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Abstract. The problems of central stellar explosions under the assumption that  the temperature gradient 
is zero in the rear flow field have been studied. Also, the similarity solutions of the field variables for the 
homotbermal flows of a self-gravitating gas behind the spherical shock-wave propagating in a non-uniform 
atmosphere at rest are obtained. The total energy of the wave is taken to be time-dependent obeying a 
power-law. 

1. Introduction 

The observational data shows that the unsteady motion of a large mass of the gas 
followed by sudden release of energy results in flare-ups in novae and supernovae. 
Carrus etal. (1951), Sedov (1959), Purohit (1974), Singh (1982), and Singh and 
Vishwakarma (1983) have discussed the self-similar adiabatic or isothermal flows in 
self-gravitating gas. They have obtained numerical solutions assuming that the total 
energy of the wave is either constant or increases with time. 

A qualitative behaviour of the gaseous mass may be investigated with the help of 
equations of motion and equilibrium, taking gravitational forces into account. The total 
energy of the flow increases with time because of the pressure exerted on the gas by an 
expanding surface when the wave is driven by fresh erupting solar plasma for some time. 
Here we have found the extent for three types of model: the first having the total energy 
of explosion constant, the second having constant velocity of propagation of shock 
waves, and the third having neither constant total energy of the wave nor constant 
velocity of propagation of shock waves. 

When the flows are associated with high temperature such as novae burst the 
assumption of adiabaticity seems to be not valid because of intense heat exchange. 
Instead, one may propose that the temperature gradient is zero in the flow. In the present 
work we attempt to study such a flow of self-gravitating gas behind the shock wave and 
assume that the disturbance is headed by an isothermal shock. In this case, radiation 
effects are already implicitly present. 

2. Equations of the Problem 

If we neglect viscosity and thermal conductivity, the basic differential equations 
governing the isothermal flow in self-gravitating gas are given by 
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where r, t, u, p, p, m, T are the radial distance from the centre, time, velocity, density, 
pressure, mass contained in a sphere of radius r, and the temperature of the fluid 
particles, respectively; G represents the gravitational constant. Equation (4) with the 

help of perfect gas law (p = F p T )  can be replaced by 

P - P (5 )  

P2 P2 

where the suffix 2 denotes the quantities just behind the shock. Initial flow variables 

immediately ahead of the shock by the suffix 1, are 

ul = 0 ;  p~ = A r ~  TM, ( 2 <  w_<2.5),  

4r~l 2nAZG 
rnl = -  r3-W; Pl = 

(3 - w) (w - 1) (3 - w) 
r22 - 2~ , (6) 

where r 2 is the shock radius and A and w are constants. These are the solutions of the 

equilibrium equations. 
The disturbance is headed by an isothermal shock and jump conditions at it are: 

PI U =  p z ( U -  u2) = m s,  

P2 - P l  = msu2  , (7) 

TI = T2, 

m 1 = m 2 ;  

where U denotes the shock velocity. 
The present self-similar model, including a driven wave produced by a flare energy 

release E that is time-dependent, has been adopted and it is given by 

E = B t  ~ , (0 _< q -< i )  (8) 

where B and q are constants. 

3 .  S i m i l a r i t y  S o l u t i o n s  

By a standard dimensional analysis of  Sedov (1959), the non-dimensional variable q is 

defined by 

tt = ( ~ 4 G ) -  t / ~  r t - ~ ,  (9) 
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where 

b = 
2 2 + q  

w 5 - w  
(lO) 

which discloses that 

2 
q = -  ( 5 - 2 w ) ;  

W 
(11) 

and the limits of q and w are 

0 < q - < l  and 2<-_w<2.5.  

The other transformations for flow variables are 

(12) 

r 1 
u = -  v ( r / ) ,  p = -  R ( r / ) ,  

t Gt  z 

F2 /,3 

p = G t  4 P ( r / ) ,  m = M(r / )  
Gt  2 

(13) 

is a constant to be determined by the condition that I/assumes the value t at the shock 
front. With these transformations, the basic equations are written as 

[ d ~  1 d ~ ] _ 2  + 3V=O ' (14) r/ + (v-a) 

r/[(V_b) dV I ~] - - +  + V ( V - 1 )  + M + 2 - -  P=O,  (15) 
dr/ R R 

r/ d M _  41rR + 3M = 0,  (16) 
dr/ 

r/2p = Q b 2 R .  (17) 

The transformed shock conditions are 

V(1) = (I - Q)b, (18) 

R(1) = 2 ( w -  1) (3 - w) 
(19) 

7ZW2 

262(w  - 1) (3 - w ) Q  
e(1) = (20) 

~ W  2 

M(1) - 8(w- 1)Q 
w2 , (21) 



C 2 
Q = -  ; (22) 

U 2 

where C 2 = Pl /Pl  is the square of the isothermal sound ahead of the shock. Substitute 
the values, the parameter takes the form 

~ W  2 
Q = (23) 

2(w - 1) (3 - w)e 

Once Q is fixed, e is known beforehand for a given density distribution ahead of the 
shock. The ratio ? of specific heats, does not envolve either through the basic equations 
or through boundary conditions in this problem. Equations (14)-(17) with the boundary 
conditions (18)-(23) give the solution of our problem. 

4. Numerical Solutions and Results 

1.0 

The case w = 2.5 corresponds to blast wave problem while w = 2.0 gives the problem 
of uniformly expanding shock-wave in a medium with zero temperature gradient. For 
other values of w in between 2 and 2.5, neither the total energy of the wave is constant 
nor shock wave expands uniformly. We restrict the range for Q to 0 < Q __- 1. The 
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Fig. 1. Velocity dis t r ibut ion.  
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Fig. 2. Density distribution and pressure distribution. 
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kinematic condition at the inner expanding surface is 

V(~) = 5, (24) 

where-0 is the value of t/at the inner expanding surface and its relation with shock radius 
is r = ~r2, where P is the Eulerian coordinate of inner expanding surface. The kinematic 
condition demands that the velocity &the  fluid particle at the expanding surface is equal 
to the velocity of the surface itself. 

For exhibiting the numerical solutions it is convenient to write the field variables in 
the non-dimensional form as 

u . v ( ~ )  

u 2 V(1) 
(25) 

p _ p _ R(r/) 

P2 P2 R ( 1 ) '  (26) 
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m n3M(n) 

m2 M(1) 
(27) 

The numerical integration is carried out on DES-system 1090 computer by RKGS 
program installed at IIT, Kanpur for the three cases w = 2.0, 2.25, 2.5 which are of 
practical interest in Astrophysics. The values of other parameters are Q = 0.15, q = 0, 
4 ~, 1. The nature of the field variables is illustrated through the Figures 1-3. 
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Fig. 3. Mass distribution. 
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