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Summary 

EGFR is a member of the tyrosine kinase family of cell surface receptors with a wide range of expression 
throughout development and in a variety of different cell types. The receptor can transmit signals to cells: i) 
upon interaction with ligands such as EGF, TGFa, amphiregulin or heparin binding EGF, ii) upon truncation 
or mutation of extracellular and/or intracellular domains, iii) upon amplification of a basal receptor activity 
(in the absence of ligand) through cooperation with other cellular signaling pathways or nuclear events (e.g. 
expression of v-erbA). The activated EGFR can exert pleiotropic functions on cells, depending on their tissue 
origin and state of differentiation. Under certain conditions it can also contribute to neoplasia and devel- 
opment of metastases. Such conditions can exist upon aberrant receptor/ligand expression and activation (e.g. 
in the wrong cell; at the wrong time; in the wrong amounts). Aberrant signalling can also occur through 
constitutive EGFR activation. Oncogenic potential of EGFR has been demonstrated in a wide range of ex- 
perimental animals. EGFR is also implicated in human cancer, where it may contribute both to the initiation 
(glioblastoma) and progression (epithelial tumors) of the disease. EGFR may influence key steps in the pro- 
cesses of tumor invasion and dissemination. Involvement of EGFR in tumor spread may indicate a potential 
use of this receptor as a target for antimetastatic therapy. 

L Introduction 

The seed and soil hypothesis formulated by Steven 
Paget more than 100 years ago to explain the orga- 
notropism of cancer metastases appears still as a 
valid hypothesis which can be examined at the cel- 
lular and even molecular level. Signals from the soil, 
the microenvironment, are transmitted via cell-sur- 
face receptors into normal or neoplastic cells which 
then react according to their state of differentiation 
and development in a specific way. Members of the 
receptor tyrosine kinase family are frequently im- 
plicated in experimental models of neoplasia as 
well as in human cancer. One of the best studied 
receptor signaling systems from this family is the 
EGF-receptor (EGFR). The receptor can be stim- 
ulated upon autocrine or paracrine interaction with 
corresponding ligands such as EGF and TGF-(x. 

Abnormal receptor signaling can occur with trun- 
cated forms of receptors or receptor over-expres- 
sion which is observed in some forms of neoplastic 
development. Receptor stimulation by itself or in 
combination with other signals can have a variety of 
biological consequences. 

Expression and activity of EGFR have been link- 
ed with a number of human neoplastic diseases or 
pre-neoplastic stages. We shall discuss influences of 
the EGFR on cell growth and differentiation, cell- 
cell interactions, cell matrix adhesion, cell motility, 
ECM-degradation, invasion and metastasis. From 
these observations it becomes clear that this recep- 
tor system can influence a variety of cellular func- 
tions of importance for malignant growth and me- 
tastasis and could therefore also play an important 
role in various forms of human cancer and its pro- 
gression towards metastasis. 
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Fig. 1. A schematic diagram representing EGFR with its distinct domains and the functions attributed to them (on the right). Relevant 
literature are cited accordingly. TM: transmembrane domain, JM: juxta-membrane domain, TK: tyrosine-kinase domain, CT: carboxy- 
terminal domain. 

2. The EGFR: a subclass I tyrosine kinase receptor 

2.1. structure and funct ion 

A model of the E G F R  domain structure is drawn in 
Fig. 1. The mature human E G F R  (HER1) is a single 
polypeptide chain of 1186 amino acids, Mr170,000 
daltons, containing approximately 40,000 daltons of 
N-linked oligosaccharide and in some cell types 
mannose phosphate [for review see: 1]. The recep- 
tor traverses the plasma membrane with a single hy- 
drophobic anchor sequence. The extracellular ami- 
no terminal end can be divided into four domains, 
with the third domain being responsible for high af- 
finity binding to EGF and probably also other spe- 
cific ligands of the receptor. The intracellular car- 

boxy-terminal sequences encode tyrosine kinase 
and carboxy-terminal regulatory functions. The 
structural organisation of the E G F R  is commonly 
shared by at least four other monomeric growth fac- 
tor receptors, HER2/neu, HER3, HER4 [2] and 
Xmrk, which together with EGFR/HER1 comprise 
the family of subclass I tyrosine kinase receptors 
(for review see: 3). 

The binding by E G F R  of EGF was reported to 
have a 1:1 stoichiometry but two possible affinity 
states, with the majority of the cell surface ex- 
pressed receptors exhibiting the lower affinity state. 
Binding of ligand has been proposed to drive the 
dimerization or oligomerization of receptors. This 
process promotes the interaction between kinase 
domains leading to their activation [for review see: 



3]. Binding of ATP to a lysine residue at position 721 
within the EGFR kinase domain is the key event 
required to initiate tyrosine kinase activity of the 
receptor. All known functions of the EGFR, ex- 
cluding ligand binding, appear to depend on the ty- 
rosine kinase activity [4, 5]. 

At least two cytoplasmic regions, the juxtamem- 
brane and the carboxy terminal domains, regulate 
the affinity for ligand as well as the activity and 
specificity of the protein tyrosine kinase function [6, 
7; for review see 8]. The major regulatory sites are 
targets for phosphorylation by PKC or cross phos- 
phorylation by EGFR. Phosphorylation of C-ter- 
minal tyrosine residues is also important for the 
physical interaction of EGFR with other cellular 
proteins that carry compatible so called src homol- 
ogy 2 (SH2) domains (see Fig. 1, and below). Trun- 
cation of the carboxy terminal domain has led to 
constitutive EGFR activity [17, 18]. However, sur- 
prisingly receptor activation does not always seem 
correlate with receptor phosphorylation [19]. 

The SH2 domain is a common feature of many 
nonreceptor kinases which act in the signal cascade 
downstream of activated growth factor receptors. 
This is the major structural feature responsible for 
interaction of PLC-y, PI3-kinase, and ras-GAP with 
the activated EGFR. Raf, a serine/threonine kinase 
which also associates with EGFR does not contain 
an SH2 domain. Recruitment of these molecules to 
the cell surface, their phosphorylation and/or con- 
formational modulation through interaction with 
EGFR have been proposed to lead to their activa- 
tion and secondary signal transduction. The affinity 
of EGFR for these molecules is variable, being high 
for PLC-y but particularly low for PI3-kinase. 
Therefore, for some molecules and in some cell 
types successful interactions may dependent on the 
level of EGFR expression. The complexities of such 
interactions have been used as a basis to explain the 
cooperation of different receptors in the activation 
of growth as well as transformation associated 
changes [for reviews see: 21-23]. 

2.2. Naturally occuring truncations 

At least two EGFR transcripts of 10.5 and 5.8 kb 

257 

and occasionally a smaller 2.6 kb transcript have 
been reported in RNA from a variety of human cell 
lines [6, 24]. These transcripts correspond to 
mRNAs of 10, 5 and 2 kb in rat cell lines and tissues 
[19, 25] and, 12 and 9 kb in normal chicken embryo 
[26]. The two larger EGFR mRNAs have been gen- 
erally assumed to differ in size because of different 
lengths of poly-adenylated tails. However the 
smaller transcript (2-2.6 kb) is truncated, and hy- 
bridises only to probes corresponding to the extra- 
cellular domain of EGFR. This truncated receptor 
has been detected in the A431 human vulva carcino- 
ma cell line [6] and other human squamous carcino- 
ma cell lines [27] as well as in the WS1 diploid hu- 
man fibroblast line (Khazaie, unpublished). A cor- 
responding truncated EGFR was detected in nor- 
mal rat liver and in the MTLn3 rat mammary 
adenocarcinoma cell line [19, 25]. 

The truncated EGFR transcript is by virtue of its 
expression in nomal rat liver and in diploid human 
fibroblasts, most likely a natural product arising 
from differential splicing of the EGFR gene tran- 
script. At least in the case of A431 cells the variant 
EGFR was shown to contain sequences from a nov- 
el gene fused at the C-terminal end [6] and to be 
secreted extracellularly [27]. The truncated EGFR 
can form in vitro a heterodimer with the intact re- 
ceptor and inhibit both basal and EGF-dependent 
kinase activity [28], however expression of a genet- 
ically engineered soluble extracellular EGFR do- 
main had little if any effect on the growth and phe- 
notype of EGF stimulated NIH-3T3 cells [29]. Al- 
though the physiological function of the protein is 
as yet unknown, it is tempting to speculate on the 
possibility of a potential regulatory interaction at 
the cell surface with the complete EGFR. 

2.3. Ligands 

The first known specific ligand for the EGFR was 
epidermal growth factor (EGF)/urogastrone, which 
seemed to have an epidermal proliferative function 
and antagonistic action on gastric acid secretion. 
EGF is expressed as a 1200 amino acid residue gly- 
cosylated transmembrane precursor or a 53 amino 
acid secreted product [30-32]. The secreted EGF is 
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usually considered to be a processed form of the 
transmembrane precursor. Several distinct pep- 
tides with specific EGFR binding properties are 
now known to exist. These include TGF-a, the pox 
virus growth factors, amphiregulin, and heparin 
binding EGF [33, 34; for reviews see: 35-37]. Com- 
mon features of all these ligands are a cysteine rich 
region spanning a length of approximately 50-60 
amino acid residues, and occurrence in two forms: 
as shorter secretory peptides, and as large mem- 
brane bound glycosylated putative precursors, 
which for EGF and TGF-a are also biologically ac- 
tive [38, 39]. 

In adult tissues, EGF has been primarily local- 
ized to differentiated cells rather than to stem cells. 
In epidermis and various glandular tissues, both 
EGFR and EGF were expressed in differentiating 
cells [40]. Concentrations of TGF-~ in the kidney 
are increased upon injury affecting a number of re- 
nal responses [for reviews see: 41, 42]. The kidneys 
are considered to be the major source of urinary 
EGF, while the prostate is the major source of EGF 
in the seminal fluid [43, 44]. Likewise, the mammary 
tissue is the source of relatively high concentrations 
of EGF in milk [45]. The major sources of EGF in 
the CNS are macrophages, glial cells and neurons as 
well as uptake from the peripheral blood [for re- 
view see: 46, 47]. 

EGF-like peptide sequences are present in a va- 
riety of cell surface and extracellular proteins [45]. 
The potential function of these peptides as EGFR 
agonists is of interest, particularly in view of the re- 
ports on mitogenic activities of extracellular matrix 
proteins [48, 49]. 

3. Role in normal development 

It is now established that the EGFR is expressed 
throughout development and in a variety of undif- 
ferentiated as well as differentiated cells [for review 
see: 50]. EGFR and TGF-a are expressed in the 
preimplantation conceptus and may play a role in 
blastocoel expansion, embryo-uterine signalling, 
and the implantation process [51-54]. Among the 
functions attributed to EGFR activity are the pro- 
liferation and development of specific epithelial 

territories in the embryo, including branch point 
morphogenesis and maturation of early embryonic 
lung tissue, skin development, and promoting sur- 
vival of early progenitor cells of the cleft palate [55, 
56; for review see: 57]. 

EGFR exhibits a broad expression throughout 
the brain tissue, primarily in the early post-natal as- 
trocytes and purkinje cells and in the adult neu- 
rones of the cerebral cortex, where it may be impor- 
tant in promoting terminal differentiation [58, 59] 
and determining the viability of neurones [60; for 
reviews see: 45]. Purified and cultured astrocytes 
but not oligodendrocytes respond mitogenically to 
EGF, in agreement with the higher levels of expres- 
sion of EGFR and EGF in astrocytic cells of glial 
origin [61, 62]. In the hypothalamus, EGFR medi- 
ates the release of luteinizing hormone releasing 
hormone (LHRH) [63]. 

An interplay of the actions of EGFR and estro- 
gen receptor has been proposed to be required for 
the differentiation of normal mammary epithelial 
cells as well as the induction of uterine and vaginal 
growth [64, 65]. EGFR expression is high in the cap- 
cell layer of the terminal end buds [66], a proliferat- 
ing cell population [67] which is presumed to be the 
stem cell population of both the luminal and myoe- 
pithelial cells of the mammary ducts [68]. The cap 
cell layer is devoid of estrogen receptors which in- 
stead are abundant in the surrounding stromal cells 
[66]. It has been proposed that estrogen may regu- 
late the growth of cap-cells through a paracrine 
mechanism by stimulating the production of a pep- 
tide factor for which EGF or TGF-a are prime can- 
didates [69]. In ovariectomized mice, the exogenous 
delivery of either EGF or TGF-c~ was sufficient to 
restore the pattern of normal ductal growth in the 
involuted mammary gland. In normal mice distinct- 
ly different patterns of immunolocalisation were 
observed for EGF (inner layers of terminal end 
buds and in ductal cells of mammary epithelium) 
and TGF-o~ (epithelial cap cell layer of the advanc- 
ing terminal end bud and in stromal fibroblasts at 
the base of the terminal end bud) suggesting that 
each polypeptide plays a different role in normal 
mammary gland morphogenesis [70]. 



4. Role in malignant development 

Expression and activity of EGFR have been linked 
with a number of pre-malignant or malignant dis- 
eases. These include skin hyperplasia, erythroblas- 
tosis, and fibrosarcoma in animals; and, in humans, 
notably benign hyperplasia of the skin, mammary 
carcinoma, glioblastoma, and hepatic carcinoma. In 
some instances truncations of the EGFR may be 
necessary to allow for its function as a dominant on- 
cogene. In others, over-expression may be needed 
to amplify a tumor promoting signal. However, it is 
also apparent that in some instances truncations or 
overexpression of EGFR are not necessary. Over- 
all, the combination of activation of EGFR, 
through autocrine or paracrine loops, and accumu- 
lation of appropriate genetic alterations may lead 
to neoplasia and metastasis. 

4.1. The oncogenic potential of  EGFR in experimen- 
tal systems 

The nature of events subverted by EGFR activity 
may vary depending on the type of cancer studied. 
This conclusion is most evident when comparing 
the contribution to different neoplasias of, A: ab- 
erant expression, B: paracrine activation, C: trunca- 
tion of EGFR, or D: receptor activation in the con- 
text of complementing nuclear events. 

4.1.1. Truncations and aberrant expression in experi- 
mental neoplasia 
Initial interest in a transforming potential for the 
EGFR came from the realisation of the sequence 
homology between the cloned human receptor and 
the chicken v-erbB oncogene [71]. The v-erbB on- 
cogenes are retrovirally transduced and truncated 
form of the "chicken EGFR".  Expression of v-e 
rbB by the transforming retroviruses AEV-ES4 and 
AEV-H, led to erythroleukemia and fibrosarcoma 
in infected chicks, as well as to the transformation of 
bone marrow erythroblasts and chicken embryo fi- 
broblasts (CEFs) in culture [for reviews see: 72, 73]. 

A direct comparison of the transforming func- 
tions of v-erB and human EGFR was performed by 
simply using the AEV-ES4 retrovirus to express a 
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complete normal EGFR cDNA instead of v-erB 
[17]. Surprisingly, the complete human EGFR pro- 
moted the EGF dependent outgrowth of erythro- 
blasts from in vitro infected bone marrow cultures. 
Infection of young chicks with retroviral vectors 
that co-expressed v-erbA, an altered form of the 
thyroid hormone receptor gene [74, 75], and EGFR 
led to acute erythroleukemia. The major conse- 
quence of truncations affecting the extracellular 
amino terminal end (removal of the ligand binding 
domain) was constitutive activation of the receptor. 
Truncations of the intracellular carboxy terminal 
end had much wider consequences affecting not 
only receptor activity but also the biological func- 
tion of EGFR kinase. 

Truncation of 32 carboxy terminal amino acids 
removing the last two tyrosine autophosphoryla- 
tion sites (see Fig. 1) conferred additional erythro- 
poietin receptor properties to human EGFR as as- 
sayed in primary chicken erythroblasts. Removal of 
a further 94 amino acids deleting more sites of tyro- 
sine autophosphorylation inactivated erythroid 
transformation without diminishing fibroblast 
transformation (assayed in vitro) by human EGFR. 
Thus, expression of the complete EGFR was suffi- 
cient to transform (promote aberrant growth of) 
immature erythroblasts, while truncations of the 
EGFR changed the function of EGFR in a lineage 
specific manner. 

In contrast to the apparent absence of EGFR in 
mature hematopoietic cells, recent observations in- 
dicate that this receptor is normally expressed in 
immature/progenitor hematopoietic cells [76, 77], 
Other reports suggest that the EGFR signal trans- 
duction pathway may function in transformed he- 
matopoietic cell lines [78-82]. Together these ob- 
servations suggest that EGFR may be a naturally 
occuring growth/survival factor for immature he- 
matopoietic cells, which in part explains how inap- 
propriate expression of this receptor may lead to 
manifestations of leukemia, the expansion of imma- 
ture hematopoietic cells. 

EGFR is abundantly and universally expressed 
in mature fibroblasts. Ligand induced activation 
and/or overexpression of the EGFR led to a num- 
ber of changes in the in vitro behaviour of primary 
chicken fibroblasts [17] as well as in established mu- 
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rine or rat fibroblast cell lines [83, 84] which are as- 
sociated with neoplastic transformation, but did not 
promote invasive growth of fibroblasts in the chick- 
en embryo [85] or induce sarcoma in transgenic 
mice [86; Thomas von Rtiden, pets. comm.]. These 
observations confirm earlier reports on the non- 
sarcomagenic character of v-erbB isolates with a 
complete C-terminus. Truncations of at least 23 car- 
boxy terminal amino acids of the chicken c-erbB 
seemed to be required for inducing sarcoma [87- 
89]. 

On the other hand, signals transmitted by the 
complete EGFR may cooperate with otherwise 
non-sarcomagenic nuclear oncogenes and lead to 
tumorigenic growth of fibroblasts [85]. This obser- 
vation may in part explain the apparently contra- 
dictory reports on the tumorigenic properties of 
EGF or TGF-a expressing established rodent cell 
lines [90, 91], suggesting that cooperative nuclear 
events [92] might have been overlooked in these 
cell lines. 

It is now understood that changes in the intracel- 
lular region of the EGFR not only induce ligand in- 
dependent activation of the EGFR but also change 
substrate recognition by EGFR kinase. Removal of 
the carboxy terminal tail of the EGFR significantly 
broadened the spectrum of cellular substrates for 
EGF dependent tyrosine phosphorylation [93]. 
Similar truncations markedly impaired EGF de- 
pendent increase of inositol phosphate formation in 
NIH3T3 cells [20] and the EGF dependent activa- 
tion of phospholipase A2 in CHO cells expressing 
ectopic human EGFR [94]. Even a single amino 
acid substitution, threonine for arginine at position 
662 in the juxtamembrane domain, was sufficient to 
change both the pattern of intracellular proteins 
phosphorylated and mitogenic behavior of differ- 
ent transfected established cell lines in response to 
EGF [95]. Therefore the v-erbB oncogenes as well 
as truncated or mutated forms of the EGFR may be 
more than constitutively activated EGFR mole- 
cules, and can be expected to have distinct and nov- 
el properties. 

4.1.2. Aberrant activation in TGF-c~ transgenic mice 

Paracrine, autocrine, and more recently adhesion 
activation of EGFR have been the focus of atten- 

tion for developmental biologists and tumor biol- 
ogists, attempting to explain controlled as well as 
self propagating mechanisms for growth, develop- 
ment, and neoplasia. 

Experiments with transgenic mice suggest that an 
autocrine mechanism involving the EGFR could be 
expected to play a role in the initiation and/or pro- 
gression of mammary and hepatocellular carcino- 
ma as well as pancreatic hyperplasia [96, 86]. Trans- 
genic mice expressing TGF-cz were reported to de- 
velop hepatic carcinoma and abnormal breast tis- 
sue. Mammary carcinomas were observed in the 
post lactating gland. Evidently none of these neo- 
plias required amplification or truncation of the 
EGFR, but rather depended on the paracrine acti- 
vation of the endogenous receptor (and perhaps 
complementing nuclear and/or environmental 
events). 

Transgenic mice over-expressing TGF-o~ specifi- 
cally in the stratified squamous epithelia, devel- 
oped thicker epidermis and stunted hair growth as 
well as benign papillomas in regions of mechanical 
irritation or wounding. Areas of the skin that were 
subjected to mild irritation displayed localized leu- 
kocytic infiltration and granular layer loss, charac- 
teristic of psoriasis in humans [97]. These observa- 
tions are in agreement with those made on human 
cells, where an interplay of EGFR autocrine activ- 
ity and IGF-I receptor activity is believed to pro- 
mote the appearance of psoriatic lesions [98, 99], 
and in other instances promote skin carcinogenesis 
[100-102]. Interestingly, murine epidermal cells 
may be equally responsive to EGF as to other classi- 
cal chemical tumor promoters such as 12-O-tetrade- 
canoylphorboM3-acetate (TPA) for neoplastic 
transformation [103-105]. 

4.2. Involvement o f  E G F R  in human tumors 

In the following sections we shall survey the evi- 
dence concerning the involvement of EGFR in hu- 
man mammary carcinoma, which so far is the most 
intensively investigated human cancer in connec- 
tion with EGFR. Other epithelial tumors will not be 
discussed in detail but only refered to. Glioblasto- 
ma, a non-epithelial tumor and the only human can- 



cer where truncation and over-expression of EGFR 
may play an important role, is briefly reviewed. The 
mechanism by which EGFR may contribute to ma- 
lignant transformation or progression of epithelial 
cells is not limited to mitogenic stimulation but is 
likely to involve a variety of cellular responses that 
have been associated with cellular migration and in- 
vasiveness. These will be discussed in the context of 
mechanisms of tumor progression and metastasis. 

4.2.1. EGFR and mammary carcinoma 
In human breast carcinoma a strong inverse corre- 
lation between the expression of estrogen receptor 
(ER) and EGFR [106-109; also see review: 110] as 
well as between EGFR and ER plus progesterone 
receptor (PR) [111-118] has been established. In hu- 
man breast carcinomas the percentage of EGFR 
positive tumors reported in the literature varies 
from 22% to 67% [117]. Differences in assay meth- 
odology, tumor biopsy sample selection and cut-off 
level seem to offer plausible explanations for this 
variation. In addition, endogenous TGFc~ may lead 
to the occupation of EGFR ligand binding domain 
and receptor downregrulation resulting in underes- 
timations of receptor number when analysed by re- 
ceptor binding [119]. EGFR expression, particular- 
ly in ER negative patients [107] has been a marker 
of morphological and functional de-differentiation 
related to a poor prognosis [106, 109, 111, 113,115, 
117]. 

Expression of EGFR in ER negative/EGFR pos- 
itive tumors was reported to be heterogeneous, sup- 
porting the existence of subsets of tumor cells with 
differential aggressive potentials [118,119]. Further- 
more it was demonstrated that expression of the 
EGFR in breast tumor metastases is frequently ele- 
vated compared to the primary tumor [106, 109], 
which suggests involvement of EGFR in the meta- 
static process. 

Recent reports indicate that cross-talk between 
EGFR and ER or PR in the mammary gland may 
have important consequences on the regulation of 
normal and aberrant growth. Elevated and some- 
times estrogen inducible expression of TGF-cz has 
been reported in both human and experimental 
mammary cancers as well as mammary tumor cell 
lines [for review see: 120, 121]. In cultured human 
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breast tumor cell lines expressing constitutively 
either ER and EGFR [122] or ER plus a transfected 
EGFR [123] a heterospecific receptor modulation 
could be identified. Thus the simultaneous induc- 
tion of ER and EGFR signal transduction in these 
cells was not tolerated. Prolonged cultivation of 
EGFR plus ER expressing cells with EGF resulted 
in loss of estrogen-dependent proliferation, despite 
the presence of high amounts of ER [123]. Further- 
more, prolonged cultivation of these cells with ta- 
moxifen resulted in anti-hormone resistant sub- 
clones expressing EGFR but lacking ER and PR 
[122,123]. It remains to be established if this observ- 
ed unresponsiveness or down-regulation of ER in 
EGFR expressing cultured mammary tumors dur- 
ing antiestrogen treatment could contribute to the 
failure of endocrine treatment in the clinic. 

4.2.2. Involvement of  EGFR in other epithelial ma- 
lignancies 
A number of other epithelial malignancies have 
(through experimental observation and or clinical 
correlations) been linked with EGFR function. The 
most convincing of these are hepatic carcinoma, 
where an interaction of TGF-~/TGF-[3 signal trans- 
duction pathways may play a key role [124126] and 
prostatic hyperplasia/cancer [for reviews see: 127, 
128]. Other epithelial carcinomas associated with 
EGFR activity include renal carcinoma [129, 130], 
bladder cancer [131], epithelial malignancies de- 
rived from human oral tissue [132], laryngeal cancer 
[133], oesophageal tumors [134-136], stomach can- 
cer [137], colon carcinoma [138, 139], ovarian ade- 
nocarcinomas [140], and lung cancer [141, 142]. 

4.2.3. Truncations of  EGFR in glioblastoma 
Glioblastoma is the only human cancer so far causa- 
tively linked to expression of truncated EGFR. 
Amplification and rearrangement of the EGFR lo- 
cus are also common features, and therefore pre- 
sumably constitutive over-activity of the receptor is 
involved [143-146]. However the extent to which 
mutations and truncations other than those affect- 
ing the extracellular domain, may contribute to the 
onset of glioblastoma is not sufficiently document- 
ed. Characteristic rearrangements of the EGFR 
gene in glioblastoma give rise to novel antigenic 
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epitopes. An antibody made to the rearranged se- 
quences of the EGFR in glioblastoma multiforme, 
the most malignant of human primary brain tumors, 
was shown to react with rearranged EGFRs in sev- 
eral patients with the same particular EGFR dele- 
tion mutation, demonstrating the potential use of 
common antibodies for diagnosis and treatment 
[147]. 

5. EGFR and mechanisms of tumor progression 
and metastasis 

Metastatic spread of tumors is a consequence of a 
series of events in which growth factors could be in- 
volved. Sequentially, tumor cells must proliferate, 
loose their anchorage dependence on the extracel- 
lular matrix (ECM) and their contacts with neigh- 
boring cells, pass through the vessel wall, enter the 
blood stream, seed the target organ and form a new 
colony [148-150]. During all these processes, tumor 
cells are submitted to a variety of environmental 
controls including growth factors from the host or 
from the tumor itself, as well as various substrates in 
contact with cells. EGF and TGF~ are well known 
for their growth stimulating effects in a wide variety 
of systems. Accumulating evidence is presented 
that these growth factors have pleiotropic effects on 
cell motility, chemotaxis, secretion and differentia- 
tion which in some cases correlate with metastatic 
potential. 

5.1. Effects of  EGF on tumor growth 

Besides the well known stimulatory effect, activa- 
tion of EGFR can inhibit growth of cells in tissue 
culture depending on the cell type, the number of 
receptors and the assay conditions. This may ex- 
plain occasional discrepancies in correlating the re- 
sponse of tumor cells to EGF in vitro with their re- 
sponse to EGF after transplantation into host ani- 
mals. 

5.1.1. Differential effects of  EGF on growth of  cultur- 
ed cells 
It has been shown that the effect of EGF on cell pro- 

liferation is dependent on the quantity of occupied 
EGFR and that occupation of additional EGFR in 
excess led to decreased growth stimulation and 
even to an inhibition of cells grown in monolayer 
tissue culture [151,152]. However, the growth of hu- 
man epidermoid A431 cells expressing high num- 
bers of EGFR (2 x 106/cells) was inhibited by EGF 
in monolayer culture, while it was stimulated under 
3-dimensional culture conditions [153]. Further- 
more, under tissue culture conditions the degree of 
cell-cell contacts may determine if EGF and TGF~ 
induce either mitogenic or inhibitory signals as 
demonstrated with a human renal adenocarcinoma 
cell line [154[. 

5.1.2. Xenotransplants of  EGFR expressing tumors 
in immune deficient mice 
A clear correlation between tumor growth and 
EGFR expression could be demonstrated in tumor 
xenografts. A relationship between a high number 
of EGFR and the tumorigenic potential in nude 
mice has been described for the human A431 cells 
[155], human mammary MDA 468 cells [156] and a 
feline mammary carcinoma [152]. Ozawa [134] 
showed that growth rates of A431 human epidermal 
xenografts were markedly enhanced by EGF sup- 
plied by implanted osmotic pumps. Surgical remov- 
al of the submaxillary glands, a major source of 
EGF in male mice, decreased tumor growth rates in 
animals bearing transplanted mammary cancer 
[157] or human squamous cell carcinoma [158]. This 
inhibitory effect was reversed by supplying exog- 
enous EGE Implants of a human EGFR-expressing 
melanoma line in scid mice metastasized spontane- 
ously to multiple distant sites. Resection of the pri- 
mary tumor followed by the application of an 
EGFR specific MAb resulted in suppressed growth 
of established micrometastases [159]. Furthermore, 
an EGFR specific MAb inhibited growth of human 
epidermoid cells when transplanted subcutaneous- 
ly, intravenously or into the peritoneum of nude 
mice [160]. Moreover, the antitumor effect persist- 
ed when animals were treated with the F(ab)'2 frag- 
ment of the antibody suggesting that the antitumor 
effect was not due to immune mechanisms. 



5.2. The effects of  EG F on metastasis in experimental 
systems 

5.2.1. Syngeneic animal models in which metastatic 
capability correlates with growth factor responsive- 
ness 
Tumor cells have been shown to demonstrate in vit- 
ro proliferative responses to defined growth fac- 
tors, such as platelet-derived growth factor, insulin- 
like growth factor, EGF and others. The ability to 
proliferate when stimulated with growth factors 
correlates in some systems with the metastatic capa- 
bility of the malignant cells as was shown in the 
mouse colon adenocarcinoma 26 for IGF-1 [161] 
and in the 13762NF rat mammary adenocarcinoma 
system for transferrin [162] and EGF [163]. 

5.2.2. Syngeneic animal models in which metastatic 
capacity is enhanced by EGF 
In the rat rhabdomysarcoma (RMS) 9--4/0 system, 
treatment of cultured tumor cells with 20 ng/ml 
EGF for 48 hours enhanced the lung colonising po- 
tential of i.v. injected tumor cells significantly [164]. 
In addition, tumor growth in the mediastinal lym- 
phatic tissue was observed in rats receiving EGF- 
treated cells. Furthermore, treatment of rats with 
EGF following ablation of the primary tumor re- 
sulted in a dramatic increase in the median number 
of spontaneous lung metastases, and high incidence 
of axillary lymph node and extrapulmonary 
(mediastinal) metastases as compared to saline 
treated animals. While this study clearly demon- 
strates that EGF can enhance the metastatic poten- 
tial of EGFR expressing tumors, it does not allow 
discrimination between the effects of EGF on the 
tumor cells or those on the host. 

In order to elucidate this question, closely related 
tumor cell clones with different metastatic potential 
and different levels of EGFR expression have to be 
used. Introduction of the gene for EGFR into the 
receptor negative clone should then confer meta- 
static capability to this cell clone. In order to per- 
form these studies we have chosen clones MTC and 
MTLn3 from the 13762 NF rat mammary adenocar- 
cinoma and introduced the gene for the human 
EGFR into low metastatic clone MTC. Our initial 
observations suggest that in this model system ex- 
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pression of EGFR may be a determining factor for 
metastasis of the tumor cells from the mammary fat 
pad to their target organ, the lungs. 

5.3. Effects o f  EGF on specific steps of  the metastatic 
cascade 

While definitive experimental proof is still lacking 
that EGFR is involved in spontaneous metastasis, 
there are some indications that EGF can enhance 
the ability of cells to succeed in some steps of the 
metastatic cascade. Recent reviews have discussed 
in detail the basic mechanisms of tumor cell adhe- 
sion, invasion and motility [165,166]. Here we will 
concentrate on examples where stimulation of 
EGFR increased the potency of cells to succeed in 
these important steps of the metastatic cascade. 

5.3.1. Influence of  EGF on the integrin receptor fam- 
ily, their ligands and adhesion to ECM 
Early work by Briles and Kornfeld [167] had indi- 
cated a correlation between tumor cell adherence 
to extracellular matrix proteins (ECM) in vitro and 
increased lung colonising potential of intravenously 
injected tumor cells. Subsequently the importance 
of cellular adhesion in lung colonising potential has 
been well documented by using closely related tu- 
mor cell clones of defined adhesive and metastatic 
properties [for reviews see: 149, 150]. 

Recently the integrins were identified as the ma- 
jor family of receptors by which cells attach to 
ECM. Accumulating data indicate that EGFR may 
directly influence the expression, organisation and 
function of the integrins. It has been known for a 
long time that EGF induces rapid changes in the in- 
teraction of tumor cells with their own ECM or de- 
fined matrices. For example, in the case of human 
epidermoid carcinoma A431 cells it was observed 
that within minutes of exposure to this factor, the 
cells undergo rapid morphological changes result- 
ing in retraction of the cells from the tissue culture 
substrata as they become significantly more round- 
ed [168-170] and exhibit membrane ruffling, and ill- 
opodia [171,172]. When A431 cells where plated on- 
to collagen, addition of EGF did not interfere with 
attachment but modulated spreading of ceils [169]. 
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This effect was inhibited by cytochalasin B, a com- 
pound which interferes with the actin-associated 
microfilament system, indicating dissociation of 
linked integrin-cytoskeleton interaction. Our 
group recently described that EGF increased with- 
in 5 minutes adhesion of highly metastatic rat mam- 
mary adenocarcinoma cell clone MTLn3 to fibro- 
nectin. Treatment of closely related mammary ade- 
nocarcinoma cell lines with EGF enhanced lung 
colonising potential only when the cells expressed 
EGFR (Lichtner et al., in preparation). 

Recently evidence has been provided that EGFR 
activation can influence the interaction of cells with 
defined matrix components, by modulating the sub- 
unit organisation of the integrins. For example, en- 
terocyte sheet migration was stimulated by EGF on 
laminin but not on collagen I or fibronectin, indicat- 
ing modulation of a specific integrin subunit [173]. 
Indeed, integrin c~1 subunit pools were decreased 
after EGF treatment on collagen-I but increased on 
laminin. The EGF induced changes in immunreac- 
tivity required protein synthesis since they were in- 
hibited by cylcoheximide. This is in line with a re- 
port [174], that in quiescent Swiss 3T3 cells EGF in- 
duced rapid increase in vinculin and ~l-integrin 
mRNA levels. Elucidation of the mechanism by 
which EGF affects integrin organisation and pool 
size awaits better understanding of the mechanisms 
which modulate integrins. In this respect it is of con- 
siderable interest, that the integrin [3 subunit con- 
tains in its intracellular domain a tyrosine residue 
whose neighboring sequences show high degree of 
homology with the tyrosine autophosphorylation 
site of the EGFR [175]. Perhaps critical interaction 
of integrins are influenced by EGFR mediated 
phosphorylation of these residues. However, 
EGFR mediated phosphorylation of integrins does 
not seem to happen in human KB cells [176], and 
may be dependent on the cell type investigated. 

Several integrin subunits are phosphorylated up- 
on binding to ECM, suggesting that in addition to 
providing adhesive interactions with immobilised 
ECM proteins, integrins also modulate transmis- 
sion of intracellular signals [177-180]. Moreover 
transient tyrosine phosphorylation of protein(s) of 
130-150 kd has been observed in KB carcinoma 
cells following cross linking of ~3131 integrins [176]. 

In mouse fibroblasts adhesion and spreading on fi- 
bronectin led to rapid tyrosine phosphorylation of a 
protein of similar size, termed focal adhesion kinase 
and suggested to be a component in the putative in- 
tegrin signalling pathway [181,182]. It has been pos- 
tulated that integrins may even share some of the 
intracellular signal transduction pathways of tyro- 
sine kinase receptors [for reviews see: 183, 184]. 

Integrins have been recognised not only as sys- 
tems to provide adhesive strength by interaction 
with immobilised ECM proteins, but also as sys- 
tems which aid the cell in recognising and respon- 
ding to environmental signals. EGFR activity has 
been reported to induce the production and secre- 
tion of matrix proteins in several cell lines. In- 
creased secretion of fibronectin was reported for 
normal rat liver cells [185], and of fibronectin and 
laminin for the human breast cancer cell line 
PMC42 [186[. In the latter study EGF induced in- 
creased production of matrix proteins might have 
been causative for the increased adherence of cul- 
tured PMC42 cell organoids. The modulation of in- 
tegrin function as well as production/secretion of 
ECM proteins by EGFR could have significant bi- 
ological consequences, making the EGFR system 
perhaps a key regulator of the cellular response to 
the microenvironment. 

5.3.2. Influence o f  EG FR on cell-cell contact and cy- 

toskeleton 
Recent reports have opened the possibility that 
EGFR activity may also directly influence cell-cell 
contact, another critical parameter known to define 
epithelial invasiveness [188]. Both EGFR and E- 
cadherins were shown to co-localise in the basolat- 
eral membrane of A431 cells [189]. Changes in the 
level of expression of E-cadherin or tyrosine phos- 
phorylation of the associated protein ~-catenin, in 
MDCK epithelial cell line were shown to lead to 
rapid loss of cell-cell contact, acquisition of fibro- 
blastoid morphology and invasive phenotype [190, 
191; for reviews see; 192, 193]. Direct phosphoryla- 
tion of [~-catenin by EGFR or contact of EGFR 
with transmembrane TGF-~ or EGF on neighbor- 
ing cells are possible mechanisms that may relate to 
the role of EGFR in the acquisition of invasive 
properties. 



We had reported recently that EGFRs localise 
preferentially in the cell-cell contact areas of A431 
cells and that negative control mechanisms pre- 
venting EGFR activation may be exerted by adja- 
cent cells [194]. However, in detergent-permeabil- 
ized cells the cytoskeleton-associated EGFRs were 
fully active. It is of interest that in the highly meta- 
static mammary adenocarcinoma clone MTLn3, cy- 
toskeleton-associated EGFRs are highly suscepti- 
ble to phosphorylation in permeabilized cells, while 
in intact cells mitogenic stimulation occurs without 
detectable receptor phosphorylation [19]. 

A number of recent studies indicate that EGFR, 
is itself in part associated with the cytoskeleton 
[194-196]. Furthermore, a number of cytoskeletal 
components have been shown to be phosphorylat- 
ed in vivo and in vitro by EGFR kinase, such as fo- 
drin, spectrin, tubulin and microtubulin associated 
protein 2, ezrin and lipocortin 1 [196, 197, 199]. Cy- 
toskeletal associated EGFRs may have specialised 
functions since they are mainly of the high affinity 
class [196, 197, 200]. 

It has been proposed that activation of PI3-ki- 
nase, which occurs through association with tyro- 
sine kinase receptors, may directly influence actin 
filament reorganisation. However, due to the low 
affinity of EGFR for PI3-kinase, overexpression of 
this receptor may be needed to allow for these 
events [for review see: 22]. 

5. 3.3. Effects o f  EGF on cell motility 
Another parameter often associated with epithelial 
invasiveness is motility [for reviews see: 192, 193, 
201-203]. Cell motility requires several distinct 
steps that must occur in a coordinated fashion for 
cellular translocation to occur. Following the estab- 
lishment of adhesion to the underlying substratum, 
the cell must be able to form protrusions, establish- 
ing new adhesions and be able to break older ad- 
hesions for translocation to occur [for review see: 
165]. 

In order to clearly demonstrate an effect of EGF 
on cell motility it had to be separated from its effect 
on cellular growth. This has been demonstrated in 
several cell lines grown in tissue culture, such as rat 
intestinal epithelium cells [204], the human em- 
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bryonal carcinoma cell line Tera-2 [205], and ker- 
atinocytes [206] [for review see: 202]. Similarly, the 
human epidermoid carcinoma KB cells [207] or hu- 
man glioma line K-343 M6a [172] showed relatively 
high motility and grew dispersely as single cells 
when cultured with EGE while in the absence of 
EGF cells grew in clusters. The migration and 
spread of closely related human glioma cells from 
spheroids on a plastic substratum was increased by 
EGF [208]. 

5.3.4. Effects of  EGF on the production~release of  
E C M  degradative enzymes and on invasion 
Many different types of ECM degradative enzymes 
have been implicated in invasion by metastatic 
cells, such as metalloproteinases, aminopeptidases, 
serine proteinases, cysteine proteinases and aspar- 
tic proteinases [for reviews see: 209, 210]. EGF has 
been shown, among other growth factors and cyto- 
kines, to modulate the level of cell-secreted serine 
proteinases and metalloproteinases. In human 
squamous cell carcinoma, EGF influences plasmi- 
nogen activator-mediated proteolysis of ECM [211]. 
In lung and colon carcinoma EGF induced the syn- 
thesis of urokinase type plasminogen activator ac- 
tivity (uPA) [212, 213] and in normal fibroblasts of 
collagenase respectively [214]. In mouse mammary 
adenocarcinoma cell lines EGF dependent secre- 
tion of proteinases was correlated with the meta- 
static properties of the cell lines [215[. Expression of 
transfected TGFa in a rat bladder carcinoma cell 
line resulted in highly mobile cells which produced 
a gelatinolytic activity not normally synthesized by 
untransfected or control neo transfected cells [216]. 
In RL 95-2 human endometrial adenosquamous 
carcinoma cells, EGF stimulated an increase in uPA 
[217]. 

In three cell lines with similar numbers of EGFR 
established from one patient with maxillary tumor, 
only one line responded to EGF with increased in- 
vasiveness into fibrin gels [218]. Subsequent analy- 
sis revealed that in this particular EGF-responsive 
cell line the production of the proteinase inhibitors 
PAI-1 and TIMP was increased while the produc- 
tion of type IV collagenase and membrane bound 
PA were unaltered. 
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6. Conclusions 

1. Expression of the EGFR, in contrast to initial 
expectations, is not restricted to a specific cellu- 
lar lineage but has been observed in a variety of 
different cell types throughout development. 

2. Biological functions of EGFR are equally varia- 
ble, ranging from providing signals for survival 
or terminal differentiation to inducing mitogenic 
response, cell motility, and invasion. 

3. EGFR activity has been shown to initiate or con- 
tribute to progression of neoplasia in a wide 
range of experimental systems (cultured cells, 
retrovirally infected birds, rodent tumor model 
systems, and transgenic mice). 

4. In human malignancies, truncations or muta- 
tions of EGFR are rare events with exception of 
glioblastoma. This contrasts with the frequent 
deletions observed in the transduced EGFR 
genes of avian oncogenic retroviruses. 

5. In various human epithelial malignancies ex- 
pression of EGFR is associated with tumor pro- 
gression. In such carcinomas, paracrine or auto- 
crine activation of EGFR seems to be a common 
means of promoting growth and/or dissemina- 
tion. 

6. In human mammary tumors, an inverse correla- 
tion between expression of EGFR and ER in- 
dicates involvement of EGFR in tumor progres- 
sion. Interactions of EGFR and ER were also 
implicated in TGFa transgenic animals, leading 
to development of mammary carcinoma. 

7. EGF may support metastatic capacity of tumor 
cells by enhancing their ability to succeed in spe- 
cific steps of the metastatic cascade such as in- 
vasion, lodgement, extravasation, cell locomo- 
tion and growth in distant organs. The pleiotrop- 
ic effects of EGFR on cellular cytoskeletal reor- 
ganisation, adhesion, motility, expression and 
activation of proteases may be in many circum- 
stances a key to the success of cancer as a lethal 
disease. 

8. Future research should further elucidate the sig- 
naling pathways that are affected by EGFR and 
that can lead to transformation and/or tumor 
progression. Clarification is also needed with re- 

gard to the role of other tyrosine kinase recep- 
tors and of specific domains in these processes. 
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