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Abstraet A new model of crystal- 
lization kinetics in variable external 
conditions has been developed. The 
model concerns situations when 
temperature, pressure, stress, change 
in time. Compared to earlier models, 
the present treatment includes 
transient and athermal effects, 
proportional to the rate of change of 
the external conditions. The model 
can be used for simulation of 
crystallization in industrial processes 

(injection molding, fiber spinning, film 
blowing). The present paper offers 
general theoretical fundamentals of 
the model. Applications concerning 
more specific cases will be published 
separately. 
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Introduction 

Traditional studies of crystallization kinetics are limited to 
idealized conditions in which all parameters of state (tem- 
perature, pressure, etc.) are constants. In real situations, 
however, the conditions change in time, which makes 
crystallization rate dependent not only on the instan- 
taneous conditions, but also on the rate of change. 

The early models of crystallization in variable condi- 
tions concerned only variation of temperature, and that in 
the limit of slow cooling. The main object of this study is 
development of a tractable model of crystallization in 
variable external conditions, which could be used as an 
input to numerical simulation of polymer processing. 

The generalization will concern two aspects. First, 
variable conditions other than temperature will be intro- 
duced. Second, athermal and transient effects will be con- 
sidered. This paper contains general equations of the 
model, specification of necessary material functions, and 
general outline of experimental procedures leading to 
determination of non-isothermal crystallization character- 
istics. Detailed solutions concerning crystallization in 

variable temperature and/or stress conditions will be dis- 
cussed in separate papers. 

Variable crystallization conditions. Generalized 
non-isothermal processes 

To describe crystallization conditions, we will consider 
a vector, ~, with components corresponding to individual 
parameters of state, such as temperature, T, pressure, p, 
intensity of an electric or magnetic field, g, etc. 

7J(t) = {T(t),p(t) ,  o~(t) . . . .  } . (1) 

Instead of speaking, separately, about processes non- 
isothermal (ST~St ~ 0), non-isobaric (Op/St =t= 0), etc., we 
will use the term non-isothermal in a general sense, cover- 
ing variation of any external conditions. A process will be 
defined as non-isothermal whenever the vector of condi- 
tions ~P (any one of its components) change in time. 
A process will be considered non-isothermal also, when 
temperature is a constant, but some other parameter of 
state (e.g. pressure, or electric field) changes in time. This, 
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generaIized concept of non-isothermal processes, and the 
related generalized nucleation rates has been discussed 
earlier [1, 2]. 

Time variation of a physical characteristic, 5~, control- 
led by time-dependent vector of external conditions t/'(t) 
with components ~i, can beexpressed through the rates of 
change, ~, ~ , . . .  

dY[[gt(t)]/dt = ~.(c~97/8T) - y" (d~/dt)(OY'/O~i)  (2a) 
i 

d2dtf[,~(t)]/dt 2 = ~) ' (0~/0~)  + (~  @ @):(02~"/c3~c~F) 

=_ y (d ~ 9q/dt~)(ar 
i 

(2b) 

~, tP, a2~c/0~,02f/0~QT, are vectors or tensors in the 
space of external conditions, T. (-) denotes scalar, and (| 
dyadic product of two vectors, (:) contraction of a pair of 
tensors over two indices, etc. For example, the rate of 
change of a steady-state nucleation rate, 2%~, which follows 
in time variation of temperature; pressm'e, and other con- 
ditions, can be written as 

dN~, [, T (t), p (t), ... ] /dt  = (d T/dt) (D~/=t/8 T) 

+ (dp/dt)(&N=,/@) + ... (3) 

Crystallization at time t in the point r of the sample is 
controlled by instantaneous, local conditions, ~P (t, r). In the 
case of a uniform field of conditions (V 7-' = 0), variation of 

experienced by a small part of the crystallizing material 
reduces to the partial time derivative 

V ~/' = 0; g' = O ~ / & .  (4a) 

When the distribution of temperature, stress, etc., in the 
sample is non-uniform, the effective rate of change is caused 
by local changes of ~, and by the motion of a material 
particle across the field of conditions, ~(t,r).  In non- 
uniform conditions, material derivative should be taken as 
the effective rate of change 

V 7' q= 0; ~ = ~P/St  + V" V g~, (4b) 

where V(t, r) is local velocity of the material particle. 
The fields of temperature, stress, and other variables 

are determined by dynamic equations describing the pro- 
cess. Time, and position-dependent crystallization rates, 
Jg'[g~(t,r)] contribute additional dynamic equations 
which should be solved together with equations of conti- 
nuity, momentum and energy. 

The Koimogoroff-Avrami equation of transformation 

According to the model developed independently by 
Kolmogoroff [-3], Avrami [-4], Johnson and Mehl [-5], and 
Evans [-6], the relative degree of transformation (crystal- 
linity), x, at a given time, t, reads 

x(t) = 1 - e x p [ - - E ( t ) ]  ; (5) 

E(t) denotes volume fraction of"phantom crystals" grown 
up to time t 

t 

~(t) = Nov(0, t) + ~ 19(s)v(s, t) ds, (6) 
0 

No is a number of predetermined crystal nuclei present at 
the start of the process (t = 0), /9 - nucleation rate, and 
v(s, t) - volume of a phantom crystal, nucleated at the 
instant s and grown up to the instant t. 

When the growth is isotropic and proceeds indepen- 
dently in n dimensions, v can be expressed by linear growth 
rate,/~ 

E(t) = C=No R(z)dz 
0 

+ (C./(n + 1)) ! N(s) R(z)dz ds, (7) 

where Cn denotes shape factor. 
In a general case, nucleation and growth rates are 

functions of time, and can possibly be affected by transient 
effects and the history of external conditions, g(t) 

N(t)  = N[,t, ~'(t)] 

R(t) = R[,t, g(t)]  

E(t) = ~[,t, 9 ' ( 0 ] .  (8) 

In isothermal conditions (t" = const), the kinetic char- 
acteristics can still be functions of time, and (constant) 
external conditions appear as parameters 

X(t)  = 19[,t; ~ ]  

R(t) = R[,t; ~'] (Sa) 

and become constants only when, in addition to isother- 
mal conditions, steady state is implied 

~r(t) = const. 

R(t) = const. (8b) 

In such conditions Eq. (7) reduces to 

gut(t) = CnRntnENo + Nt/ (n  + 1)] . 

of 

(9) 

Equations (6), (7), and (9) combine two mechanisms 
crystallization: growth of a constant number of 
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predetermined nuclei, and sporadic formation of new 
nuclei followed by growth. The most popular form of 
steady-state, isothermal transformation equation (often 
called Avrami equation) is written for an isolated mecha- 
nism with a single, integer value of the exponent m 

E~t(t) = Km tm 

{ CnNoRnt ~ 
= C n S f ~ " t n + ~ / ( n  + 1) 

for predetermined nucleation 

for sporadic nucleation. 

(lO) 

In principle, non-isothermal crystallization processes 
can be described by Eqs. (6) or (7), provided that nuclea- 
tion and growth rates are known functions of time. There 
remains an uncertainty about the exponent m, which in the 
original model is an integer constant, while it is commonly 
found to vary with temperature, stress, and other condi- 
tions. The present author discussed transformation equa- 
tions with time-dependent exponents m, taken as step 
functions of the external conditions [7]; the variation of 
m with time is reasonable, but practical application of the 
results does not seem possible. 

The main problem with using Eqs. (6) and (7) in real 
conditions concerns time-dependent nucleation and 
growth rates, and the dimensionality exponent, n. Experi- 
mental measurements usually yield isothermal crystalliza- 
tion rates and crystallization half-periods in a narrow 
range of external conditions, without detailed information 
about N(t), or/~(t), taken separately. Isothermal measure- 
ments do not include any information about the effect of 
cooling rate or other time-dependent conditions. 

Nevertheless, general scheme of the Kolmogoroff- 
Avrami model seems to provide a plausible basis for crys- 
tallization processes in variable conditions, and will be 
used, with small modification, in the development of our 
model. 

Physical basis for nucleation and growth rates 

The Kolmogoroff-Avrami equation provides a geometri- 
cal model of the development of the new phase. Physical 
basis for the material characteristics in Eqs. (7)-(10) is 
provided by nucleation theory, originally introduced by 
Volmer [8], Frenkel [9], Turnbull and Fisher [10]. 
Nucleation theory describes development of cluster size 
distribution density, Q(g,t) determined by the Fokker- 
Planck equation derived from the kinetics of molecular 
aggregation 

at ag >g' ~ + Q = 0 .  (11) kT ag / 

Free energy, A/v, providing thermodynamic driving 
force for aggregation, and the growth-diffusion coefficient, 
@gr, depend on external conditions, and in non-isothermal 
conditions become functions of time 

AF(~)  ~ ,JPl-~'(t)] 

~gr(~)  --4 ~gr El[/(t)] , (12) 

A/? and ~gr are controlled int. al., by heat of fusion, 
interface tension, molecular mobility, and other material 
properties. 

Isolated values of physical characteristics appearing in 
AF and Ng, have been measured for various polymers. The 
available information is restricted, however, to rather nar- 
row range of external conditions, and scatters widely for 
each material. For example, melting temperatures re- 
ported for polypropylene range from 187 ~ [11] to 208 ~ 
El2]. Reported values of the heat of fusion, or interface 
tension, vary by 50% or more, and information about 
growth-diffusion rate is practically nonexistent. Many 
characteristics change with temperature, but quantitative 
information about their temperature relations is very 
scarce. Commonly assumed linear relation between free 
energy, Aiff, and temperature is valid only for small under- 
coolings; wide range of temperatures involved in non- 
isothermal processes may require strongly non-linear 
relations. Rough estimates of the effect of molecular ori- 
entation and deformation suggest increase of nucleation 
rates by many orders of magnitude [13, 14], but experi- 
mental data are more than limited. 

Equation (11) can be solved numerically for a variety 
of time-dependent conditions, to yield cluster density 
function, ~(g,t), and the related kinetic characteristics 
appearing in the transformation equation. There are two 
difficulties, though. First, information about physical 
parameters of the nucleation theory is incomplete, inaccu- 
rate, and hard to obtain from direct measurements. Sec- 
ond, cluster density function, 0(g, t), is not directly observ- 
able, and solutions of Eq. (11) cannot be verified experi- 
mentally. For these two reasons, formal solutions of the 
Fokker-Planck equation do not provide a good basis for 
a reliable non-isothermal kinetic model. We will use basic 
relations of the nucleation theory as hints for the construc- 
tion of a simplified model, but quantitative evaluation will 
have to be based on direct experimental evidence. 

Special features of non-isothermal crystallization 

We will consider the non-linear measure of the degree of 
transformation (crystallinity) defined as 

P(t) - [ - ln (1  - x)] 1/m = [E(t)] 1/m c (0, oo), (13) 
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where m is a constant. Time derivative of this function can 
be used as a measure of crystallization rate. dP/dt  is 
inversely proportional to crystallization half-period, t~, 
a characteristic which can be directly obtained from ex- 
periment 

JU - dP/dt  = (In 2)l/m(t~)- 1 . (14) 

Equations (13)-(14) do not imply any specific combination 
of nucleation and growth, or constancy of external condi- 
tions. 24( depends on time as a result of transient effects, 
and time-dependent external conditions 

Y(t)  = X [ t ,  T(t)] = X [ t ,  T(t) ,p( t) , . . .  ] . (15) 

In isothermal, steady-state, single-mechanism processes, 
X reduces to a constant, controlled by (constant) external 
conditions, 

Y [t, T(t)] ~ const. = ~ t ( ~ )  = fs t (  T, P,.-. ) (16) 

and the exponent m can be identified with the Avrami 
exponent in Eqs. (10). 

In constant conditions (~  = 0), crystallization is based 
solely on the growth of predetermined nuclei and/or ther- 
mal nucleat ion-  a diffusional process leading to the forma- 
tion of stable aggregates. In terms of one-dimensional 
nucleation theory and the generalized concept of a non- 
isothermal processes, the rate of thermal nucleation, Nth, is 
equal to the flux of clusters in the space of cluster sizes, 
9 (cf. Eq. (11) above) 

N,~ [t ,  ~ ( t ) ]  = - ~ [a~/ag]o = , , ,  (17) 

g*(~) denotes critical cluster size defining stable nuclei. It 
should be noted that thermal nucleation is present in 
constant, as well as in variable crystallization conditions. 

In non-isothermal processes there appears an addi- 
tional mechanism, absent in the conditions of constant 
temperature, or stress. Athermal nucleation consists in the 
"production" of stable nuclei by redefinition of the cri- 
terion of their stability. This concept has originally been 
introduced by Fisher, Hollomon and Turnbull [15], and 
later developed by the present author [2, 16]. The rate of 
athermal nucleation and the related contribution to crys- 
tallization rate, are proportional to the rate of change of 
the critical cluster size, g*, which in turn, depends on the 
variation of external conditions 

] ~ a t h  = - -  (dg*/dt)Q(g*) = -- ~ . (Og*/OT)Q [g*(T(t))] 

= _ i 7  ~ ~ g *  . . . .  

Consequently, in variable external conditions, nucleation 
and crystallization rates include two contributions, ther- 
mal and athermal. 

In principle, athermal effects can appear in primary, as 
well as secondary nucleation (nucleation-controlled 
growth). From the nucleation theory result different values 
of the ratio Nath/i~rth for primary (three-dimensional) and 
secondary (two-dimensional) nucleation. Writing 

N, th/Nth = h0"Z3(F) (19a) 

for primary, and 

Nath/Nth = ~ / / " Z 2 ( ( I ~ I  ) (19b) 

for secondary nucleation (nucleation-controlled growth), 
and realizing that the dimensionality of growth is n, we 
obtain athermal effect on the crystallization rate in the 
form 

X(t )  = ~ [ ( 1  + ~P'z3)(1 + q"Z2)"]  ~/(~ 1~ (20) 

It is evident that athermal contributions are proportional 
to the rate of change, and disappear when ~ = 0. 

Early models of non.isothermal crystallization kinetics 

The first, quasi-static model of non-isothermal crystalliza- 
tion was proposed by the present author [17]. In the 
original treatment, the only component of the vector 
F was temperature, and m was assumed 1. Using the 
present, generalized approach, quasi-static model can be 
defined as one in which all parameters of state(temper- 
ature, pressure, stress, etc.) have been let to change in time, 
making steady-state crystallization rate Xst to follow vari- 
able external conditions 

g f [ t ,  T(t)] ~ S~t[T(t)] = Jz~t[T(t),p(t), ... ] . (21) 

Neglection of the transient effects implies that steady nu- 
cleation and growth rates are approached in a very short 
time. Integration of ~r over the history of external condi- 
tions, ~(t), yields progress of transformation (crystallinity) 
in the form 

t 

P(t) = ~ Jfsst[~(t')] d t ' .  (22) 
o 

Another, isokinetic model was proposed by Nakamura, 
Watanabe, Katayama, and Amano [18, 19]. The model 
was based on the assumption of proportionality between 
the time-dependent rates of nucleation and growth 

[~(t)/N(t) = const. (23) 

It can be shown that the above assumption substituted 
into Eq. (7) yields 

E(t) = C1 [~b(t)] n + C2[@(t)] n+x , (24) 
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where ~b(t) is the integral 

t 

q~(t) = ~ R(t ' )  dt' . 
0 

Proportionality between nucleation and growth rates does 
not follow from the theory, and provides a model assump- 
tion. The isokinetic assumption seems to imply steady- 
state, condition-dependent characteristics 

R(t) = R~,EV'(t)] 

/~(t) = R~t [TJ(t)] �9 (25) 

The assumption (23) substituted into Eq. (7) and re- 
duced to a single nucleation mechanism, brings us back to 
the quasi-static model 

t 

E(t) = const. [~(t)] m <=> n(t) = j ~fst[T(t')] d t ' .  (26) 
0 

Wasiak [20] reviewed other models of non-isothermal 
crystallization. The early papers by Ozawa [21] and 
Borokhovskii [22] are based on the Kolmogoroff-Avrami 
treatment and employ the isokinetic and quasi-static 
assumptions. Somewhat different models, proposed by 
Sabsai [23] and Lee [24] cannot be reduced to the Avrami 
scheme. All the above models assume constant dimen- 
sionality of growth (if any), and neglect transient and 
athermal effects. Their attractiveness consists in that all 
necessary information is based on simple isothermal ex- 
periments, and is easily accessible. On the other hand, all 
the discussed models neglect transient and athermal effects 
inherent to non-isothermal conditions. The rate of change 
(e.g., cooling rate, 7 ~) appears in the model only as a way of 
conversion of time, and does not affect crystallization rate. 

In spite of drastic simplifications, the quasi-static and 
isokinetic model appeared to be quite successful in semi- 
quantitative analysis of slow non-isothermal processes 
[14, 17-19, 25]. 

The present author made two attempts to expand the 
quasi-static model onto higher cooling rates, but no satis- 
factory results have been obtained. The proportional 
expansion [7] suggested averaging of non-isokinetic nu- 
cleation and growth rates and admitted different growth 
rates in different crystallographic directions. The obtained 
series involved hard to find material functions. Generali- 
zation of the Avrami model introduced variable nucleation 
and growth mechanisms [7], but the functions re(t) could 
hardly be predicted or measured. 

In this study we propose a new model, which takes into 
account transient and athermal effects, and therefore can 
be applied in a wide range of variable conditions. The 
shape of many relations will be inferred from the theory of 
nucleation; restricted set of material characteristics must 
be found from experiments. 

Extended equation for crystallization rates 
in variable external conditions 

The quasi-static model will be completed with athermal 
and transient effects. 

i) Crystallization rate, in isothermal conditions con- 
trolled solely by thermal nucleation, will be modified to 
account for athermal effects. Total crystallization rate will 
be approximated by 

•( t )  = ~th + ~a,h = .,%[1 + q'" Z(t, ~(t))] ~ (27) 

The average vector Z, describes athermal effects result- 
ing from nucleation and growth. Z3 and Z2 are (different) 
athermal functions for primary (three-dimensional) and 
secondary (two-dimensional) nucleation (cf. Eqs. (17-20)). 
Zs, Z2 are related to gradients of critical cluster sizes, 
8g*/OTL For each nucleation mechanism 

Zi = (Sg*/8 ~) Q [g*, t, (~(t))]/~gr [80/Sg]g = g7 

8g;' } 
i--~, ap . . . .  QEg*(~)]/~grESe/ag]g=g,*; 

i = 2, 3.  (28) 

When athermal effects are present, both, in primary 
nucleation and nucleation-controlled growth, and (in the 
spirit of isokinetic approximation), athermal corrections 
are assumed equal to each other (Z = Z3 = Zz), # = 1, 
and Eq. (27) reduces to 

~ ( t )  = Xth[1 + ~ ' Z ] .  (27a) 

There is no experimental evidence of athermal effects in 
crystal growth. When athermal mechanism is included 
only in primary nucleation, and growth is controlled 
solely by the thermal mechanism, Z2 = 0, Z = Zs, 
# = (n + 1)-1, and 

of(t) = ~ h [ 1  + ~'Z]  ~/~+1) 

[ ,  = ~ 1 + ~ . z ( t ,  ~'(t)) 
n + l  

n ( , / , . z )  ~ + ... ] .  (27b) (n + 1) 2 

The growth diffusion coefficient, ~gr, appearing in the 
nucleation theory is proportional to molecular mobility 
(or reciprocal relaxation time, r) 

~ g r ( g ,  ~r.r = D o / i ( g ) # ( ~ ) .  (29) 

Consequently, athermal effects scale as (z k0) 

IV,,h/1V, h = ~ . Z  = (~ ~) ' (Sg* /SV)d i ( t ,g* ,  V)  (30) 
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/i, di (i = 2, 3) are functions, different for two-dimensional, 
and three-dimensional nucleation. 

ii) Transient effects associated with thermal-nucleation- 
controlled crystallization will be assumed in the form 

js  - -  J~t th( t ,  I t I / ( t ))  
dJ{tth/dt = (31) ~(7'(t)) 

Equation (31) may be considered as a relaxational solution 
truncated to one relaxation time, r. The asymptotic behav- 
iour at very long times and/or infinitely short relaxation 
times yields 

~ 0  and/or t--+oo; ~h ( t ) -+~ t (T ( t ) ) .  (32) 

Crystallization rate asymptotically approaches steady- 
state value, corresponding to instantaneous conditions, 

~'(0. 
It should be understood that Eq. (31) is a postulated 

model, rather than result of a strict derivation. Our 
Fokker-Planck equation (11) admits relaxational solution 

O(g, t) = ~ Oi(g)exp[-  t/ri] (33) 
i 

reducing to 

0 0 ~  &q - O (33a) 
at - r~ 

only above the critical transition temperature (melting 
temperature, Tm). In the infinite time limit, cluster sizes 
approach a Boltzmann-type, equilibrium distribution 
O~q(q). No such solution exists below Tm, though. The 
most natdral solution of Eq. (11) below Tm is inherently 
time-dependent, because an irreversible, one-directional 
phase transition process is described. Nevertheless, in the 
majority of theoretical treatments (apparently inspired by 
constant nucleation rates observed in isothermal condi- 
tions), steady state cluster distribution, &,(g), independent 
of time, but controlled by external conditions is assumed 
below Tm. 

The postulated relaxational equation (Eq. 31) is sup- 
ported, to some extent, by the (assumed) existence of 
steady-state solution at t + oo, and proportionality of 
~?Q/& to the growth-diffusion coefficient (reciprocal relax- 
ation time, r) implied by Eq. (11). 

Equation (31) applied to non-isothermal conditions, 
7 /=  7J(t), and integrated with the initial condition 

t = 0; afth = JCo (34) 

yields thermal crystallization rate 

J{' th(t)=e-~[Jg~~ ' o  (35) 

where 

t dr' 
~(t) = ! ~ [ T ( t ' ) 2  (36) 

is a new time variable. 
The constant af0, in Eq. (34) depends, in a general case, 

on structure and composition of the crystallizing material, 
and initial conditions, gift = 0). In industrial processes 
(injection molding, extrusion, fiber spinning and melt 
blowing), which provide the main field of applications of 
our model, we are dealing with crystallization which fol- 
lows prolonged melting. Ordered structures contributing 
to '~ memory" [26, 271 have to be destroyed 
at the beginning of the process, to guarantee reproducible 
material properties. Therefore, the absence of predeter- 
mined nuclei resulting from unmelted ordered structures 
can be taken for granted. What is left, is heterogeneous 
nuclei (impurities, pigments, etc.) resistant to melting. 
Crystallization characteristics of pure materials, free from 
predetermined (mostly heterogeneous) nuclei, may be dif- 
ferent from crystallization of polymers containing pig- 
ments and impurities. 

The integral appearing in Eq. (35) can be expanded in 
series of derivatives 

~fth(t) -- Ce -r = e -~ ~ e : ' ~ t [T ({ ' ) l  d#' 

= ~(~t [ 7 t (# ) ]  --  d.Xr~t/d~ 4- d22~rst/d~2 

. . . .  + (-1)nd%g~t/d{ n , (37) 

where 

C = S o  - [.X"~, - d S ~ t / d #  4- d 2 ~ t / d {  z . . . .  l , =o  �9 (38) 

Differentiation with respect to ~ takes into account 
variation in time, scaled with relaxation time. Using 
Eqs. (1) and (2), Eq. (37) can be rewritten in the form 
indicating rates of change of the external conditions 

Sth(t)  -- Ce -~ = ~ t [ T ( t ) ]  - r iO. (&X~,/c~7 ~) 

F/aln-c a~,) 

Ux~, -] 
+ a'ea~A + "c=(O(a~t/a'F) 

--  "c3(k# | ~ | 7)): [ . . . ]  + ..- (39) 

In the range of ~ low, compared with relaxation fre- 
quency, (l/c), higher terms in Eq. (39) can be neglected. 

The first term in Eqs. (37) and (39) describes steady- 
state crystallization rate which follows variable external 
conditions. Taken alone, this term corresponds to the 
quasi-static approximation (Eq. (20)). 
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Basic equation for the present model is provided by 
Eq. (35) corrected for athermal effects 

x(t)  = ~ [ i  + ,/ '-z].  

[ I  + ~ 'Z]"[Y{ 'oe  -~ 
L 

+ e-~ ~ ~'~,U'(r  d~' . 
0 

(40) 

Alternatively, Eq. (40) can be expanded in series 
around the quasi-static approximation. Using athermal 
nucleation vector, Z, from Eq. (28), and thermal crystalli- 
zation rate from Eq. (39), we obtain 

d ( t )  - Ce-r + ~ ' Z ) "  

----~t[~(t)]  {1 + 7)" (/~Z -- 7: ~ln2fst~---~--] 

+(~O | % : [  l~'z |  

2/(~ In T ~ In fstx~ T2 1 ~2fs t  + + 

+ 7:2 0. + + . . .  

(41) 

Expansion over the rates of change may appear useful 
in the description of slow processes, and in the determina- 
tion of athermal crystallization characteristics. 

Material functions and their evaluation 

Evaluation of the developed non-isothermal model re- 
quires knowledge of the following characteristics: 

- steady-state crystallization rate, as a function of ex- 
ternal conditions: 

~X'~t(T) = JY~t(T,p,... ) (42) 

- relaxation time, as a function of external conditions 

7:(T) = r (T ,p ,  ... ) (43) 

- athermal rate vector 

Z(t,  T(t))  = Z ( T , p ,  ... ) (44) 

- history of the external conditions 

(t, r) = { T (t, r), p(t, r), ... } . (45) 

Equations (42)-(44) describe material functions, 
Eq. (45) results from dynamics of the process, and will not 
be discussed here. The first material function, Y~t, is 

a characteristic of steady-state, isothermal crystallization 
and can be determined in standard laboratory experi- 
ments. Relaxation time, z, appears in isothermal, transient 
conditions, and the athermal characteristic, Z requires 
controlled non-isothermal experiments. 

There are two possible sources of information about 
the material functions Jf~t, 7:, and Z. One is provided 
by physical theories (nucleation theory, molecular dynam- 
ics, etc.), yielding an a priori information about crystall- 
ization rates, relaxation times and athermal effects. When- 
ever possible, we will use such an approach to analyze 
shapes of  relations and their asymptotic behavior. Using 
physical theories, we still need reliable values of material 
characteristics. These must be found from appropriate 
experiments. 

The other source is empirical. The relations between 
material characteristics and external conditions are ap- 
proximated by empirical equations, and evaluated from 
direct experiments. Empirical relations have to be intro- 
duced, whenever reliable physical equations are not 
available. 

Two special crystallization regimes can be used for 
experimental determination of the necessary materials 
characteristics. Dependently on the available experimental 
techniques, transformation rate, W, and/or degree of 
transformation, P, can be used. 

Isothermal crystallization 

In strictly isothermal conditions 

T(t)  = const. 
~ t  = const. 
7: = const. 

athermal effects disappear, and crystallization rate from 
Eq. (40) reduces to 

Y( t ;  t/,) = (X0 - ~fst)e -'/~ + ~ t .  (46) 

The non-linear degree of transformation 

P(t; ~g) = fs t ( t  - 7:) + fifo 7: + (Xst - f o  )'c e-t/~. (47) 

Steady state transformation (crystallization) rates may be 
obtained from the asymptotic behavior of Eq. (46) at 
t-+oo 

~ t ( F )  = lim ~((t; 7 j) (48) 
t-+CO 

and relaxation time, from the slope 

[ r ( tp ) ] - i  = dln[~T~t(~) _ 2U(t; T ) ] / d t .  (49) 
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Crystallization at constant rate of change 

Determination of the athermal correction, Z, requires ex- 
periments performed at the controlled, constant rate of 
change 

ki' = const. 

~ ; = ~  . . . . .  0. 

Using first terms of the expansion (41), we obtain the 
equation 

a~t lim . . . .  OlnYF(t) _ #(Ce_~ + ~ t [ F ( t ) ] ) Z  77 , (50) 

which can be used for determination of the athermal vec- 
tor, Z. Detailed procedures for determination of Z in 
specific situations will be discussed in other papers. 

Discussion 

The difference between the present model and the original 
quasi-static approximation is threefold: 

- variation of a single variable - temperature - is 
generalized onto many external conditions relevant for 
crystallization: temperature, pressure, external potential 
fields, etc. This generalization is specially important for 
processes in which polymers are subjected to mechanical 
and thermal stresses, resulting in molecular orientation 
and deformation. 

- instead of steady-state, isothermal nucleation and 
growth characteristics used in the early models, we are 
considering transient effects related to the behavior in 
variable external conditions. The appropriate measure of 
such effects is relaxation time, 77, inversely proportional to 
the coefficient of growth diffusion, @gr. In rate expansions, 
r appears together with the rate of change, k0. 

- total nucleation (and crystallization) rates include, in 
addition to thermal nucleation considered in the earlier 
models, also athermal nucleation, directly proportional to 
the rate of change, ~/'. 

We will discuss asymptotic behavior of crystallization 
rate, Yl, and crystallinity, P, in the range of very small, and 
very large values of the parameter (z I k0]). 

At (rikO[)--*0, i.e., for nearly constant conditions 
and/or infinitely short relaxation times, Eq. (41) reduces to 
the quasi-statiC model. Transient and athermal effects dis- 
appear, and crystallization rate assumes the steady-state 
value, Jg~t, corresponding to instantaneous conditions 

(77[ @l) --+0; JY('(t) = 5~st(~t(t)) oc 1/77. (51) 

Since crystallization rate is inversely proportional to relax- 
ation time, (cf. Eqs. (17 and 29)), at z --* 0 crystallization 
rates become infinitely high. The crystallinity function P, 
assumes infinitely high values at either r ~ 0, or k/' --, 0 

(rl~'l) -* 0; P(t)=~Yi~t(F( t ) )d tocl I (r l~l ) -~oo (52) 

equivalent to complete transformation (x ~ 1). [kO I ap- 
pears in the integral (52) when integration over time is 
replaced by integration over external conditions. This is 
consistent with conclusions drawn from the original quasi- 
static and isokinetic models [17-19, 21-22] in which cry- 
stallinity function P was inversely proportional to the 
cooling rate, 7 ~. 

When the rate of change, and/or relaxation time, are 
infinitely large, nucleation (and crystallization) mechanism 
reduces to athermal 

(~1 ~1)--, oo; x( t ) - - ,  ~ , h  = Xth(~ 'Z)  ~ �9 (53) 

Thermal crystallization rate is proportional to (I/r) and 
the athermal vector Z to r (Eq, (17). Therefore, at 
(771 '/'1) --> oo 

m ( t )  oo (I ? l ) " ( r )  ~-1 - (54) 

Assuming that athermal effects are present only in primary 
nucleation, and growth is solely controlled by thermal 
(diffusional) effects, i.e., putting 

# = 1/(n + 1) < 1,  

we have 

J'l ~ la / (n+  1) --> oo 

(55) 

for finite 77 
for finite [k01 . (56) 

When r, and growth rate are finite, crystallization rate 
slowly but infinitely increases with the rate of Change, kO. 
The infinite limit accounts for fast production of athermal 
nuclei (proportional to ~), followed by finite rate of 
growth. When cooling rate is moderate, but relaxation 
time infinite (zero molecular mobility), crystallization rate 
reduces to zero because athermal nuclei fail to grow. 

At (771 ~l) --* oo the crystallinity function, P, reduces to 
zero 

(77 [ kO I ) --, oo: P - ,  ~ 2f, th(k~, ~O) dt oc (r I ~ I)- (m - l ) / r n  ~ 0 (57) 

as a result of both, zero growth rate, and infinitely short 
time available for crystallization. 

The model will be applied to crystallization processes 
with variable temperature, pressure, stress and other con- 
ditions. It should be made clear that the vector of external 
conditions 7~(t) is understood as an effective, local value, 
rather than boundary value applied to a large system. 
Crystallization rate equations discussed in this paper, 
Y [ t ,  T(t), ~(t)], play the role of constitutive equations 
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QUASI - STATIC MODEL 

r,~ 

Z 

~TENDED MODE 
- J  ~ J 

J ~..~THERMAL 

RATE OF CHANGE, 

Fig. 1 Non-linear crystallization rate, o,'g, as a function of the rate of 
change, F~/'1 (schematic). Continuous lines - quasi-static and the 
extended models. Dotted lines - thermal and athermal components 
of the extended model. The rates are compared at the same condi- 
tions, ~P 

with effective conditions ~ taken as local parameters. 
Non-uniform distribution of ~f (e.g., temperature) in large 
systems, should be found from dynamic equations (e.g., 
heat transfer equation) and appropriate boundary condi- 
tions. Modeling of industrial processes, like injection 

molding or fiber spinning, is based on simultaneous dy- 
namic equations, which determine, int. al. time evolution 
and spatial distribution of physical conditions, ~(r, t). De- 
velopment of crystallinity is one element of the dynamic 
model. 

Figure i presents schematically behavior of crystalliza- 
tion rate, • ,  in generalized non-isothermal conditions, as 
a function of the rate of change, J kO I. Constant rate pre- 
dicted in the old, quasi-static model is replaced by a com- 
plex relation resulting from decreasing transient thermal 
crystallization and increasing athermal contribution. 

It  is not possible to give a detailed recipe of application 
of the model in a general case. An outline of material 
functions required and their derivation from isothermal 
and non-isothermal experiments has been sketched in 
Eqs. (42-50). In the following papers we will discuss in 
detail application of the model to more specific (and 
simple) cases, for which there exists enough information 
about  crystallization rates. The first such case, to be pub- 
lished soon, will be crystallization in which temperature is 
the only time-dependent variable. 
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