
EFFECT OF PROLONGED LOADING ON THE 

AND PROPERTIES OF ALLOY KhN77TYu 

A. A. Klypin and L. P. Sorokina 

STRUCTURE 

UDC 669.15 '24 '26 ' -194 

Creep of heat res i s tan t  al loys is due to changes in s t ruc ture  in the grain  boundaries  and within the 
grains .  These changes r e fe r  to the morphology of hardening phases,  dislocations,  and also signs of fai lure 
in the grain boundaries.  Creep is usually r ega rded  as a p roces s  in which signs of hardening and fai lure  
are  balanced with a preferent ia l  accumulat ion of damage in the grain  boundaries,  which leads to fai lure.  
The effect of hardening during creep  is la rge  and one would expect a substantial improvement  of the p rop -  
e r t tes  due to pre l iminary  creep under cer ta in  conditions [1]. Hardening is especial ly  effective with ove r -  
loads in the f i r s t  stage of creep:  with p roper  selection of the t ime and magnitude of the over load the t ime 
to fai lure under working conditions can be inc reased  severa l  t imes  [2, 3]. Since hardening in the f i r s t  
stage of c reep  is usually explained as a p roces s  assoc ia ted  with the format ion of subs t ruc ture ,  it appears  
possible to use the elements  of the subs t ruc ture  for additional hardening of alloys.  The effect iveness  of 
this t rea tment  for precipi ta t ion-hardening al loys has been demonst ra ted  with the use of polygonization an-  
nealing after  deformation (before aging) [4]. 

We investigated the effect of p re l iminary  c reep  on the s t ruc ture  and proper t i es  of p rec ip i t a t ion-hard-  
ening heat res i s tan t  alloy KhN77TYu. The t rea tment  includes quenching, deformation under creep condi-  
lions at a t empera tu re  considerably  below the aging tempera ture ,  and subsequent aging. 

Hardening of the alloy is assoc ia ted  with the selection of the t empera ture ,  s t r e s s ,  and t ime of creep.  
The tempera tu re  at which creep  occurs  should not be higher than the t empera tu re  of intensive aging but 
should not be so low as to induce the harmful  effect of cold plastic deformation [2]. Also, the t ime required  
for the format ion of subs t ruc ture  at low t empera tu r e s  is very  large.  It should be kept in mind that the 
s t ruc ture  approaches  the equil ibrium condition much more  rapidly with slow deformation than during heat -  
ing of the previously deformed metal to the same t empera tu re  [5]. The magnitude of the s t r e s s  also de te r -  
mines the perfect ion of the subs t ruc ture  formed.  High s t r e s s e s  may induce intensive generat ion of dis lo-  
cations without re inforcement  by diffusion p roces ses ,  i . e . ,  the stability of dislocation a r r a y s  will be low. 
The low s t r e s s  requi res  a long t ime for  the format ion of subst ructure .  It should be kept in mind that with 
increas ing s t r e s s  during creep  the size of the subgrains  dec reases  [6]. 
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Fig. 1. Effect of p re l iminary  c reep  conditions on time to fa i l -  
u r eo fa l IoyKhN77TYua t  700~ cr = 40 k g / m m  2 (a, b) and at 
800~ ~ = 18 k g / m m  2 (c). a, c) Creep time 1 h; b) c reep  tern- 
pe ra tu re  550~ The s t r e s s  (kg/mm 2) is given on the curve.  
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Fig. 2. Electron micrographs  of alloy KhN77TYu. a, b) After pre l iminary  creep of the quenched 
alloy at 550~ with a = 20 k g / m m  2 for  5 h; a) stacking faults; b) coplanar  distribution of dis loca-  
tions; c) af ter  pre l iminary  creep and aging at 700~ for 16 h. 

Before being subjected to creep the pieces for samples  were solutioned at 1080~ for 8 h, producing 
a homogeneous s t ructure .  The samples  were subjected to creep at t empera tu res  of 500-600~ The t ime 
matched a deformation not exceeding 0.7%, since with deformation ->2% no hardening occurs .  After defor-  
mation, the samples  were aged at 700~ for  16 h. 

The resul ts  of c reep  tests  at 700 and 800~ for samples subjected to this t rea tment  are  shown in Fig. 
1. The optimal t empera ture  of the t rea tment  var ies  with the s t r e s s  level in pre l iminary  creep - it is 
~550~ at a s t r e s s  of 35 k g / m m  2 and >550~ at a s t r e ss  of 15 kg /mm ~ (Fig. la). The la rges t  effect of p r e -  
l iminary creep is achieved in the f i rs t  5-10 h at 550~ and the higher the s t r e s s  level during creep,  the 
more  rapidly the maximum hardening is attained and the l a rger  the effect. Under the pre l iminary  creep 
conditions selected the time to failure increases  by a fac tor  of 3-4. The resul ts  of long- te rm tes ts  of a l -  
loy KhN77TYu at 800~ and o = 18 k g / m m  2, shown in Fig. lc,  indicate that the optima conditions for p re -  
l iminary creep are  575~ for  1 h. 

Para l le l  tes ts  were made to determine the effect of low-tempera ture  tempering at 550-600~ for as 
long as 100 h without application of s t r e s s  on the heat res is tance  of alloy KhN77TYu. Some improvement  
of the heat res i s tance  was noted, but no more  than 30%, and therefore  the reason for the increase  of the 
heat res is tance  is the creep,  and the effect of the K state is not the main factor  [7]. 

Electron microscopic  studies of the fine s t ructure  were made after  solutioning, pre l iminary  creep,  
aging, and creep tes ts  for  62 h at 700~ with ~ = 40 k g / m m  2. The study was made by the disk method with 
the Hitachi 200 electron microscope .  After solutioning at 1080~ for 48 h the alloy consis ted of the solid 
solution with no par t ic les  of T' phase, but Cr23C 6 carbides  were observed in the grain boundaries.  After 
pre l iminary  creep the solid solution decomposes  with precipitat ion of fine par t ic les  of 7' phase. Plas t ic  
deformation in the presence  of the o rdered  par t ic les  occurs  with cutting of the par t ic les  by dislocations, 
with formation of stacking faults and coplanar  distribution of complete dislocations (Fig. 2a, b). During 
subsequent aging the stacking faults, l imited by dislocation segments,  are  retained {Fig. 2c), as are  the 
more  stable dislocation a r r ays ,  but the complete dislocations disappear (evidently annihilated due to the 
prolonged effect of temperature) ,  and the par t ic les  of T' phase increase  slightly in size. After prolonged 
test ing dislocation loops appear around par t ic les  of T' phase.  The fine s t ructure  of the alloy af ter  long- 
t e rm tes ts  without p re l iminary  c reep  differs sharply f rom that descr ibed - coplanar  disruption of d is loca-  
tions is observed,  which butt against  the grain boundaries.  Evidently the dislocation pi le-ups promote 
large s t r e s ses  in boundary areas ,  due to which the samples  fail considerably ea r l i e r  than the samples  sub- 
jected to pre l iminary  creep.  Also, dislocations running to the grain boundaries lead to damage in these 
a reas  due to the run off of vacancies  and other defects. 

CONCLUSIONS 

When alloy KhN77TYu is subjected to pre l iminary  creep d ispersed  par t ic les  of T' phase appear in the 
s t ructure ,  and consequently plastic deformation occurs  by cutting of the par t ic les  by dislocations,  with 
formation of stable stacking faults, which are  retained during subsequent aging and strengthen the s t ruc -  
ture.  After long- te rm strength tes ts  the s t ruc ture  contains dislocation loops evenly distr ibuted through 
the grains,  with no coplanar  distribution of dislocations in grain boundaries.  All these changes in the fine 
s t ruc ture  lead to an increase  of the serv ice  life of alloy KhN77TYu. 
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