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Typical two-stage oxidation experiments in high-temperature oxidation studies 
on metals are analyzed. Two cases of predominant oxygen diffusion in the 
scale are studied." pure volume diffusion and simultaneous transport via grain 
boundaries and via the bulk. An analytical expression for the growth of the 
oxide layer is given for the assumption that the chemical potential of  the 
oxygen varies linearly over the oxide layer. The numerical treatment of  the 
differential equation is improved so that the calculation is possibly faster and/ 
or more accurate compared to a method given in the literature. The experi- 
mental profiles are described by four parameters, the grain boundary width, the 
grain radius, and the volume and grain-boundary diffusivities. Two equations 
correlating these parameters can be extracted from the profiles. Two bench- 
mark tests are described for testing the program. An analytical solution is 
presented which approximately describes the distribution of  0-18 in the oxide 
layer for pure volume diffusion. Experimental S IMS profiles on Fe-Cr-Al 
alloys are explored on the basis of  our calculation. 

KEY WORDS: two-stage oxidation; O-18; growth mechanism; diffusion model; grain-bound- 
ary diffusion. 

I N T R O D U C T I O N  

In studying oxidation mechanisms, oxygen tracer isotopes are commonly  
used. S. N. Basu and 3. W. Hal loran  I developed a model  in which the oxygen 
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was incorporated into the oxide layer via grain-boundary transport and via 
the exchange between the grain boundaries and spherical grains. Since the 
diffusion via grain boundaries is much faster than the diffusion into the 
volume, one would expect to have an increase in the O-18 profile near the 
metal/oxide interface by the formation of new oxide there. This has been 
seen in oxidation experiments of Fe-Cr-A1 alloys (which initiated this study) 
and is believed to be a common feature of all oxides growing by (inward) 
diffusion of oxygen. 

In implementing the theory of Basu et  al. in a computer program, we 
realized, however, that considerable improvements could be made which we 
will present in this paper. Moreover, we will present two bench-mark test 
cases for anyone who wants to develop or just use a program based on this 
theory. One of these is the analytical solution describing the inward oxygen 
volume diffusion in the presence of a gradient of the chemical potential. We 
will then treat a specific example and demonstrate what can be learned about 
the physical parameters involved. 

MODELING THE OXYGEN TRANSPORT 

Basu et  al. 1 assume that the oxide layer consists of spherical grains of 
radius r, separated by grain boundaries of width ~. Let X ( t )  be the thickness 
of the oxide layer after time t. The x-axis is defined by the two points x = 0 
for the oxide layer/gas interface and x =X(t) for the oxide layer/alloy inter- 
face. The alloy is oxidized in a pure O-16 atmosphere for a time to. Then a 
pure O-18 atmosphere is introduced. The O-18 diffuses into the oxide layer 
via the grain boundaries; on its way to the oxide/alloy interface, it is enriched 
with O-16 by exchange with the O-16 from the grains. The mixture of O-18 
and O-16 arriving at x =X(t0) is used to build up new oxide and therefore 
the interface x=X(t)  is a moving one. In this model, it is therefore assumed 
that the oxide layer grows by inward oxygen diffusion. There are two driving 
forces for this inward diffusion. The first driving force is the difference in 
the chemical potential of the oxygen at the gas/oxide interface and at the 
oxide/alloy interface A/I. The second driving force is the gradient of the O-18 
concentration within the grains and between a grain and a grain boundary. 

To model this process one has to answer two questions, namely, which 
differential equation governs the situation in the grain boundary and what 
is the growth rate? 

The Treatment of  Basu et  al. 

As a basis for further discussion we now shortly describe the solution 
given by Basu et  al. 1 The underlying assumptions and their implications are 
discussed in the next section. 
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Fig. 1. Small volume element of the grain bound- 
ary. Graphical visualization of O, Ax, and b. 
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To develop a differential equation for the oxygen transport in the grain 
boundary, we consider a small volume element (Fig. 1). If  jig(x, t) is the 
current of O-18 atoms per unit area and unit time within the grain boundary, 

�9 Grain a n d j  18 (x, t) is the current into the grain per unit area and unit time, then 
the increase in concentration of 0-18 atoms in this volume element is given 
by 

[j18(x + Ax, t) -jiB(x, t)]O b . . . .  Grain~ ~t--LJ18 tX, t)b AxAt=Aqs~9 b Ax (1) 

The current density j]8 is given by 

6r DgbC18 A~/ 
j18 = --Dgb -1 (2) 

6x RTX( t )  

where R is the gas constant, T the temperature, and Dgb the grain boundary 
diffusion coefficient of oxygen, c18 is the number of O-18 atoms per unit grain 
boundary volume. In this paper, Ap is the absolute value of  the difference of  
the chemical potential of oxygen at the gas/oxide interface and at the oxide/ 
metal interface, respectively, and refers to the reaction 

2Al(s) + 3 O2(g) = AlzO3(s) (3) 

The first term on the right hand side of Eq. (2) describes the isotopic mixing 
of O-16 and O-18 and the second term describes the influx of oxygen in the 
sample due to its gradient of  the chemical potential of oxygen. Since dp/dx 
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is written as A/~ IX( t ) ,  it is assumed that this gradient is constant with respect 
to x. With Eqs. (1) and (2) it follows that 

~ C 1 8 _  Ogb C~2C18 Dgb A/.t 8c18 2 .Grain 

fit ~x 2 R T X ( t )  8x  0 Jls (4) 

Since the total oxygen concentration in the grain boundary is assumed to be 
independent of  time and location, it follows from Eq. (4) that the flux of O- 
18 into the grains equals the flux of  O-16 out of the grains. Equation (4) 
can be solved numerically, given the boundary conditions, if one knows X(t )  

i -Grain anaJ18 . 
Basu et al. propose to calculate the latter by considering the amount of 

O-18 which diffuses into a spherical grain. They refer to the Oishi-Ichimura 
geometrical configuration, 2 in which the volume is simulated by equally- 
sized spherical grains which are completely surrounded by the grain bound- 
aries. The grain boundaries are perpendicular to the oxide surface. For  more 
details and figures, we refer the reader to Ref. 1. The amount of  O-18 
diffusing into a spherical grain can be calculated by procedures found in the 
literature. 3 If  a sphere of radius r has an initial tracer concentration of 
ci~8(t) and the concentration at the surface of the sphere is raised at time t = 

i to from ci ,  to c{8, then the amount  of  O-18 in the sphere at a time t>to is 
given by: 

M ( t ) =  1 - ~  2 ~ e x p  r2 j j 3 rcr3 (c f s - c ' l s )+  ~rr3c~s (5) 
7~" n = l  

where v = t - to and D v is the volume diffusion coefficient. 
The flux into the sphere can be obtained, using Fick's law, by differen- 

tiating the numerical solution for c~s(x, t) for this problem with respect to 
x. In this way, Basu et al. get (Eq. (6) in Ref. 1): 

(6) J18 _ exp r2 j 
F n = l  

This current can be used in Eq. (4), if one assumes that the concentration 
at the surface of  the spherical grains c~8(x, t) is identical to the O-18 concen- 
tration within the grain boundary at any previous time t_> to, e.g., due to a 
much faster grain boundary diffusion compared to volume diffusion. 

The thickness of  the scale inserted in Eq. (4) used by Basu et al. is given 
by 

X(t )  = (Kp(v + to)) '/2 (7) 

where Kp describes the parabolic growth rate. In this paper to and r are the 
O-16 and the O-18 oxidation time, respectively. 
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The average concentration as measured by a SIMS analysis is given by 

4 3 Grain 2 ~ - 7or cls + 47cr - c18 
d Ms_ 3 2 (8) 

4_ ~r 3 + 47cr 2 0 
3 2 

where c~rain(X, t) is given by Eq. (5) divided by the volume of the sphere, 
i.e., 

Grain,,  i i c18 tx, t )=  1 -  ~= exp - ~/(Cls(X, t ) - c l a ) - c 1 8  (9) 

It is assumed that oxygen is incorporated in a grain only via the grain 
boundaries, i.e., any volume diffusion parallel to the x-axis is neglected 
(including any O-16/O-18 exchange reaction at the surface via the volume). 

Defining values for D v Dgb, ,~, Kp, and r, one is therefore able to solve 
the differential Eq. (4) and to calculate the SIMS profile via Eq. (8). 

Our intention in this section was to illustrate this model. For  more 
details, we refer the reader to Ref. 1 and to an extensive NASA report by 
Basu 4 which includes a computer program. 

Discussion of the Approximations 
In developing Eq. (2), it was assumed that the gradient of the chemical 

potential of oxygen is constant. Thus, the treatment is confined to cases 
where oxygen diffuses as uncharged species or the defect concentration lead- 
ing to oxygen diffusion is independent from the location. The latter can be 
assumed in cases where the concentration of  intrinsic defects is small com- 
pared to extrinsic defects, as is the case for alumina scales on alloys where 
the motion of oxygen is believed to be controlled by doping, since it is 
virtually impossible to measure any intrinsic defects or any dependence of the 
corrosion constant on the partial pressure of oxygen in the gas atmosphere. 

In developing Eq. (6), we used Eq. (5) which is valid only if the surface 
concentration of  the grains, i.e. the grain boundary concentration, is brought 
to its final oxygen concentration immediately. Since the O-18 concentration 
within the grain boundary is growing monotonically, this approximation is 
justified in cases where the grain-boundary diffusion is much faster than the 
volume diffusion so that the final concentration in the grain boundary is 
reached fast. This is the same approximation Fisher 5 successfully used in his 
investigation of  the diffusion of  radioactive silver into a polycrystalline silver 
specimen. We should therefore be able to reproduce his approximate solution 
exactly, which we will do as a test case for the programs. This approximation 
also becomes better with smaller grain-boundary width compared to the 
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grain size since this means-that at the time one measures a sizable amount 
of O- 18 within the volume the O- 18 concentration within the grain boundary 
had enough time to reach its final, i.e., steady state concentration. Since we 
are dealing with a complex situation solved by a computer simulation, it is 
difficult if not impossible to make these arguments more quantitative. It is 
therefore necessary to check the validity of this approximation using the 
results of the computer simulation. 

In developing Eq. (8), any volume diffusion parallel to the x-axis is 
neglected. This approximation is justified in cases where (2DVt)~/2<<X(t), 
which will be calculated in the section "Analytical Expression for X(t)." 

Improvements of the Treatment Given by Basu et al. 

Improved Calculation of jiB(x, t) 
To solve the differential equation, Eq. (4), one defines a mesh of equidist- 

ant points on the x-axis. During the O-18 oxidation period one starts with 
Cls(X, t)=0 for x > 0 ,  and t=t0,  i.e., r = 0 ,  in the oxide scale and c18(0, "c)/ 
(c~s + c~6) = No, where the molar fraction No is the same as in the gas atmos- 
phere. The increase of Cls(X, t) within a time interval At, Ac~8(x, At), is 
calculated by multiplying Eq. (4) with At. Since these calculations have to 
be done for every new time, it is of great importance to simplify the calcula- 
tion at this stage. In our first calculations, we realized that calculating 
�9 G r a i n  J 18 from Eq. (6) is very time consuming, if not impossible. In the beginning 
of theO-18 oxidation, v is very small, so one needs a large number of terms 
to calculate the sum on the right hand side of Eq. (6) with sufficient accuracy�9 
For v = 0, however, this sum diverges. In solving the differential equation 

I . G r a i n  I J . G r a i n  Eq. (4), one does not neeaJls , out j18 At, which even for small times is 
finite. We therefore calculate the amount of O-18 flowing into the sphere 
between time t and t+At, i.e., 

4 / / : r  2 - - � 9  . G r a i n , -  zatj18 tx, t )=(m( t+At ) -m( t ) )  (10) 

� 9  With Eq. (5) we get for J18 (x, t) At 

�9 G r a i n /  2r 
JiB tx, t ) A t = ~ 5  [cls(x, t)-c~8(x, t)]S(t) (11) 

where S(t) is given by 

S(t) = ~ ~ e x p [  DVn2a'2z'] 1 n=, 75 -J(-exp[-DVn27r2At/r2]) (12) 

with r = t -  to. 
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Comparing Eqs. (11) and (6), we realize the appearance of the factor 
1/n 2 in Eq. (12), which leads to a faster convergence of the sum and therefore 
reduces the calculation time considerably. Moreover, it is possible to give 
an analytical approximation for the sum Eq. (12) (see Appendix). As we 
use ClS instead of of 8 in Eq. (11) we apply the same approximation as Basu 
et al. did. 

Analytical Expression for X(t)  

To gain an analytical expression for the thickness of the oxide layer 
avoiding the introduction of the additional parameter Kp we notice that a 
segment Zk~ of new layer is built up within a time interval At by oxygen 
flowing into the surface at x = 0. Let A gb be the cross-section area of the 
grain boundary and A the cross-section of the sample. Then, with the use 
of Eq. (2)' 

[jL6(0, t)+j18(0, t)]AgbAt - D g b A ~  (C16(0, t)+c18(0, t)]AgbAt (13) 
RTX(t)  

Eq. (13) has to be identical to com AXA, where Co--c16m-- SIMS--_t_ elsSIMS is the con- 
stant oxygen concentration in the oxides scale. We then obtain a diffusion 
equation for X(t), i.e., 

X(t) A X -  Dgb Ap Ag~ At (14) 
RT A 

Now the ratio of the grain-boundary volume to the total volume consistent 
with the model of Basu is given by 

A gb Ax 4~'r2~9/2 3~ 

A Ax 4~rr3+4zcr20/2 2r+30  

With the help of Eq. (14) we get for X(t): 

30_ 
\ R T  2r+ 3~9J 

One realizes an interesting consequence of this. An oxygen can enter the 
sample from the gas atmosphere by replacing an oxygen to the gas atmos- 
phere or by not doing this. In the presence of a gradient of the chemical 
potential of oxygen, the latter is possible due to growth of the oxide layer. 
If  we assume that no oxygen from the sample is replaced to the gas atmos- 
phere by an exchange reaction, we can compare c'~[X(t}-X(t~l with 

X ( t )  S I M S  . . 1 v L  \ ~ ~ ~ . , a  

~0 el8 (x, t) dx. From the defimtlon, No=cls(0, t)/[c18(0, t) +c16(0, t)], 
i.e., c18(0, t) + C16(0, t) = 1~No • r /), one can calculate the total amount 
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of oxygen which was incorporated into the sample per unit area from the 
amount of O-18. Thus, the identity 

~;o 
~C (t) 

X(t)  - X ( t o )  = SIMS- c18 tx, t) dx 
Noc o 

(16) 

should be valid. It can easily be checked by a numerical integration of the 
calculated O-18 concentration profile. 

In general, however, i.e., if an exchange of oxygen from the sample to 
the gas atmosphere takes place, the right-hand side of Eq. (16) will be 
larger than the left-hand side, the difference becomes larger with diminishing 
gradient of the chemical potential of oxygen (for A/.t = 0, each O-18 entering 
the sample replaces oxygen to the gas atmosphere without contribution to 
the growth of the oxide layer). This difference is a measure of enrichment 
of the gas atmosphere with O-16. 

Growth by Oxygen Volume Diffusion 

We now treat the situation, where the oxide layer grows by inward 
(volume) diffusion of oxygen. Again we consider O-16 oxidation followed 
by oxidation in a gas atmosphere containing O-16 and O-18. 

In looking at Eq. (2), we notice that the situation can easily be simulated 
by writing D V instead of Dgb in the second term on the right-hand side. For 
this differential equation, 

fClS o v f2 c l8  DV Ap fct8 (17) 
fit f x  2 R T X ( t )  f x  

even an analytical solution can be found, namely, 

x 2DVA ~ 1/2 .1/2 

I 2[DV(t - to)] 1/2 
(18) 

X(t)  is taken from Eq. (15) with 3>>r, i.e., formally we treat the grain 
boundary as the volume. We have not found this solution in the literature. 
One reason may be that c18(x, t) is not a function of X/t U2, SO a well-known 
substitution for diffusion-related differential equations does not lead to Eq. 
(18). Furthermore, Eq. (18) corresponds to the boundary conditions only 
approximately. For t=to we demand cl8(0, t=to)=eo,  whereas Eq. (18) 
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yields Co/2. So we have described a different sort of experiment. The differ- 
ence is not great, however. Let us ask fo the time to.9, when c18(0, t0.9)= 0.9 
e0. With the use of Eq. (18), it can be shown that 

 jto 
with a = [A!a/(2RT)] I/a. For typical values of A/~ = 106 J / m o l / K  and T=  
1100 ~ we turn out with to.9 = 1.08to. For an O-16 oxidation time of to = 
1 hr, it thus takes c~8(0, t) just 4 rain to reach 0.9 co in the subsequent O-18 
oxidation. Similarily, the surface concentration of O-18 will reach 0.95 co 
and 0.99 co within 8 and 17 minutes, respectively. 

The solution Eq. (18) is of importance for pure volume diffusion, 
because one can extract D v from the measured profile immediately. We 
notice that c18/[c~8+ c16] =0.5 is reached for x~/2 = (2DVAt l /RT)~ /z ( t~ / z -  
t~/z). If  A/~ is known, D v follows from the respective plot by measuring 
x~/2. It has to be recalled that this evaluation of the volume diffusion 
coefficient is only justified for a situation where the chemical potential varies 
linearly across the oxide scale. 

Equation (18) establishes an analytical solution which is well suited as 
a test for a computer program solving Eq. (4), since the case of volume 
diffusion can easily be simulated, as we will demonstrate later. 

TEST CASES FOR THE C O M P U T E R  P RO G RA M 

To find errors in a complex computer program and to check the accur- 
acy of the results, it is of great importance to have some test cases. Even in 
a situation where one "only" implements a program written by someone 
else on one's own equipment, it is of importance to check for errors. Ideally, 
a test case should consist in an analytical solution and probe for a complex 
part of  the program. Since Basu et al.1 did not treat such test cases, we think 
it is useful to add them. 

We will discuss two cases. The first is a thin layer of high-diffusivity 
material sandwiched between large volumes of low-diffusivity material, the 
second is the volume-diffusion model discussed in the section "Growth  by 
Oxygen Volume Diffusion." 

Grain-Boundary Diffusion Test 

Fisher 5 treated a situation, where two large single crystals are separated 
by a sheet of  width ~9. The diffusion of  a tracer into the sheet is governed 
by a diffusion coefficient Dgb, the diffusion into the volume by D v. The 
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surface is defined by x = 0, the x-axis being the normal pointing toward the 
metal /oxide interface. In a tracer diffusion experiment the concentration of 
the tracer at the surface x = 0 is raised at time t = to = 0 from 0 to the constant 
concentration of  the infinite source. The experiment is performed for a time 
t I at a temperature T. I t  is assumed that the sheet concentration is raised 
instantaneously to its final value, any volume diffusion crossing the surface 
x = 0 is neglected. The same approximation was made in the theory described 
previously, so we should be able to reproduce Fisher's (approximate) solu- 
tion exactly. Fisher's analytical solution (Eq. (11) in Ref. 5) for a time t < t F, 

/ t l  1/2 F /4DV~ 1/4 x 7 

describes the concentration one gets by sectioning the sample. This concen- 
tration is analog to the SIMS concentration we calculated in Eq. (8). 

We simulate the situation by spherical grains of  radius r = 1 cm, which 
are extremely large compared to the grain boundary width of O = 
5 x 10 -8 cm. With D v= 10 -16 cm2/ s ,  Dgb = 10 -10 cm2/s, T=478  ~ and t f  = 

63 hr we chose the same set o f  parameters  as Fisher in his example, i.e., the 
diffusion of  radioactive silver into a polycrystalline silver specimen. In this 
test the difference in the chemical potential A/.t = 0, so we have to choose 
X(t0), which we did by calculating (2Dgbt)W2=7 x 10 -3 cm. Therefore, we 

~. -3- ~ 63~. ~ . ~ .  3_.x63h 

-~- \ \ \ \  

Distance from surface/lO-2mm 

Fig. 2. Grain-boundary diffusion test: Comparison of 
Fisher's solution with that calculated by the program 
for D v=  10-16 cm2/s, Dgb = 10-10 cm2/s, ~ = 
5x 10-*cm, r = l  cm, AM=0J/mol, and T=478~ 
for four different times (0.25, 0.5, 0.75, 1) x 63 hr. The 
calculation was performed using X(to) = 5 x 10 -2 cm, 
sectioned in 200 meshpoints. Fisher's solution Eq. (19) 
is the dashed curve. 
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chose X(to) = 5 x 10 -2 cm to approximate diffusion of the tracer into an 
infinite sample. 

The accuracy, which can be seen from Fig. 2 is sufficient compared to 
experimental errors typical for diffusion experiments. 

Volume-Diffusion Test 

We now refer to the situation discussed in the section "Growth by 
Oxygen Volume Diffusion." As we already mentioned at the end of this 
section, the analytical solution Eq. (18) is well suited for a test of the pro- 
gram. To simulate a volume-diffusion mechanism, we have to simulate a 
situation described by Eq. (17). This can be done by treating the grain 
boundary as the "volume," e.g., by keeping the volume diffusion coefficient 
small enough to justify neglecting the last term in Eq. (4). In this way, Eq. 
(4) can be transformed into Eq. (17), Dgb now playing the role of D V. 
Figure 3 demonstrates that the program accurately describes this situation. 
Moreover, the form of the profile described by Eq. (18) is visualized. It can 
be seen that it is indeed not difficult to extract the point xl/2, where Cls/ 
(c~8 + c~6) = 0.5. As we discussed, one gets D v from this point immediately. 
One can repeat the volume-diffusion test by choosing Ap = 0. In this way, 
the second term in Eq. (17) is zero too, and Eq. (17) is transformed into 

10 

0.8" 

+ 0.6" 

04' 

0.2, 

! 
16 

i i i i 

2'0 io 4'0 sb 6b 
Oistance from surface/lO-2pm 

Fig. 3. Volume diffusion simulated in the program 
with the parameter set DV=10 24cm2/s. Dgb = 
10-15cm2/s, ~q=10-4cm, r=10-Scm, Ap=106J/  
mol, T= l l00~  t 0 = l h r  for four times t - t o  = 
(1, 2, 3, 4) hr. X ( t o )  was sectioned in 200 equidistant 
mesh points. The exact solution Eq. (18) is the dashed 
C U r V e .  
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1 . 0  i i i i 

0'Sm ~ : lh 
+ 0.6. 2 ~  

3h 

0.4. 

0.2, 

0 
0 ~ ~ ~ 8 10 

Disfance from surface/10-21~m 

Fig. 4. Volume diffusion simulated using the same set of 
parameters as Fig. 3, but with ACt = 0 J/mol. X(to)= 
10-Scm was subsectioned in 200 equidistant mesh 
points. Exact solution Eq. (20) (dashed) cannot be seen 
differently. 

Fick's second law. With the boundary conditions we use here, the solution 
is straightforward and given by: 

ci8(x, t) = Co x erfc (DV(~- - to))1~ ~ (20) 

The result is graphically demonstrated in Fig. 4 and again shows the correct- 
ness of  the program. Since we chose A/z = 0, we have to fix X( t )  in compliance 
with the  condition (2D vt) 1/2 < X ( t )  to simulate a semi-infinite sample. 

S IMULATION OF TRACER PROFILES 

In this section we want to demonstrate the influence of  the parameters 
D V Dgb, 0, and r on the profiles. To do this, we recalculated the profiles of  
Basu et al. 1'4 as an additional test and will follow their discussion. 

We started with their Fig. 5 in Ref. 1 (which is identical to Fig. 14 in 
Ref. 4), which we compared with our results using the same set of  parameters 
(see Fig. 5). One realizes that the difference of  both profiles for X = 0 is 
negligible, whereas the tendency of  the profiles is the same. However, for 
the times chosen in this example (18 hr O-16 oxidation time followed by 
14 hr for the O-18 oxidation) one realizes the breakdown of the mass bal- 
ance. We would assume that the thickness of  the new-layer width can be 
obtained from X ( t ) / X ( t o )  = [(18 + 14)/18] 1/2 = 1.33 according to the para- 
bolic time law of  growth (see Eq. 15). Since N o = l  is assumed, 
1/Noc'~ x S x (') sIMs, c18 tx, t) dx=0.33 would be expected (see Eq. 16), if there 
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1 0  i i i i i i 

"~_ 0 . 8 - ~  

0.6- " ' -  x 

0./+" 
0.2- 5'OxlO-L~m':/s -" " ' ~  

0 0~ 0), 0'6 0'8 110 112 1~ 
x/X(t o) 

Fig. 5. Calculation of O-18 profiles for different volume 
diffusion coefficients. The parameters chosen were: Dgb= 
1.3x10 12cm2/s, r=3xl0-Scm, ,~=10-7cm, A/t= 
789,000 J/tool, T= 1100 ~ z=14hr, to=18 hr, X(to) was 
subsectioned in 100 meshpoints. Broken lines indicate 
results by Ref. 1. The profiles are normalized such that 
X(to) = 1. 

is no replacement of oxygen from the sample to the gas atmosphere. How- 
ever, this not the case, the difference becoming larger with increasing volume 
diffusivity. We recall the underlying approximation that within the grain 
boundary the concentration c18(x, t) at time t is reached immediately, i.e., it 
is assumed to be identical to the O-18 concentration at any previous time 
with z-= t - t o  > 0. The SIMS concentration at time t in Eq. (8) is calculated 
with the c 18(x, t) replacing c~8 in Eq. (5) which obviously is higher than the 
concentration at any previous time, On the other hand, the differential equa- 
tion Eq. (4) we are solving guarantees the balance of  O-18 flowing into a 
volume element of the grain boundary and of the O-18 flowing out. 
However, -Grain/ J18 tx, t) appearing in the differential Eq. (4) is calculated with 
the actual, monotonically increasing concentration c18 in Eq. (6) and Eq. 
(11), respectively. Therefore the amount of O- 18 which has flown into the 
volume as calculated from 47rr 2 x rt .grain Jr0 J )8 dt is always smaller than that calcu- 
lated from the SIMS concentration as calculated with Eq. (8) using the final 
(and highest) O-18 concentration. In this way the SIMS concentration as 
calculated with Eqs. (8, 9) overestimates the amount of O-18. 

To make the argument more quantitive, we recalculated the profiles by 
SIMS using a form for c18 which is in accordance with the mass balance given 

by the differential Eq. (4). This can be done by calculating c~ rain from 

4 3 Grain,- t)=4~rr 2 .Grain< grcr c18 tx,  Jls  ~,x, t) dt (21) 
o 

where "Grain J l8 is calculated using Eq. (6). Thus c~ r"in is calculated from the 
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amount which has flown into the volume and not from the final O-18 concen- 
tration in the grain boundary. This is a time average of c Grain. The profiles 
calculated in this form are in good agreement with the mass balance require- 
ment, indicating that the argument given above is indeed true. The right- 
hand side of  Eq. (16) for D r = ( 5  • 10 -15, 10 -is, 5 x 10 -16,  5 x 10 -17)  c m 2 / s  

is larger than X ( t ) - X ( t o )  by (208, 69, 47, 11.7)% (see Fig. 5). If  one 
calculates cls8 ~Ms by making use of Eq. (21), however, the right-hand side of 
Eq. (16) is larger only by (4.4, 3.5, 2.8, 1.1)%. The amount of O-18 which 
has flown into a grain boundary at the oxide/gas interface can be calculated 
from SttoJ18(x, t)Agb dt using Eq. (2) and compared to the right-hand side of 
Eq. (16). In this example, it differs less than 0.7% from the right-hand side 
if one uses Eq. (21) for the calculation of c~ rain (since we used 100 mesh 
points the error of  the numerical integration is 1%, so any difference smaller 
than 1% would be accidental). 

SIMS We would like to point out that c18 must not be calculated in this 
form, since using Eq. (21) is inconsistent with the framework of the theory. 
If  D v is small or r is large enough, the difference should not be large. One 
may use Eq. (21) for the calculation of c Grain to check for the difference in 
the profiles. 

As a last example we recalculated Fig. 6 in Ref. 1. At a first look, it is 
surprising that all three profiles calculated with the parameter set given in 
Fig. 6 are identical, in sharp contrast to the profiles of Basu et al. However, 
we think this is reasonable. From Eq. (15), we see that X(t)  is proportional 

111 . . . . . .  
0. 

~ ~ Ogb=5.0xlO-16m2/s 
0.6" "~ ~ ' ~ - . " ~ - - - ~  " . . . .  L . . . .  

~'~, ~ 1.3x]O-16m2/s 

~-. , .  5.0xlO-17mZ/s 
o.2. ~..~ 

0 0'.2 (l& 016 0.8 110 112 1/, 
x/X{t o) 

Fig. 6. Profiles calculated for different values of  Dgb. The 
values chosen were: D r = 5  x 10 -16 cm2/s, t~ = 10 -7 cm, 
r = 2 x l 0  Scm, A p = 7 8 9 , 0 0 0 J / m o l ,  T = l l 0 0 ~  r = 
14 h, to = 18 h. X(to)  was subsectioned in 100 meshpoints.  
Broken lines represent the profiles of  Basu et al. 1 The three 
profiles calculated by the program cannot  be seen differ- 
ently. The profiles are normalized so that  X(to)  = 1. 
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tO/2 to ,-'gb �9 The amount of oxygen flowing in the sample is proportional to 
1/2 Ogb/X(t)oCOgb, as  can be seen from Eq. (13), i.e., the quantity 

5'0 el8(X, t) dx is growing with exactly the same proportionally to Dgb as X(t). 
By normalizing the profiles so that X(to) = 1, one might therefore very well 
assume that the same concentration profiles for different Ogb will be 
obtained. 

C O M P A R I S O N  W I T H  E X P E R I M E N T S  

We now want to discuss an experimental profile. We performed experi- 
ments with a Fe-Cr-Al-alloy which was oxidized in O-16 for 15 min, fol- 
lowed by an oxidation for 45 minutes in an atmosphere containing 
approximately 50 % of O-18. The experiments were performed at 1200 ~ 
We do not want to go into much detail here, since the experiments will be 
published elsewhere. We just want to demonstrate how to use the theory in 
a specific example, which was not possible for Basu et al. due to problems 
they describe in their paper. 

In the beginning we want to mention that one has to be very careful 
whether the profile indicates any effect incompatible with the reasoning 
underlying the described theory. Since one has to calculate a profile c18/ 
[c~8 + c~6] from the measured c]8(x, t) profiles, one can get the characteristic 
increase in the calculated profiles for larger X(t) even for decreasing cls, if 
the total concentration of oxygen decreases faster with increasing X(t) than 
c18. This can be due to cracks, grain-boundary diffusion of oxygen into the 
alloy, effects related with the SIMS measurements, and so forth. Since these 

7 [  i T i 

] 

0[  , , - -  , " , I 
0 20 40 60 80 100 

Distance from surface/lO-Z~m 

Fig. 7. SIMS profiles of O-16 and O-18 in a AI203 
scale on a FeCrA1 alloy at 1200 ~ after oxidation in 
O-16 for 15 minutes, followed by an oxidation for 45 
minutes in an oxygen atmosphere with 50 % O-18. 
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effects are not included in the theory, it is useful to apply the theory only to 
profiles where the concentration c~8 itself shows an increase with larger X(t). 
This is the case in our example, as may be seen from Fig. 7. 

Now we use these profiles to calculate the normalized profiles. The 
increase in the c18 profiles and the normalized profiles indicates the end of 
the O-16 oxide layer X(to) = 7.0 x 10 -s  cm (see Fig. 8). In the experiment we 
discuss here, we defined X(t  = 60 ra in)=  9.7 x 10-5 cm by the location where 
the oxygen concentration has half  its volume value. The ratio of  the total 
oxidation time and the O-16 oxidation time in this experiment is 4, so with 
Eq. (15), we would expect that X(t )= 2X(t0) which is certainly not the case 
here. In the f ramework of this theory we are therefore forced to conclude 
that we have an additional effect of  outward diffusion of cations. To apply 
the theory, we took X(to) - [X(t) -X( t0) ]  = 4.3 x 10-5 cm as the origin of  the 
x-axis, i.e., as the surface of the oxide layer after the O-16 oxidation. The 
normalized concentration here is 0.064. 

Our task now is to extract the parameters  f rom the profiles. We assume 
that the surface of  the sample was exposed to an O-18 concentration of  0.5. 
By making use of  Eq. (8), we can write: 

[ C G r a i n  = clS~ MS 1 + - 2 r  c18 

G "  
§ 
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0 
io ~o 6b 
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8'0 ~6o 

Dist-ance from surface/lO-2~tm 

Fig. 8. Comparison of experimental profile with theo- 
retical profile (dashed). The values chosen were D v= 
2.27 z 10-16 cm2/s, Dgb = 8.93 • 10-13 cm2/s, r =  
2x  10-5cm ~9=10 7cm, A p = 7 4 6 4 7 0 k J / m o l ,  T= 
1200 ~ r = 4 5  rain, to = 15 min. X(to) was subsec- 
tioned in 100 meshpoints. Origin of  the theoretical pro- 
file at 0.43 pm. 
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If  we assume O/r ~ O, we get from Eq. (5) for 

SIMS e~ rain = M( t) /[4 /3Jrr 3] ~ cls 

O.064=0.5[1-~5 ~ ~ exp(- DV rn2zr2/r2)] 

By making a table of the term in brackets as a function of DVr/r 2, we get 

DV/r2=5.683 x 10 -7  s -1 

By making use of  Eq. (15), we get 

)U " [2DguACt to 30  )1/2=2.70x 10 -Scm 
(to):~ RT 2r+30/ 

The alloy we used had an aluminum content of  5 %. For  the reaction 

2Al(s) + 3 O2(g) = A1203(s) 

ACt ~  1193.1 kJ /Mol  (see Ref. 6). Therefore ACt can be obtained from 

ACt = ~Ap ~ + 4RT x ln(XA1) = 746.47 kJ/mol  

for xal = 0.05, if we assume aluminum to be solved ideally in the alloy. With 
to = 900 s it follows therefore 

3Debt0-0 = 6.65 x 10-15 c m 2 / s  
30 + 2r 

Now we assume ~9 = 1 x 10 .7 cm and r = 2  x 10 -s cm. It follows then Dgb = 
8.93 x 10 -13 c m 2 / s  and DV=2.27 x 10 -16 cm2/s. With this set of  parameters, 
the profile is calculated and compared to the experimental one (see Fig. 8). 
Choosing a value for r which is ten-fold higher results in D v= 
2.27 x 10-14 cm2/s and Ogb = 8.87 x 10-12 cm2/s. Choosing a tenfold smaller 
value for Dgb results in O = l . 0 7 x l O - 6 c m ,  r = 2 x l 0 - S c m  and D v= 
4.49 x 10 -17 cm2/ s .  The profiles calculated with these sets of parameters 
result in virtually the same profiles and are not shown in Fig. 8 separately. 

It can be seen that the increase in the profile at X(to) is too steep, 
whereas the overall behavior of  the c18 concentration is described. Certainly 
there has to be done further work to make the treatment really useful. 

CONCLUSION 

We discussed a model describing the oxide-growth mechanism by diffu- 
sion of oxygen. This model contains as parameters the grain-boundary 
diffusivity and the volume diffusivity of oxygen, the width of  the grain 
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b o u n d a r y  a n d  the d i a m e t e r  o f  the  gra ins .  These  fou r  p a r a m e t e r s  are re la ted  

by  two e q u a t i o n s  a n d  can  be d e d u c e d  f r o m  expe r imen t s  u s ing  oxygen  tracers .  
In  the  example  we d iscussed  it t u r n e d  o u t  tha t  by  v a r i a t i o n  o f  the two free 
p a r a m e t e r s  we ca l cu l a t ed  essent ia l ly  the  s ame  profile.  In  the  e x p e r i m e n t  we 
d iscussed  we were forced  to  c o n c l u d e  t ha t  the  m o d e l  we p resen ted  is n o t  
appl icab le ,  o r  there  is a m i x e d  o u t w a r d  d i f fus ion  o f  me ta l  a n i o n s  a n d  i n w a r d  
d i f fus ion  o f  oxygen.  F u r t h e r  w o r k  has  to be  done ,  focus ing  o n  the e v a l u a t i o n  
o f  e x p e r i m e n t a l  profi les to check the  app l i cab i l i ty  o f  the mode l .  The  size o f  
the gra ins  s h o u l d  be m e a s u r e d  to ga in  a d d i t i o n a l  e x p e r i m e n t a l  i n f o r m a t i o n .  
The  v a r i a t i o n  o f  the  g ra in  size over  the oxide layer  shou ld  be i n c l u d e d  in to  

the theory .  

APPENDIX:  A P P R O X I M A T I O N  FOR S O M E  S U M M A T I O N S  

To calculate the sum S(t) in Eq. (12), we define: 

= DVrc2/r 2 

x~ = e At n 2 

k = t /At  

Since An=Ax(eAt )  1/2= 1, we can write: 

1 
S(t) = (e At) 1/2 E ~ exp(-kx~)[l -exp(-x~)] Ax (22) 

n~l Xn 

Now we define: 

F(k, s) =(e At) 1/2 exp(- kx2)[1 - exp(-xas)] dx (23) 
~ 0  

F(k, 1) is larger than S(t), since the integrand of Eq. (23) decreases monotonically. Taking 1 
as the lower limit of the integral instead of 0, we have a lower limit for the sum. Our task is 
therefore to calculate Eq. (23) for s = 1. We differentiate F(k, s) with respect to s and get 

(. co ~ .1 /2  

d F= (s At) 1/2 | exp(-kx2(k+s))  dx = (e At) 1/2 2(k+s)i/~ (24) 
as Jo 

Integrating this with respect to s in the limits from 0 to 1 and realizing that F(k, 0) = 0 we turn 
out with an upper limit for the sum S(t): 

S~=F(k, 1) = ~rl/2(e At)l/Z((k+ 1) 1/2 - k  1/2) (25) 

To get a lower limit for S(t), we have to subtract 

i (~6.t)l/z l 
a = (e At) 1/2 J0 ~ exp(-kx2)(1 - e x p ( - x  2) dx 

which, for (e At)l/2< 0.1 can well be approximated by the error function. 
We now take as an approximation for the sum the average of the upper and the lower 

limit. Inserting all definitions we end up with: 

S(t) (DV~23)1/2 ((t+At) - t  ) - 4 ~ s e r  ~ -  ~ (26) 
P 
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for 

13 = (D v At ~2/r2) 1/2 <_ 0.1 

At is always be chosen to make sure/3 _<0.1. For  typical values of  D v= 10-15 cm2/s and r= 
10 -5 cm this means, At has to be smaller that 10 s, leading to 360 iterations per hour O-18 
oxidation. This proves to pose no problem at all in terms of  the computing time available. 

The error one makes using this approximation, is in the order of  a / S  ~. For t/At>> 1, one 
can easily show that 

ot /S  ~_ erf ( DVt~r2/r2) 1/z 
2 -  erf(DVtTrZ/r2) 2 

For DVt/rZ< 0.0025 this is in the order of  1%, which we considered sufficient compared to the 
accuracy of  the experiments. Therefore, we use the approximation Eq. (26) for times t < 0.0025 
r2/D v, otherwise the sum S(t) is calculated by summing S(t) up to n = 25r/[DVtrZt] 1/2. 

In the same fashion, we approximate the sum in Eq. (5) for small times. With 

D v~2t 
y = r2 

we end up with: 

1 - 6  E 1 / O~2Jr2t~] 
~rr n=l n~ exp,-- ~ ' ~ J J  = 7171/2~/1/2_ 0.5~/ 

for y < 0.01, otherwise the summation is done up to n = 25r/[D vrc2t] 1/2. 
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