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Summary 

The metastasis of cancer to bone is a frequent outcome of common malignancies and is often associated 
with significant morbidity due to osteolysis. Bone metastasis is also selective in that a disproportionately 
small number of malignancies account for the majority of tumors which spread to bone. While the 
mechanisms of bone destruction have been studied, those responsible for the site-specific nature of bone 
metastasis are poorly understood. As a metastatic target, bone is unique in that it is continuously being 
remodelled under the influence of local and systemic growth factors, many of which are embedded in the 
bone matrix. This review summarizes evidence for the hypothesis that the formation of metastatic tumors 
in bone is the consequence of a unique microenvironment where metastatic cells can alter the metabolism 
of bone, thereby regulating the release of soluble bone-derived growth factors as a consequence of bone 
resorption. These, in turn, can modulate the malignant phenotypic properties of receptive cells. 
Transforming growth factor-13 is one factor which can promote the growth and motility of Walker 256 
cells, a rat cell line with a propensity to metastasize spontaneously to bone. 

Introduction 

The lungs, liver, and bone are the most common 
sites for the growth of metastases from human 
primary malignancies. In bone, metastatic tumors 
account for the greatest number of neoplastic 
lesions, although accurate statistics on the relative 
frequencies of metastatic and primary tumors are 
difficult to obtain. Bone metastases cause signif- 
icant clinical disease due to pain, pathological 
fractures, hypercalcemia, and bone marrow re- 
placement [1-3]. Although the pathophysiology 

of bone metastasis is poorly understood, the 
spread of particular tumor types to bone (organ 
specific metastasis) and bone destruction are 
dominant aspects of the disease and afford clues 
to its mechanisms. 

Bone metastasis is a selective process in that 
a limited number of primary neoplasms account 
for more than 80% of the tumors that cause clin- 
ically significant bone disease [4]. These include 
carcinomas of the breast, prostate, thyroid, bron- 
chus, and kidney, and multiple myeloma. Ap- 
proximately two-thirds of patients with metastatic 
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breast cancer have bone invoivement. While only 
a few tumor types account for the majority of 
clinically detectable metastases, studies of marrow 
aspirates indicate that bone marrow is often 
occupied by immunochemically-detectable meta- 
static cells at the time of initial cancer surgery. 
Moreover, the frequency of seeding by tumors 
that do not tend to cause clinically detectable 
metastatic bone tumors is similar to the frequency 
of early seeding by tumors that subsequently 
cause clinically significant disease (Table 1). 

Factors which regulate the development of 
bone metastases 

Observations on the selective nature of bone 
metastasis are not new. Over 100 years ago, 
Stephen Paget, an English surgeon, suggested that 
in cancer of the breast, the bones "suffer in a 
special way which cannot be explained by any 
theory of embolism alone". He noted that "some 
bones suffer more than others" and that the 
disease has its "seats of election" [5]. His 
suggestion that there is "dependence of the seed 
upon the soil" is a hypothesis which has con- 
siderable support from recent experimental data. 

In 1942, Oscar Batson, in studying prostatic 
cancer metastasis, argued convincingly that 
anastomoses between the venous drainage of the 
prostate gland and paravertebral veins accounts 

Table 1. Median frequency of metastatic cells in bone 
marrow aspirates of cancer patients and frequency of meta- 
static tumors at death. 

Primary % positive marrows % with metastases 
tumor site at diagnosis a at death b 

Breast 27 (16-35) 70 (47-85) 
Lung 34 (20-62) 40 (32-50) 
Colon 27 9 (8-13) 
Stomach 35 5 (3-11) 

a Immunocytochemically-detectable tumor cells in bone 
marrow aspirates at the time of diagnosis. From refer- 
ences [98-106]. 

b From reference [4]. 

for the frequent involvement of the spine by 
cancer of the prostate [ 6 ] .  There is also 
experimental evidence to support his theory of 
mechanical selection of bone as a secondary 
target [7,8]. Thus, in some instances, bone may 
be the site of metastatic tumor growth because it 
is the first organ encountered by cells leaving a 
primary tumor or circulating in the blood stream 

[91. 

The blood supply of bone 

Most cancers spread to bone via the blood stream. 
However, the relative frequency and extent of 
metastatic involvement of the skeleton is greater 
than would be predicted if the proportion of blood 
supplied to bone (5-10% of the cardiac output) 
[10] were the sole determinant. Bone metastases 
are more frequent at sites of red marrow where 
there are vascular sinusoids lined by endothelial 
cells that lack a basement membrane and display 
60 ,~ fenestra [11]. Stromal or vascular adhesion 
molecules have been implicated in the homing of 
some avian hematopoietic neoplasms to bone 
[121. 

Cancer cell properties 

Tumor malignancy has been correlated with auto- 
nomous growth, the production of proteinases 
[13,14] and angiogenesis factors [15], motility 
[ 16], and adhesion [ 17,18]. Properties specifically 
associated with the propensity to colonize bone 
include estrogen receptor status, histologic grade, 
and expression of plasminogen activator (re- 
viewed in reference [19]). In addition to genetic 
regulation, effected by the activation or inhibition 
of "metastasis" and "antimetastasis" genes [20- 
22], the expression of these properties, generally 
termed "the metastatic phenotype", is also under 
the control of environmental influences such as 
drugs, radiation [23], and growth factors [23-25]. 
The evidence that growth factors can regulate 



metastasis has been summarized recently [26]. 
This includes clinical observations of metastatic 
organ-preference, identification of growth factors 
in target organs, the presence of growth factor 
receptors on malignant cells, the production of 
autocrine growth factors by malignant cells, and 
evidence that growth factors can selectively 
promote the growth of malignant subpopulations 
within heterogeneous tumors. 

The bone microenvironment 

Bone is unique among metastatic target tissues 
because it is continuously being remodelled. 
Bone is constantly formed by osteoblasts and 
degraded by osteoclasts. These two processes are 
balanced by local growth factors which are 
generated and/or released as part of the bone 
remodelling process [27]. Evidence from anec- 
dotal clinical observations and experiments in vivo 

suggest that skeletal metabolism and the bone 
microenvironment can influence the formation of 
metastatic lesions in bone. For example, patients 
with malignant tumors and active Paget's disease 
have been reported to develop their first hemato- 
genous metastases in the pagetic bones where 
there is active bone remodelling [28,29]. Follow- 
ing intra-arterial injection of Walker 256 tumor 
cells, rats treated with 1,25-vitamin D3, a 
stimulator of bone turnover, had significantly 
more skeletal metastases than untreated controls 
[30]. In contrast, inhibitors of prostaglandin 
synthesis (aspirin and indomethacin) and bis- 
phosphonates (agents which inhibit bone 
resorption) have been reported to reduce the 
incidence of skeletal metastases in rats injected 
with Walker tumor [31-33] and in some clinical 
trials [34,35]. 

The organic phase of bone matrix contains a 
milieu of osteoblast-derived growth factors which 
regulate the differentiation and proliferation of 
cells indigenous to bone [36] and which are 
potentially mitogenic to metastatic cells. Trans- 
forming growth factor-~ (TGF-13) is produced by 
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osteoblasts [37], and is present in higher quan- 
tities in bone than any other tissue [38]. Trans- 
forming growth factor ~ has profound effects on 
many cell types as a growth and differentiation 
factor. Insulin-like growth factors I and 1I are 
also abundant bone-derived growth factors [39] 
which can modulate the growth of colorectal [40] 
and breast [41] carcinoma cell lines. Basic fibro- 
blast growth factor can stimulate human prostate 
cancer cell growth in vivo [42], is produced by 
cultured bone cells, and is stored in their extra- 
cellular matrix [43]. Platelet-derived growth 
factor is mitogenic for a variety of cell lines 
[44-46]. The cytokine interleukin-1 is produced 
by osteoblasts, and influences bone cell replica- 
tion [47]. Interleukin-6 is also produced by 
osteoblasts [48,49], and human bone-metastasizing 
PC-3 prostate carcinoma cells have been reported 
to express receptors for this cytokine [50]. Inter- 
leukin-6 is an autocrine growth stimulator for 
invasive, late stage melanoma cells, but is an in- 
hibitor of early stage melanoma cell growth [51 ]. 

In addition to regulating tumor cell growth, 
extracellular matrix components can regulate the 
synthesis, secretion, and activity of matrix 
metalloproteinases in cancer cells. Interleukin-1, 
basic fibroblast growth factor, and platelet-derived 
growth factor can up-regulate the gene expression 
of interstitial collagenases in fibroblast, fibro- 
sarcoma, and osteoblast-like osteosarcoma cell 
lines [52,53]. Growth factors can induce expres- 
sion of urokinase type plasminogen activator 
which can subsequently activate latent procolla- 
genase I [541. 

Not only bone but also marrow is an important 
source of growth factors and chemoattractant 
molecules which are normally involved in the 
regulation of hematopoiesis. Some of the growth 
factors released from marrow and marrow stromal 
cells or fibroblasts have been shown to be capable 
of stimulating the growth of cancer cells with the 
potential to form bone metastases [55,56] (Figure 
1). Recently, Arguello et al have demonstrated 
that injection of B16 melanoma cells into mutant 
mice deficient in stem cell growth factor resulted 
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Figure 1. Properties of bone which have been identified as 
responsible for organ site specificity of metastasis. These 
include unique adhesion molecules in the vascular supply of 
bone and the microvascular anatomy as well as growth 
factors and chemoattractants involved in the regulation of 
bone remodelling and hemopoiesis. 

in fewer bone metastases than injection of the 
same cell population into a control group deficient 
in stem cell growth factor receptor [57]. 

Mechanisms of cancer-induced osteolysis 

The growth of metastatic cells in bone often alters 
both bone metabolism and structure. Metastases 
frequently present as osteolytic lesions with path- 
ological fractures [58-60]. Osteoclasts, cancer 
cells, and tumor-associated macrophages have 
been identified as mediators of metastasis- 
associated osteolysis [61]. Osteoclast-mediated 
mechanisms have been most extensively exam- 
ined, especially in regard to hypercalcemic 
syndromes [62]. Some cancer cells stimulate 
osteoclastic activity by secreting interleukin-6, 
interleukin-1 [3, prostaglandins, transforming 
growth factors [58,63], or parathyroid hormone- 
related peptide [64]. Recent evidence suggests 

that tumor-associated macrophages can also 
mediate osteolysis. Macrophages from human 
lung and murine mammary carcinoma specimens 
produce resorption pits on bone surfaces [65] and 
may be synergistically stimulated by paracrine 
factors derived from marrow stromal cells [66]. 
There is some evidence that cancer cells can 
directly degrade bone matrix by generating active 
matrix metalloproteinases and other enzymes [67], 
but this mechanism requires evaluation with 
modem techniques. Based on in vivo observa- 
tions with the VX2 squamous cell carcinoma 
model in rabbits, Galasko proposed two phases of 
metastasis-associated osteolysis, the first 
predominantly osteoclastic followed by a second 
phase in which cancer cell-mediated degradation 
occurs [68]. 

An animal model for spontaneous bone 
metastasis 

Several animal species and tumor models have 
been used to study bone metastasis experi- 
mentally. These have involved direct invasion of 
bone from contiguous intramuscular tumor [32], 
or intraosseous injection [69]. Intracardiac in- 
jection has been used to obtain bone colonization 
by several established non-human tumor lines, 
including the B 16 melanoma or human cancer cell 
lines (in immunodeficient animals) [70,71]. The 
studies of Shevrin et al with a human prostate 
cancer cell line [7] and of Geldof with a rat 
prostate cancer cell line [72] provide evidence in 
support of Batson's original concept that the 
vertebral column is at particular risk from mech- 
anical seeding of cancer cells via the vertebral 
venous plexus. 

We have recently reported the development of 
a model of spontaneous bone metastasis which 
allows for the simultaneous quantitation of meta- 
static tumor burden, cancer cell growth rate, and 
progressive changes in bone morphology. This 
model employs the Walker 256 cell line, a highly 
malignant allogenic rat tumor which expresses 



monocytoid differentiation markers [73] and 
which had been shown to form bone metastases 
after intraarterial [31] or intraosseous injection 
[69]. When Walker 256 (W256) cells or vehicle 
were injected into the muscle of male Fischer 
rats, metastases appeared after 7 days in distal 
femurs, liver, kidneys, and lungs. At day 14, 
femoral metastases were associated with a 
53+10% decrease in trabecular bone (Figure 2), a 
61+15% increase in osteoclasts, and a 95+10% 
decrease in osteoblasts as compared to non-tumor- 
bearing controls (Figure 3). W256 cells adjacent 
to trabecular bone surfaces had a 33+7% greater 
growth rate than W256 cells >50 pm from bone 
surfaces (p<0.05), suggesting a mitogenic effect 
of bone [74]. 

To test the hypothesis that the development of 
bone metastases is ~nfluenced by the rate of bone 
remodelling, we examined the effect of stimula- 
ting bone resorption on the growth of spontan- 
eously metastatic W256 tumor cells in vivo. This 
was accomplished by subcutaneous transplantation 
of the non-metastatic Rice H-500 Leydig cell 
tumor which stimulates bone resorption with in- 
creased osteoclast number or activity, decreased 
bone formation, and hypercalcemia, attributed to 
the release of TGF-J3 and parathyroid hormone-re- 
lated protein [74-76]. Enhanced bone resorption 
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Figure 2. The kinetics of development of metastatic tumors 
in rat bone by Walker 256 cells released spontaneously 
from a solid intramuscular tumor transplant. See text and 
reference [74] for details. 
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was confirmed quantitatively in a pilot study by 
evaluating parameters of bone morphometry after 
4, 7, and 10 days of Leydig tumor injection 
(Table 2). To evaluate the growth response of 
W256 cells to Leydig tumor-induced bone resorp- 
tion, 20 rats were injected intramuscularly with 
2 x 10 7 W256 cells, and 20 rats were vehicle- 
injected. Two days later, 10 rats from each group 
were injected sc with Leydig tumor cells. Twelve 
days after W256/vehicle injection, rats were 
injected with 3H-thymidine and killed 2 hrs later, 
and their femurs, liver, lungs, and kidneys were 
processed for histology. In rats injected with 
Leydig tumor cells only, enhanced bone resorp- 
tion was indicated by a 40+4%increase in serum 
calcium concentration and by a 48+8% decrease 
in trabecular bone content, compared with non- 
tumor-bearing rats. In Leydig tumor-bearing rats, 
metastatic W256 cells adjacent to trabecular bone 
had a 56+18% greater relative 3H-thymidine 
labeling index than did W256 cells in the bones 
of non-Leydig tumor-bearing rats (Table 3). The 
labeling indices of W256 cells in the liver, lungs, 
and kidneys were not affected by Leydig tumor 
burden. These results suggested that enhanced 
bone resorption is associated with the selective 

growth promotion of metastatic W256 cells in 
bone, and were consistent with the existence of a 
bone-derived factor which is mitogenic to W256 
cells [77]. 
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Figure 3. Effects of spontaneously metastatic Walker 256 
tumor burden on the composition of rat trabecular bone 
surface cells. See text and reference [74] for details. 
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Table 2. Effects of the Rice-Leydig cell tumor on parameters of bone morphometry a 

Duration of Trabecular Surface Surface Serum 
tumor burden bone area b osteoclasts c osteoblasts c calcium d 

Control 42±2 19±2 20±2 2.7±0.1 

Day 4 46±2 14±2 16±3 2.6±0.2 

Day 7 36±4 20±2 12±1 2.8±0.1 

Day 10 24±2 28±1 4±1 3.8±0.2 

a Rats were injected subcutaneously with Leydig tumor cells and their femurs dissected 4, 7, 
or 10 days later. From reference [77]. 

b % total area of distal metaphysis (400 }am from the growth plate) occupied by trabecular 
bone. 

c % of the trabecular bone surface occupied by these cells. 
d mmol/1, determined at sacrifice. 

Application of a bone organ culture system to 
study metastasis 

To examine in vi tro the hypothesis that products 

of  bone can regulate the metastatic phenotype of 
cancer cells, we have used a bone organ culture 
system [78] to generate soluble products of  bone 

resorption. On the 18th day of gestation, fetal rat 
bones were radiolabeled in utero by injecting 40 
luCi 45Ca subcutaneously into pregnant Sprague- 

Dawley rats. One day later, the fetal parietal 
bones were placed into tissue culture. After a 

24 hr preculture period, to allow exchange of 
loosely bound 45Ca, various mediators or inhibi- 

tors of  bone resorption were added to the medium 
and the cultures were maintained for an additional 
3 day period. The extent of  bone resorption was 
measured by the release of 45Ca. The conditioned 

bone culture media were then analyzed for their 
ability to alter the phenotypic properties of  the 

Walker 256 cells. 

C a n c e r  cel l  mot i l i ty  

Cancer cell motility [16] and chemotaxis [79,80] 
can contribute to metastasis. Our initial experi- 
ments on cell motility demonstrated the ability of  
bone culture-derived conditioned medium to stim- 
ulate the directed migration (chemotaxis) of W256 
cells. The magnitude of the chemotactic activity 
was directly proportional to the extent of bone 
resorption. Moreover,  W256 cells generated 

soluble mediators of bone resorption which up- 
regulated the release of  chemoattractants from the 
cultured bones [81,82]. Subsequent experiments 
have shown that products of  bone resorption can 
stimulate the directed migration (chemotaxis) and 
adhesion of  W256 and other cells [81-84], as can 
purified matrix constituents, including type I 
collagen (comprising 90% of the bone matrix) 

[85-87], o~ 2 HS glycoprotein, osteocalcin, and 
synthetic peptides containing amino acids found 

frequently in the collagen helix [87-89]. 
TGF-~3 has been identified in the media of  

bone organ cultures [90], and bone has levels of 
TGF-~3 in excess of  many other tissues [38,91]. 
Since TGF-~ is a potent chemoattractant and 
activator of  fibroblasts [92] and macrophages 

Table 3. Effects of stimulated bone resorption on the 
growth of metastatic Walker 256 cells in vivo. 

Metastatic site Growth in Leydig-bearing rats 
compared to growth in controls a 

Bone +56% b 

Liver +2% 

Lung + 12% 
Kidney -5% 

a The effect of Leydig tumor burden on 3H-thymidine 
uptake by spontaneously metastatic W256 cells in Leydig 
tumor-bearing animals compared to 3H-thymidine uptake 
by W256 cells in non-Leydig tumor-bearing animals 12 
days after W256 cell injection. Data from reference 
[77]. 

b P<O.05. 
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Table 4. Correlations between bone resorption, TGF-[~ concentration, and activities for chemotaxis and 
growth in rat parietal bone organ culture media. 
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Culture Resorption TGF-I3 assay a Chemotactic activity b Cell growth c 
condition (45Ca release) (ng TGF-[~/ml) (cells/hpf) (% of control) 

Experiment l 
Dead bones 9.3 + 1.3 <0.05 0 I l 1 _+ 7 
Medium only 14.8 + 1.5 <0.05 16 + 2 140 + 6 

10-12M PGE 2 19.0 + 1.5 0.10 19 + 4 218 + 6 

2% serum 24.6 + 2.8 0.15 30 + 2 269 + 6 

Experiment 2 
Dead bones 15.4 + 2.1 <0.05 0 121 + 5 
Medium only 17.8 + 2.3 0.07 9 _+ 2 154 _+ 11 

10-12M PGE 2 29.0 + 3.0 0.12 34 _+ 3 292 + 8 

2% serum 31.7 + 2.1 0.13 43 + 3 323 + 16 

a The concentration of TGF-[3 was determined from a standard curve based upon NRK colony 
formation of soft agar culture with TGF-[~ ranging from 0.005 to 10 ng/ml as a control. 

b Values for random migration in corresponding unconditioned media have been subtracted. (In 
Experiment 1 = 20 + 1 cells/hpf; in Experiment 2 = 32 + 2 cells/hpf). Data are from reference [94]. 

c Cell numbers were determined on day 3 of culture. Values represent mean + standard deviation. 
Data are from reference [971. 

[93], we questioned whether TGF-13 might also 
stimulate W256 cell motility. We observed that 

purified platelet-derived TGF-~ elicits dose 
dependent migration of  W256 cells in the Boyden 
chamber assay with half-maximal responses 

(EDs0) elicited by 0.12+0.01 ng/ml TGF-13. 
Checkerboard analysis confirmed dependence of 
the response upon a concentration gradient. 
Conditioned media from organ cultures of bone 

contained TGF-~ and chemotactic activity in 
proportion to the extent of  bone resorption (Table 
4). Further, the chemotactic activity in con- 
ditioned bone culture medium and that of the 
purified platelet-derived TGF-~ were both 
inhibited after incubation with anti-TGF-~l .  We 
have concluded that TGF-13, released from resorb- 
ing bone, can influence the migratory behavior of 
the osteotropic W256 cell line [94]. 

Tumor cell growth 

The conditioned medium from resorbing rat cal- 
varial cultures was also found to contain growth- 

stimulatory activity for Walker 256 cells as well 
as for cells from human osteosarcoma and breast 
carcinoma lines [95]. While TGF-~3 has generally 

been regarded as a growth inhibitor and differen- 
tiation factor for malignant cells, more recent data 
support the notion that this factor may selectively 

promote the growth of metastatic populations [51, 
96]. In the presence of 20 ng/ml epidermal 
growth factor, purified platelet-derived TGF-[~ 

produced a dose-dependent growth response in 

Walker 256 cells with an EDs0 equal to 0.5 
ng/ml. Epidermal growth factor or platelet- 
derived growth factor, by themselves, had no 
significant effect on cell growth in concentrations 
from 1-100 ng/ml. Bone-derived TGF-~ activity 

in conditioned media, measured by NRK fibro- 
blast colony formation, correlated with resorption 
of  bone organ cultures (r>0.95 in several 
experiments) and with growth promotion of the 
W256 cells (r=0.98, p<0.01, Table 4). Antibodies 
to TGF-~I  blocked the growth response normally 
induced by conditioned bone culture media [97]. 

Since growth factor effects may relate to the 
activation of  proliferation-associated genes, we 
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Figure 4. C-myc mRNA expression in W256 cells exposed for varying periods of time to conditioned 
medium from resorbing bone cultures, to TGF-[3 (0.1 ng/ml) + epidermal growth factor (20 ng/ml), or to 
epidermal growth factor only. Total cellular RNA was slot-blotted, probed with an o~-32p-dATP-labelled 
human c-myc DNA probe, and analyzed densitometrically. Values have been standardized to control 
(BGJb) medium and error bars are standard deviations. 

have recently examined the expression of the 
oncogenes c-myc and c-fos in W256 cells after 
incubation with TGF-[3 and with bone-derived 
conditioned medium. While c-fos mRNA was not 
altered, c-myc mRNA was elevated after 15 and 
30 min and returned to basal levels by 1 hr 
(Figure 4). Nuclear c-myc protein levels were 
enhanced 3-fold after 2 hr exposure and returned 
to control levels at 4 hr (unpublished). We 
concluded that the mitogenic response of W256 
cells to bone-derived conditioned medium and to 
TGF-J3 is accompanied by an induction of c-myc 
mRNA which may have a role in mediating this 
growth response. 

Conclusion 

This brief review summarizes evidence that bone 
derived factors, including transforming growth 
factor [3, can promote the growth and migration of 
rat Walker 256 cells. We postulate that the form- 
ation of a metastatic bone tumor depends upon a 
synergistic relationship between the cancer cell 
and the bone such that bone resorption is up- 

regulated by mediators released from cancer cells 
or host leukocytes in the metastatic focus. In 
turn, the growth of cancer cells is promoted at 
these sites by factors released during bone resorp- 
tion. These growth factors can activate prolifera- 
tion associated oncogenes leading to a preferential 
growth of cancer cells in bone (Figure 5). The 
hypothesis provides an example of the way in 
which an appropriate soil can facilitate the growth 
of a responsive seed, as suggested by Paget over 
100 years ago. 
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