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Abstract. In an investigation of the evolution of homogeneous, isentropic, stars through stages of 
diminishing entropy, Rakavy and Shaviv (1968) have recently found that stars of mass less than 
Mc (Chandrasekhar's limiting mass for white dwarfs) evolve into white dwarfs, while stars of mass 
greater than Mc approach a (singular) state of minimum entropy. An elementary explanation of 
these results is given and qualitative effects of general relativity are discussed. It is found that stars 
which are lighter than the Oppenheimer and Volkoff (1939) limit become white dwarfs, while 
heavier stars must become dynamically unstable at a finite stage in their evolution. 

1. Introduction 

Recently, Rakavy and Shaviv (1968) have suggested that homogeneous, isentropic, 
configurations should serve as useful models for advanced stages of  stellar evolution. 
Taking into account the effects of radiation, pair creation and quantum degeneracy, 
they have followed the evolution of such models through stages of  diminishing 

entropy. I t  was found that stars of  mass less than Mo = 5.75 (Z /A)2Mo (Chandrasek- 
har 's  limiting mass for white dwarfs with the chemical composition considered) 
evolved into white dwarfs, while stars heavier than Mc evolved into singular states, 
becoming point masses of  infinite density and temperature and unique (finite) entropy. 

An elementary explanation of this remarkable behaviour of  isentropic models is 
given in Section 2. This is used, in Section 3, for discussing the effects of  general 
relativity on the evolution and stability of  isentropic stars. 

2. The Limiting Mass-Entropy Relation 

The behaviour of homogeneous, isentropic, stars can be explained by observing, 
firstly, that the adiabatic relationship between pressure p, density ~ and specific 
entropy s (entropy per unit mass) is of  the form p = K  1 (s)65/3 for low densities and 
p = K  2 (s) ~4/3 for high densities (for intermediate densities the exponent may be less 
then 4 in some 'regions of  dynamical instability'); secondly the inequality (Landau 
and Lifshitz, 1958) 

3s(p, e) cv aT(p ,  ~o) 
- > 0 ,  (1 )  

Op T Op 

where T is the temperature and c v is the specific heat at constant volume. 

From the theory of polytropes (Chandrasekhar,  1939) we know that in a poly- 
trope of mass M the central pressure is connected with the central density by the 
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formula 
Pc =- (4;c)1/3GB, M2/3 0~/3 , (2) 

where G is the gravitational constant, B~-l=(n+l)[--~20~(r a n d  0, is the 
Lane-Emden function with first zero at ~ .  For  n =0,  1,5.3.0, 5.0 we have Bn=0.347, 
0.206, 0.156, 0.116 respectively. In a (0, P) diagram (Figure 1) we now draw the curve 

Fig. 1. 
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For  low masses  the  line of  centres F ~  crosses the  degeneracy curve T - - 0 .  
The  b roken  curves OA and  OB are s t ructure  lines. 

FM given by (2) with B,=B1.5 =0.206 for low densities and Bn=B3=0.156 for high 
densities. The details of the passage from B 1.5 to B 3 are not important for the con- 
siderations which follow; in fact, we can think of FM as having a small width corre- 
sponding to the spread in the values of B,,. According to (2), the centre of  an isentropic 
star of mass M must lie on FM. If  M is sufficient small, FM will cross the degeneracy 
curve corresponding to T = 0  because that curve starts out as pocQ s/a, and we have 
the situation depicted in Figure 1. The broken line OA corresponds to the structure 
line of an isentropic star with central conditions at A; it lies below FM because for 
small densities p--K1 (s) 05/3. According to the inequality (1), a diminution of entropy 
will result in the lower structure line OB. Proceeding in this way, the centre will 
move along FM until s = 0  and the structure line coincides with the segment OC of 
the degeneracy curve: the star becomes a white dwarf. Moreover, since Pc along FM 
is total pressure (including the contribution of radiation), the vertical difference 
between FM and the degeneracy curve gives an indication of the temperature. As the 
density of the star increases towards that of a white dwarf, the star therefore heats 
up to a maximum temperature (corresponding to the maximal distance between FM 
and T =  0) and then cools off to zero temperature. This behaviour has been found for 
M<Mo by Rakavy and Shaviv (1968) from detailed calculations. 

Clearly, the foregoing discussion depends on Fr~ crossing the T =  0 curve, which is 
true for masses less than the critical mass Mc for which FM touches the degeneracy 
curve asymptotically. Mc is therefore determined by K 2 ( 0 ) = ( 4 7 z )  1/3 GB3M~/3 (the 
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value of B, is now certain), which is the formula for Chandrasekhar's limiting mass. 
Consider now the case M > M ~ .  Then F M does not cross the degeneracy curve 

(Figure 2) and it is clear that following a sequence of diminishing entropies we arrive 
at a configuration of infinite density and pressure, but of a finite minimal entropy 
determined by K2(Sml,)=(4rc) 1is G B s M  2/3. Rakavy and Shaviv (1968) have solved 

Fig. 2. 
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The limiting configuration obtained when the structure line touches the 
line of centres F~ asymi~toticalty. 

this equation numerically for Smln (M), taking Z / A  = 0.5 and ignoring the contribution 
of the ions to the pressure and entropy. In the next section we shall see that general 
relativity modifies the situation in such a way that the limiting configurations cease 
to be singular. 

3. Effects of General Relativity 

In general relativity we use the energy density e instead of the density Q. The behaviour 
of the adiabatic relationship between p and e as e increases is now from p = K1 (s) e 5/3 
to p = K 2 ( s  ) e w3 to p..+(1) e. The inequality (1), with 0 replaced by e, still holds (Ko- 
vetz, 1968). The F M curve describing the central conditions in the (e, p) diagram of 
isentropic stars of mass M will be the same as before when e is small, but for large e 
it will curve more sharply upwards as a result of the self-inforcement of the pressure 
in general-relativistic hydrostatic equilibrium (Kovetz, 1968). 

We can confirm this behaviour of F M by considering the polytropic relativistic 
fluid spheres, calculated by Tooper (1964). For p = ICe I + 1in we have 

p~ = (4~z)I/3GC.M 2/%4/3, (3) 

where C~-1 = ( n +  1) v2/3(~1) and v(~) is determined by the equations 

~20,(~) 1 - 2 c r ( n  + a)v/~ dv 
+ v + ~ 0 d ~  = 0, 0(0) = 1, (4) 

1 + 0"0 

r = 0 ,  = 0 ,  (5)  
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with a=pr162 41 is the first zero of 0(~). C n in Equation (3) is thus a function of both 
n and ~ =pdec. It decreases with increasing n and increases with increasing ~. Hence 
po increases along F M more rapidly than e~/3. 

The situation is shown in Figure 3. The existence of a critical mass Mr can still be 
inferred, and isentropic stars of smaller mass must become white dwarfs. But owing 
to the sharper up-curving of F~ the critical mass will be smaller than the Chandrasek- 
har mass. In fact, if ion pressure is neglected, we have (Oppenheimer and Volkoff, 

p=llSe 
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Fig. 3. In the general relativistic situation the structure lines, and the degeneracy curve T =  0, 
approach p = �89 asymptotically. Points of tangency with lines of centres correspond to configuration 

with finite densities and radii. 

1939) M~=0.72 (Z/A) 2 M o. Moreover, the limiting mass corresponds to a configura- 
tion of finite density and pressure with radius larger than the Schwarzschild radius 
Rs=2  GM/c z (p~ becomes infinite when R~< t.125 Rs; Kovetz, 1968). Similar results 
apply to isentropic stars of mass larger than Me. For these, a minimal entropy still 
exists; it is larger than the one obtained on Newton's theory of gravitation, and the 
limiting configuration is non-singular. We can therefore conclude that the maximal 
red shift z=A2/2, which depends on the maximal value of Rs/R, is finite for any 
isentropic star. An examination of Oppenheimer and Volkoff's (1939) results for 
cold configurations, and of Tooper 's  (1964) calculations for polytropic models in 
general relativity shows that for all masses the maximal red shift is about ten percent. 

A further conclusion concerns the stability of the limiting configurations. An 
isentropic star of mass M>Mo must inevitably reach the limiting state represented 
by C in Figure 3, unless it encounters some instability before that. At C, however, a 
slight adiabatic compression will displace the central conditions upwards along the 
(broken) adiabatic curve while the pressure due to gravity will lie on F M and will 
therefore be higher. This will cause further compression, and we conclude that at C 
the star is dynamically unstable. Since the red shift at C is only about 0.1, there is 
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no question of a time dilatation which might cause such instability to appear as slow 

evolution to a distant observer. 
To summarise, we have the following situation with respect to homogeneous, 

isentropic, stars: there exists a critical mass Mc such that stars of smaller mass evolve 
into cold configurations, while stars of  heavier mass reach a limiting state with finite 
entropy and radius, at which they become dynamically unstable (unless they encounter 
such instability before that). 

The foregoing ultimate instability of  supercritical masses is not really confined to 
isentropic stars. It  has been shown recently that the maximal central pressure (and 
the maximal central temperature) in a configuration of mass M and central energy 
density e c is obtained when the configuration is isentropic (Kovetz, 1969). Further- 
more, the minimal radius is also realised in this state. This implies that the point 
representing central conditions in Figure 3 cannot lie above F M; it is generally between 
F M and T =  0, and in an isentropic star it lies on FM. During the evolution the point 
will move towards higher densities and pressures, always keeping between F M and 
T = 0 .  But it must also remain below the line p=(�89 e. It  is clear that for any possibIe 
track a point will be reached beyond which the pressure is less than what is required 
for sustaining the star against gravity, and this will mark  the onset of  dynamical 
instability. 

The foregoing conclusions imply that observational evidence for an upper limit 
of  about 10% for the gravitational red shift should yield a test for Einstein's field 
equations Gi j+  ~T~j=0 in non-empty space. 
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