- 

423 

type of those cells and the overexpression of PKC 
13I is also able to induce MDR by a P-glycoprotein 
independent manner [110-112). Finally, reducing 
the expression of PKC ~ by antisense can attenuate 
the MDR phenotype [113]. Expression of PKC can 
also have a role in non-P-glycoprotein mediated 
MDR as PKC can phosphorylate and influence the 
activity of topoisomerase II [114] and glutathione-S- 
transferase [115], both of which are altered in associ- 
ation with the MDR phenotype. 

To investigate the mechanism of altered PKC ac- 
tivity in MDR, studies on the expression of PKC 
isoenzymes in MDR cells have been reported, how- 
ever, very few have analyzed both calcium-depend- 
ent and calcium-independent isoenzymes. The 
most comprehensive analysis of PKC isoenzymes 
has been done in the MCF-7 cell line where the 
MDR phenotype is associated with a 30 fold in- 
crease in PKC c~ expression at the mRNA and pro- 
tein level, and a 10 fold increase in calcium-depend- 
ent PKC activity, but a decrease in PKC ~ and 8 pro- 
tein levels with a 10 fold decrease in calcium inde- 
pendent PKC activity [116]. The increase in PKC c~ 
has been localized to the nucleus in this cell line 
[117]. In HL-60 cells, adriamycin resistance was as- 
sociated with an equal amount of PKCc~ and a lower 
amount of PKC13 than the parental line along with 
the induction of PKCy [118]. An increase in the ex- 
pression of PKC a and 13 in the P388/ADR cell line 
was noted [119]. Others using only antibodies and 
probe to PKC c~, found that while MDR cell lines of 
both the human epidermoid carcinoma cell line KB 
and the murine sarcoma cell line S180 contained in- 
creased amounts of the PKC c~ protein, only the hu- 
man KB-MDR cells overexpresssed commensurate 
amounts of PKC c~ mRNA. Thus, the mechanisms 
by which PKC was overexpressed in these two cell 
lines differed [104]. 

In general, PKC c~ tends to be overexpressed in 
association with the MDR phenotype. Thus, MDR 
is associated with an increase in the expression of 
PKC c~ in the following cell lines: the murine 
UV-2237 cell line [102], the KB cell line [104], the 
murine 180 cell line [104], the murine P388 cell line 
[119] and in the MCF-7 cell line [116]. In addition, 
the overexpression of PKC c~, but not PKC y in an 
MCF-7 cell line already overexpressing P-glycopro- 
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tein increases the MDR phenotype, and reducing 
the expression of PKC a with antisense can atten- 
uate the MDR phenotype. These studies define a 
specific role for PKC c~ in modulating the MDR 
phenotype. 

Several hypothesis have been put forward as to 
the mechanism by which PKC is altered in MDR 
cells and how this altered expression regulates 
MDR. One of the early hypotheses for altered PKC 
expression was that drugs which induce MDR in- 
hibit PKC and this chronic inhibition leads to up- 
regulation of PKC [120]. These authors presented 
evidence that chemotherapeutic agents such as 
doxorubicin could inhibit PKC, however, only at 
doses not achieved therapeutically [120]. Recent 
studies showing changes in the expression of specif- 
ic isoenzymes (usually an increase in PKC c~) ex- 
plain the changes in levels of PKC activity seen in 
MDR cell lines [104, 116, 118]. Finally, there is one 
report that a reduced rate of PKC degradation may 
be responsible for increases in PKC activity seen in 
MDR cell lines [121]. Once PKC levels are altered, it 
may be able to phosphorylate P-glycoprotein in vi- 

vo altering its pump function to modulate drug ef- 
flux or it may act in other ways to impair drug influx 
[122]. Indeed, P-glycoprotein is phosphorylated in 

vivo on serine residues [123], this phosphorylation is 
enhanced by the PKC activators PMA or OAG 
[123] and this phosphorylation changes with the 
MDR status of the cell [106,124]. P-glycoprotein is 
also phosphorylated in vitro by PKC [109] as well as 
by PKA [125] and this phosphorylation can mod- 
ulate the function of the protein [106, 126]. 

Role o f  P K C  in metastasis 

Metastasis is a multistep process which allows tu- 
mor ceils to escape the primary tumor mass, invade 
the extracellular matrix, penetrate through blood 
vessel walls, aggregate in the blood stream, attach 
to the vascular endothelium and invade into the sec- 
ondary site [127]. All of these properties can be reg- 
ulated with calcium levels and appear to involve the 
adhesive properties of the cancer cell [128]. Since 
PMA can cause an increase in metastases in cell 
lines and animal models, PKC has also been impli- 

cated in the process of metastasis [129-131]. A posi- 
tive correlation between PKC activity and the abil- 
ity of tumor cells to form metastases as well as the 
ability of inhibitors of PKC or downregulation of 
PKC to inhibit metastasis has strengthened this as- 
sociation [130,132,133]. The mechanism of PKC ac- 
tion is thought to be by modulation of cellular ad- 
hesion to the extracellular matrix in response to 
PKC. Many cell adhesion receptors are PKC sub- 
strates (integrins, LFA-1, ICAM-1) [128]. In addi- 
tion, PKC may be involved in inducing the expres- 
sion of adhesion proteins (ICAM-1) [134]. Indeed, 
tumor cell adhesion to endothelial cells is enhanced 
by phorbol ester treatment while the PKC inhib- 
itors sphingosine, staurosporine and H-7 are able to 
decrease adhesion [135]. An interesting model for 
PKC's role in mediating tumor cell adhesion is the 
rat carcinosarcoma cell line W-256, where the endo- 
genous PKC activator, 12-(S)-hydroxyeicosatetrae- 
noic acid (12-(S)-HETE) is able to activate PKC 
and mimic the effects of PMA on enhancing tumor 
cell adhesion to the endothelium, while these ef- 
fects can be blocked by inhibiting PKC activity by 
with H-7, calphostin, PKC down regulation or with 
the endogenous inhibitor of 12-HETE activity, 13- 
(S)-hydroxyoctadecadienoic acid (13-(S)-HODE) 
[128, 136]. 
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