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I N T U I T I O N I S T I C  V I E W S  ON T H E  N A T U R E  

O F  M A T H E M A T I C S  

1. I N T R O D U C T I O N  

One of the questions which philosophers ask about mathematics is: Why 
are mathematical theorems so certain? Whence does mathematics take 
its evidence, its indubitable truth? The answer of intuitionists to these 
questions is: The basic notions of mathematics are so extremely simple, 
even trivial, that doubts about their properties do not rise at all. In- 
tuitionism is not a philosophical system on the same level with realism, 
idealism, or existentialism. The only philosophical thesis of mathematical 
intuitionism is that no philosophy is needed to understand mathematics. 
On the contrary, every philosophy is conceptually much more complicated 
than mathematics. 

Logic in the usual sense does depend upon philosophical questions. 
One of its basic notions is that of a proposition being true. But what is a 
proposition? Does it coincide with the sentence by which it is expressed 
or is it something behind the sentence, some meaning? If  so, what is the 
relation between the proposition and the sentence? And what does it 
mean that the proposition is true? Does this notion presuppose the exis- 
tence of an external world in which it is true? If  the proposition is the same 
as the sentence analogous questions can be asked. I am not going to 
answer them; they have been solved in a hundred different ways, none of 
them quite convincing, and all of them showing that logic is complicated 
and therefore unsuitable as a basis for mathematics. I shall come back 
to the relations of logic to mathematics later in this talk. 

We look for a basis of mathematics which is directly given and which 
we can immediately understand without philosophical subtleties. The 
first that presents itself is the process of counting. However, counting 
establishes a correspondence between material or non-material objects 
and the natural numbers, so it can only be understood if both an external 
world (or at least some sort of objects) and abstract numbers are given. 
It is still too complicated to serve as a basis for mathematics. An analysis 
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of the process of counting will lead us to simpler, more immediate 
notions. We can count all sorts of  things, but they have one property 
in common, namely that they can be isolated. Isolating an object, 
focusing our attention on it, is a fundamental function of  our mind. No 
thinking is possible without it. In isolating objects the mind is active. Our 
perception at a given moment is not given as a collection of entities; it is 
a whole in which we isolate entities by a more or less conscious mental 
act. 

It seems as if we have got no further, for we are still counting material 
objects. In reality, what we isolate mentally are not objects, but percep- 
tions. I can fix my attention on a certain impression, in most cases visual. 
In practice this impression is immediately associated with innummerable 
memories, impressions, and images to form the notion of an object in the 
general sense of the word. But for counting it is inessential what there is 
isolated, it is the mental act of isolating that matters. The entity conceived 
in the human mind is the starting point of all thinking, and in particular 
of  mathematics. When we think, we think in entities. This does not mean 
that all our mental life consists of  thinking in entities. On the contrary, 
the more intensely we live, the less we think in isolated entities. Under 
the influence of strong emotions the world seems a whole, loaded with 
emotion. Only after the emotions are soothed we map out aims and ways 
to attain them. 

instead of  'fixing my attention on a perception' I shall say 'creating an 
entity', but we must be well aware that the verb ' to create' has here another 
meaning than in 'creating a work of  art'. After being created a painting 
exists in an external world, but this is not the case for the mentally created 
entity. 

Mentally creating an entity is an act which everybody performs at 
almost any moment when he is awake. We can ask philosophical ques- 
tions about it, for instance: How is it possible that we can think in entities? 
But we do it without answering such questions, like we are conscious 
without knowing how consciousness is possible and like we live without 
knowing how it is possible that living creatures exist. It  is undeniable 
that conceiving an entity is an act of the individual mind. For  the moment 
I leave the question of objectivity aside; it belongs to philosophy. In its 
simplest form mathematics remains confined to one mind; we must 
discuss later how it can be communicated. 
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2. ARITHMETIC 

Mathematics would be of little use if it stopped after creating one entity; 
this act can be repeated. Again we can ask philosophical questions: How 
is it possible that an entity that has been created, maintains its identity 
and how can it be distinguished from another entity? 

But again this is reasoning post factum: Anybody can experience for 
himself that he is able to fix his attention on a perception, and then on 
another perception, keeping the first in his memory. This is the basis of  
counting. It does not matter what is counted, but the process of counting 
itself, the mental activity, is essential. By creating an entity, another, still 
another, etc., we construct mentally natural numbers. It is clear that in 
constructing the number five, say, the nature of the entities which con- 
stitute that number is completely irrelevant. As soon as numerals were 
introduced, people have learnt to abstract from the content of  the per- 
ceptions which are isolated and to consider them as pure entities. 

We have now constructed each number individually. We are not yet able 
to make statements about every natural number. Such a statement is usual- 
ly formulated by means of a generalizing quantifier: For  every natural 
number n, A (n) holds. But a better formulation is: Let n be a natural 
number, then A(n) holds. More explicitly: suppose that we have con- 
structed a natural number n, then we can prove A (n). We see that it 
contains the notion of a hypothetical construction. This notion is funda- 
mental in mathematics. Almost every theorem can be brought in the 
form: Suppose that construction A has been performed, then we can 
also perform construction B. The proof  of such a theorem consists in a 
construction which, joined to the construction A, yields the construction 
B. 

Let me give an example. I wish to prove the theorem" If  n is any natural 
number, then there exists a prime number greater than n. The proof  is: 
calculate n ! +  1. Factorize this number. Each of its prime factors will be 
greater than n. The proof  is a general method of construction, to be 
applied to a hypothetical construction. 

So far we have needed the notions of  a natural number, of a hypothetical 
construction of a natural number and of a general method of construction 
to be applied to a hypothetical construction. 

These notions are sufficient for arithmetic. Let us consider in particular 
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the principle of  complete induction: 

A(1) & A x ( A ( x ) ~ A ( x + l ) ) ~  AxA(x). 

Suppose that we have proved A (0) and that we have a general method M 
which allows us for any natural number x, to deduce a proof  of A (x+  1) 
from a hypothetical proof  of  A (x). Let n be any natural number. In 
order to prove A (n) we construct the number n, and at each step from x 
to x +  1 we apply M to obtain A(x+ 1). The result will be a proof  of  
A(n). 

Now I must warn for the misunderstanding that we need a general 
principle of  complete induction; we only need the application to every 
particular case, and this is evident in every case. For  instance, I wish to 
prove that ZTk=(n(n+ 1))/2. This is true for n =  1. Suppose it is proved 
for x. (Hypothetical construction.) 

,,+1 x(x + 1) 
k = - - + x + l =  

1 2 

(x + 1) (x + 2) 
= (General method). 

2 

Let n be any natural number. I can prove A (x) successively for x = 1, 
..., n. The latter is a direct application of  the definition of a natural 

number. 
It can be argued that no other notions than those which I have mentioned 

are needed in arithmetic. Arithmetical propositions are formed out of  
primitive relations a=b and a<b by means of  the connectives &, v ,  
~ ,  --1 and the quantifiers A, V. Now a proof  of a=b consists in the 
simultaneous construction of  a and of b in such a way that each time that 
an entity is added to a, the same is done for b. An analogous explanation 
can be given for a<b. Of course the logical constants must be inter- 
preted in terms of  constructions. I shall discuss this later; here a few 
remarks will be useful. The interpretation of  A ~ B is implicit in what I 
have said: A proof  of A --* B consists of  a general method which converts 
every proof  of  A into a proof  of  B. A proof  of  -'1 A consists in a method 
which would convert a suplSosed proof  of  A into a contradiction. I am 
inclined to say that it must be taken as primitive. We see clearly that it is 
impossible that 1 --2, but the notion of  impossibility is not reducible to 
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the other notions which I have mentioned. It is good to avoid negations 
where it is possible. Bishop's work shows that the most important parts of  
analysis can be built up positively [Bishop, 1967]. A proof  of  Ax A(x) 
consists in a general method which converts the construction of a natural 
number x into a proof  of A(x). Finally, a proof  of Vx A(x) is the com- 
bination of the construction of  a natural number x and a proof  of A (x). 

The only new fundamental notion is that of a contradiction. 

3. T H E  C O N T I N U U M  

So much about arithmetic. The next step is that of introduction of real 
numbers, which gives rise to great difficulties for the constructivist. A 
real number is defined by means of  an infinite sequence of  natural num- 
bers. Here the infinite is much more essential than in arithmetic, where it 
occurs only in the form 'after each natural number there is a next one'. 

In analysis we make statements about every real number, that is, about 
every infinite sequence of  natural numbers. The difficulty is that we have 
no clear notion of  a hypothetical sequence; there is no general method 
for the construction of  sequences like there is for the construction of  
natural numbers. One solution was made possible by the theory of re- 
cursive functions; recursive analysis has become an important field of 
research. But the notion of  a recursive function was introduced in the 
30's, whilst Brouwer's work on real numbers falls between 1907 and 1927. 
Moreover, as is well known, the recursive real numbers do not exhaust 
the continuum; the set of recursive real numbers is denumerable while 
the continuum is not. Brouwer tried to find a constructive notion which is 
as near as possible to that of  the usual continuum. He struggled with this 
problem all his life. In his thesis of 1907 he introduced the continuum as 
a primitive notion. Man has an intuition of  a continuum (the intuition 
of  time) on which he can construct a dense, denumerably infinite scale. 
A point on the continuum is defined by a convergent sequence of  
points of  the scale. I f  we restrict ourselves to sequences determined by 
a law (predetermined sequences), we do not obtain every point of the 
continuum. In non-constructive mathematics there is no difficulty. One 
simply defines the set of  all convergent sequences, whether defined by 
a law or not. But for the constructivist only the predetermined sequences 
exist as individuals. Brouwer found the way out by introducing the notion 
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of  a choice sequence. A convergent sequence of  rationals can be obtained 
by choosing its members one after the other: rl, rz, ... ; the convergence 
can be secured for instance by the restriction that [ rn+l -G]  <2 -~  for 
every n. We have here a simple example of a spread. A spread is defined 
by a rule which determines the restrictions on the choices. 

From 1918 on Brouwer no longer mentions the continuum as a primi- 
tive notion. He can do without it because the spread defined above re- 
presents it completely, as far as its mathematical properties go. 

The notion of a spread is not problematic. It is defined by a restriction 
on finite sequences. But the choice sequence as an element of  the spread 
is an important new fundamental notion, which gives rise to several 
questions. A first question is, how free a choice sequence must be. It has 
been tried to define a choice sequence as a lawless sequence, in which 
every choice must be completely free. However, these lawless sequences 
have unpleasent properties; they are hermits, incapable of  intercourse 
with each other. [Troelstra, 1969]. The only relation possible between two 
lawless sequences is that of complete identity, for if they are not the same, 
they are completely independent. Thus, in order to do mathematics with 
choice sequences, restrictions on the freedom of  choices must be allowed. 
Brouwer did this from the beginning. We had an example in the spread 
which represents the continuum. It is reasonable to allow restrictions to 
be made during the process of  choosing. For  instance, I start without re- 
strictions and I choose ½, ¼, ~. At this moment I can make the restriction 
that every further member will be s 3-. Another possibility is to leave the pos- 
sibility open to choose always ~, or from n = k  on always -~+2 -k. In the 
latter case we do not know whether the sequence will define the number -~ 
or some number which is a little greater than -~. At any moment a choice 
sequence ~ consists of a finite segment together with certain restrictions 
on its continuation. As the proof  for a property of  ~ must be given in a 
finite time, it can depend only on these data. This fact is known as Brou- 
wer's continuity principle. It makes us understand some peculiar theorems 
on the continuum. For  instance, every function that is defined everywhere 
on a dosed interval, is uniformly continuous. Let f be the function; we 
wish to ca lcu la te f (a )=b .  Here a is defined by a choice sequence al, az, ... 

of rationals, b by a sequence bl, b2,... ; b, must be determined by a finite 
sequence al . . . . .  am, but  then all sequences beginning with a~ .... , am will 
give the same b,. This means that a certain approximation to b is deter- 
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mined by a certain approximation to a. This is not a proof of the theorem. 
I only made it plausible. 

It is possible to do constructive mathematics without choice sequences, 
but these are interesting for several reasons. 

(1) A notion of the continuum which corresponds to the usual notions 
is only possible by using choice sequences. 

(2) The reasonings on choice sequences are interesting in themselves, such 
as for instance the continuity theorem, and they lead to interesting results. 

(3) The exact formulation of the notion and the basic properties of 
choice sequences lead to interesting questions, which have attracted much 
attention in the last 10 years. It is remarkable, that formalization is the 
most important method used in this work; this has strongly influenced 
the relation between intnitionism and formalism, about which I shall 
speak later on. 

Another argument in favour of choice sequences is, that we can cal- 
culate with them. For instance, if {an} and {bn} are convergent choice 
sequences which define the real numbers a and b, then {an+bn} will be 
a convergent sequence defining a+b. 

4. SET THEORY 

A few words must be said about set theory. It is a widely spread opinion 
that intuitionists admit only decidable sets, such as that of the even 
numbers or the prime numbers, but this is not the intuitionistic point 
of view; it is much too narrow. There is no objection to admitting any 
property of mathematical entities as the definition of a set. Brouwer calls 
such a set a species, but this is only a question of terminology. For in- 
stance, I can speak about the species S of digits which occur infinitely 
often in the decimal expansion of z~. Though I cannot show an element of 
S, I know that S cannot be empty. Thus, if NEis the species of non-empty 
species of natural numbers, then S~NE. 

The theory of species is strictly predicative in this sense that the ele- 
ments of a species must be defined independently of the species itself. 
We start with natural numbers; the next level is formed by choice se- 
quences of natural numbers and by spreads which can be considered as 
species of choice sequences. Species of natural numbers and spreads are 
species of type 0. A species like NE is of type 1, and so on. Quantification 



86 AREND HEYTING 

over species is admissible, but only restricted to the elements of a given 
spread or species. 

5. LOGIC 

After this brief sketch of the fundamental ideas of intuitionistic mathe- 
matics I shall now speak about its relations to logic, to philosophy and 
to language, The word 'logic' is used for different notions; accordingly 
a logical law admits different interpretations. 

Let us consider the syllogism 

(1) Socrates is a man. 

(2) Every man is mortal. 

(3) Socrates is mortal. 

(I) It can be considered as a rule of language. 

(1) A is a B. 

(2) Every B is a C. 

(3) A is a C. 

When I agree with (1) and (2), I am expected to agree also with (3). 
(II) It can be considered as a statement about the world: If  (1) is true and 
(2) is true, then (3) is true. 
(III) It can be considered as a mathematical theorem. If  the entity A be- 
longs to the species B, and B is part of the species C, then A belongs to C. 

A~B 
B c C  
"A~C. 

It is clear that none of these interpretations can be used for the founda- 
tion of mathematics. On the contrary, each of them presupposes mathe- 
matics. (I) and (II) belong to applied mathematics, for the theory of 
language as well as any theory about the real world is applied mathematics. 
(III) is clearly a theorem from set theory, which itself is a rather advanced 
part of mathematics. 

More generally, logic can be considered as a part of linguistics or as 
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a philosophic theory about the world; in both cases it belongs to applied 
mathematics. In pure mathematics only the third interpretation comes up 
for discussion. Logical theorems are mathematical theorems. Logic is 
not the foundation of mathematics, on the contrary, it is conceptually 
a complicated and sophisticated part of mathematics. 

I f  mathematics consists of mental constructions then every mathematical 
proposition must be an assertion about mental constructions. More 
exactly: every mathematical proposition is of the form: A construction 
with the following properties has been performed: .... In logic we con- 
sider the case that the construction is built up out of  simpler construc- 
tions by means of the logical constants. I have already spoken about the 
interpretation of the logical constants, but some additional remarks will 
be useful. For  conjuntion there is no difficulty. As to disjunction, we can 
assert A v B when we have performed one of the constructions A or B; 
but  be careful, it is nonsense to say that I have performed A or B without 
knowing which of the two. When I can assert A v B, I am always able 
either to assert A or to assert B, or both. Implication is interpreted as 
follows: I may assert A ~ B when I am able to convert any proof  of  A 
into a proof  of  B. In other words, I must possess a general method of  
construction which, applied to a proof  of A, yields a proof  of  B. 

I have spoken about the reduction of negation to the basic notion of a 
contradiction. 

Does the law of  excluded middle A v -1A hold with these interpreta- 
tions? When we assert it, this means that for any proposition A we can 
either prove A or derive a contradiction from a supposed proof  of A. 
Obviously we are not able to do this for every proposition A, so the law 
of excluded middle cannot be proved. If  we do not know whether A is 
true or not, we better make no assertion about it. 

It  has been proposed to give a weaker interpretation to A v / / ,  namely: 
A and B cannot both be false. Then A v B would be the same as --1 (-hA & 
&--nB). For  this interpretation the law of excluded middle becomes 
"-1 (--1A & - I  -7 A), so it is a special case of the law of contradiction. Though 
this interpretation is tenable, there are serious objections against it. I 
have already made the remark that negation ought to be avoided where 
it is possible. It is important that we can decide for every algebraic num- 
ber whether it is rational or not; without the strong disjunction it would 
be impossible to express this property. The weak interpretation --1 (-1A & 
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& -1 --1 A) gives only the trivial result that an algebraic number cannot 
be irrational and not irrational at the same time. Intuitionistic logic makes 
finer distinctions possible, which classical two-valued logic is unable to 
express. 

The interpretation of  the existential quantifier V is analogous to that 
of  disjunction. I can assert Vx A(x) when I have constructed an element 
x and proved that A (x) holds for it. The weak interpretation would be 
-1/~x -'1 A(x), but the two notions are different and strong existence is 
by far the more important. We had an example in the proposition: The 
digit x occurs infinitely often in the decimal expansion of  z~. For  this 
proposition A(x) it is easy to prove --1 Ax'-nA(x), but we are not able 
to prove Vx A(x), for if  a is any digit, it is still possible that ~A(a). 

I shall not give many such examples but I must say a few words about 
their use, because it is a persistent misunderstanding that they are an 
essential part of intuitionistic mathematics. Their function is the same as 
that of  similar examples in classical mathematics. For  instance, an example 
of  a continuous function which is nowhere differentiable is useful as a 
warning against mistakes, but it is not an essential part of analysis, 

It  is clear that the generalizing quantifier can only be used when the 
range of  the variable is given by some species. A theorem can hold for 
every natural number, for every real number, for every species of natural 
numbers, etc., but not for everything. The case where the variable ranges 
over a spread is interesting, for an element x of  a spread S is a choice 
sequence, so when A (x) holds for every element x of  S, it must be known 
for every x after a finite segment o f x  has been chosen. In other words, the 
assertion /k xA (x), where x ranges over a spread, is very strong. 

6. MATHEMATICS AND LANGUAGE 

So much about logic. Let us now ask how mathematics can be com- 
municated. In my opinion there is no essential difference between the 
use of  language for this and for other purposes. We use language to in- 
fluence the thoughts and actions of  other people. When a mathematician 
writes a paper or a book, he intends to suggest mathematical construc- 
tions to other people; when he makes notes to aid his memory, his future 
self plays the part of  another person. Like any other use of language, the 
communication of  mathematics is not immune for misunderstanding. 
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There is strong evidence for the hypothesis that the construction of small 
natural numbers is the same for all men, but for the communication 
about more complicated structures even a strong effort for clearness 
cannot warrant complete understanding. 

In this respect intuitionism is exactly the opposite of formalism. It is 
not my task to describe the standpoint of formalism, but comparing both 
directions may contribute to the clarification of each of them. I take the 
liberty to consider the most radical kind of formalism which is best suited 
to be compared with intuitionism. The formalist considers every intuitive 
mathematical reasoning as inexact. He studies the language in which such 
reasonings are expressed and tries to formalize them. The result is a formal 
system, consisting of a finite number of symbols and a finite number of 
rules for combining them into formulas. From the intuitionistic point of 
view, this process belongs to applied mathematics, and the result is a 
very simple mathematical system. This formal system can be applied in 
science and in industry; its function is comparable to that of a machine 
in a factory. 

Of course there is no objection against the activity of formalists, also 
it is undeniable that scientists and engineers are more interested in mathe- 
matical formulas themselves than in their abstract interpretation. There 
is no conflict between intuitionism and formalism when each keeps to its 
own subject, intuitionism to mental constructions, formalism to the con- 
struction of a formal system, motivated by its internal beauty or by its 
utility for science and industry. They clash when formalists contend that 
their systems express mathematical thought. Intuitionists make two ob- 
jections against this contention. In the first place, as I have argued just 
now, mental constructions cannot be rendered exactly by means of lan- 
guage; secondly the usual interpretation of the formal system is untenable 
as a mental construction. 

In the history of formalist research much work has been done on con- 
sistency proofs. From the point of view which I am sketching their im- 
portance is mainly practical. An inconsistent system, in which every for- 
mula is derivable, cannot be very useful. The pretension that a consis- 
tency proof would afford an interpretation of the formal system is com- 
pletely unfounded. 

Yet there is a possible application of formal methods to intuitionistic 
mathematics. It is the best method for investigating the assumptions which 
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are made in a given proof. In recent years it has been successfully applied 
to the proofs in Brouwer's theory of choice sequences. The formalization 
of intuitionistic logic served another purpose, namely to express the 
logical theorems in a language which is understood by traditional mathe- 
maticians. The metamathematical work on the formal system of intuiti- 
onistic logic, however interesting in itself, has little to do with intuitionistic 
mathematics. 

7. A P P L I E D  MATHEMATICS 

From what I have said at the beginning of this talk it will be clear that all 
conscious thinking can be considered as applied mathematics. Of course 
we do not start by constructing a mathematical system which we apply 
afterwards to our impressions. In daily life the creation of an entity goes 
together with the impression which it represents and with the complex of 
memories and expectations which is connected with this impression. We 
cannot say which comes first, for the whole complex arises together at 
the moment when I fix my attention on it. Only afterwards can I analyze 
it more or less into its components. A reasoning of the sort we make in 
daily life consists of a finite number of such entities and relations between 
them. 

There is a gradual development from this natural activity in everyday 
life to the most abstract science constructed by intense collaboration of 
groups of scientists. Science tries to organize domains of experience which 
so far seemed quite apart from each other in a wider structure which 
embraces them together. In this respect there is no fundamental difference 
between science in the narrow sense (science of nature) and the humanities 
like history or psychology. The differences are gradual: the mathematical 
systems used in modern physics are enormously more refined than those 
that are at the basis of history, but the work of the historian also consists 
in establishing relations between the facts that he has isolated in the 
continuous stream of events. The essential difference between different 
sciences does not consist in the methods by which they try to order their 
material, but in the manner in which they obtain their raw material. For 
example, introspection is useless in physics, but it is a legitimate method in 
history, because it allows us to find relations between the circumstances 
in which a man is placed and his reactions. But this registration of facts 
belongs to the pre-scientific phase: measuring black spots on a photo- 
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graphic negative, having an interview, imaging one's reactions, that is not 
yet science. 

Every science goes far beyond what is directly perceived. I t  constructs 
a mathematical system into which the facts and their relations can be 
fitted. The geometrical structure which we impose on the material world 
contains much more than what we can actually observe. Analogous re- 
marks can be made about  history: historians try to adjust the facts which 
they have learnt from the documents to a wider structure of  hypothetical 
events. 

I t  will now be clear that linguistics and logic, the latter in so far as it 
is not considered as a chapter of  mathematics, belong to applied mathe- 
matics. Scientific philosophy also belongs to applied mathematics, but 
many important  works on philosophy are not scientific. I do not mean this 
in a depreciating sense. Many philosophical books are works of  art;  
they belong to literature or to poetry rather than to science; often they 
are very poetical and belong to the best of  literature. But it is wrong that 
they pretend to belong to science and the scientific garb does not become 
them. 

University o f  Amsterdam 
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