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Abstract. The photogravitational restricted three-body problem is reviewed and the case of the 
"out-of-plane" equilibrium points is analysed. It is found that, when the motion of an infinitesimal 
body is determined only by the gravitational forces and effects of the radiation pressure, there are no 
"out-of-plane" stable equilibrium points. 

1. Introduction 

The existence of  the equilibrium points, situated somewhere out of the orbital plane, 
has already been subject of many papers, from Radzievsky (1953) to Ragos and 
Zagouras (1994). Nevertheless, occasionally, in the corresponding literature we 
may read about doubtful conclusions or even contradictory opinions (e.g. Schuer- 
man 1980; Ragos and Zagouras, 1994; Todoran, 1993). 

In order to emphasize the circumstances in which some contradictory results 
have been obtained, we find that a new review of the problem could be of practical 
importance. Such a subject will be approached below. 

2. General Equations 

In the Euclidean space consider two stars $1 and Sz, which are moving along 
circular orbits around the common mass-center, their masses being ml and m e  
From the gravitational point of view, these two bodies are assumed to be mass- 
points. 

In addition, let us choose an infinitesimal body S which is attracted by the 
two stars, but does not attract rhein. Therefore, the motion of the infinitesimal 
body is determined by the gravitational forces of the two finite bodies Sl and 
5'2. Nevertheless, in some peculiar cases, in order to explain the corresponding 
motion additional forces must be introduced and some supplementary effect taken 
into account. Among such forces, the most discussed could be the force of the 
radiation-pressure, when the gravitational role of the two masses ml and m2 is 
reduced by the factors 1 -/31 and 1 -/32, respectively. Here,/3 = F•/FG (FR = 
radiation-pressure force and FG = gravitational force), (e.g. Todoran and Roman, 
1993). 
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Consider now a rotating barycentric coordinate system (X, Y, Z) and the two 
finite bodies always situated on the X-axis, while the XY-plane coincides with 
the orbital plane. Under such conditions, with the notations used by Ragos and 
Zagouras (1988), the motion of the infinitesimal body is characterized by the 
following differential equations 

QI«X Q 2 ( X + # _  1) = OU (1) 2 - 2 ~ = x -  r~' +~)-  r--~- ox' 

I ? + 2 X ' =  Y(1  Qlr a Q2)r2 3 = oy'OU (2) 

2=z( Q~ Q~) av r~ r 3 -- OZ' (3) 

where the potential function U is defined by 

= 1(X2 .~ y2) + Q___!l + Q___22 (4) u 
Z r l  T2 

with 

~2 = ( x  + ~)~ + r 2 + z 2, ~2 2 = ( x  + ~ -  1) 2 + r 2 + z 2 (5) 

and 

Q1 = (1 - 31)(1 - #), Q2 --- (1 - 32)tt. (6) 

Here, the masses of the secondary and primary stars are 
m 2  m l  /z = , 1 - # = (7) 

m l  -t- 77/,2 ~Ttl -q- Trt2 

Now, as it is known, in the restricted three-body problem, the equilibrium points 
are double points situated somewhere on the equipotential surfaces of zero relative 
velocity, their positions being determined by the conditions 

OU OU OU 
OX OY OZ 

In such conditions, from Equations (1)-(3) we may write 

X [1 Q,r 3 Q2]r3j [[Q1#~ Q2(lr93-#) = 0 ,  (8) 

y(l_Q1 Q~) r-~- - = 0, (9) 

Z Q1 ù~ ~ =o, (lo) 
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As it is easy to see, Equations (1)-(3) define the three-dimensional motion of 
the infinitesimal body, but if we assume X ¢ 0, Y -~ 0, Z = 0, willing or not, we 
are obliged to accept the fact that the corresponding particle remains in the plane 
in which $1 and $2 revolve. In such a case, the motion of the infinitesimal body 
will be defined only by Equations (1) and (2), while Equation (3) is not taken into 
consideration. 

Moreover, Szebehely (1967, p. 30) has written: 
"Within the framework of Newtonian gravitational forces, if the initial position 

and velocity vectors of the third body are in the plane of motion of ml  and m2 then 
the motion of the third body will be confined to this plane since there are no forces 
taking it out of this plane". 

Therefore, if it is assumed that the infinitesimal body remains in the orbital 
plane, we have a peculiar case of the restricted three-body problem. Such a case 
was studied by Schuerman (1980) who has written: 

"Thus, although radiation pressure produces a large effect on the location of the 
L4 and L5 points, it has a very small effect on restricting the values of # necessary 
for stability . . . .  A similar analysis can be carried out for the equilibrium points 
L1, L2, and L3 for which Y = 0 . . . .  It is found that, as in the classical case, these 
points are unstable and no equilibrium points exist for fll > 1 or/32 > 1". 

3. Equi l ibr ium Points Assumed in the X Z - p l a n e  (Z ~ 0) 

As it was before mentioned, the three-dimensional motion of the infinitesimal 
body is govemed by Equations (1)-(3). Nevertheless, when the corresponding 
body crosses the XZ-plane  we have X0 ~ 0, Y0 = 0 and Z0 ~ 0. In addition, if 
the crossing point is assumed as being also an equilibrium point, we have to use 
Equations (8) and (10), whence we may write 

QI#  Q2(1 - #) 
Xo = %31 ro32 , (11) 

Q1 Q2 
~o~- 7 + ~o~- ~ : o, (12) 

with 

~o ~, = (Xo + u)~ + Zo ~, ~o~~ = (Xo + ~ - 1): + zg. (13) 

Moreover, Equation (12) could be valid only when, with the physical parameters 
of the two finite bodies, we may write 

(1 -- f l l)(1 --/32) < 0, that is Q1Q2 <( 0, (14) 

which represents the "necessary condition" as it is considered by Ragos and 
Zagouras (1994) who have written: 
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"The necessary condition for the existence of ( out-of-plane ) equilibrium 
positions, qlq2 < 0, is proved to make sense both from the theoretical and the 
physical point of view. There may exist, at most, two pairs of such points named 
L6, L7 and Ls, L9". 

Now, as it is easy to see, from Equations (11) and (12) it follows that 

Q1 _ 0, Xo + Q2 = 0, (15) Xo ro'l r0'-S 

whence it is evident that for 1 - fll < 0 and 1 - /32 > 0 (Q1 < 0; Q2 > 0) we 
can always use only Xo < 0. This remark is very important for the next step of the 
problem. 

In order to find the coordinates (X0, Zo) of the equilibrium points, assumed 
somewhere in the XZ-plane  we have to solve Equations (13) and (15) so we 
obtain 

[32/3 __ X2/3(Xo _}_ ]Z)2 Q2/3 _ X~/3(Xo + # _ 1)2 
Zo 2 = "~1 y2/3 , Zo 2 = 2 y2/3  , (16) 

"~0 "~~0 

1" 0 2 / 3  /-)2/3 "] 3/2 
/ ~1 _-~2__ / 

X o =  [ 2 X o + 2 # - 1 J  
(17) 

Here we have to use a seiles of successive approximations with X0 < 0 and the 
corresponding solution will be found in the range of the real numbers only if it is 
satisfied the condition 

Q1 > - Q a ,  (18) 

which is a supplementary condition, to that mentioned by Ragos and Zagouras 
(1994) [see Equation (14)]. On the other hand, if we have in mind what Ragos and 
Zagouras (1994) have written: There may exist, at most, two pairs of such points 
named L6, L7 and Ls, L9, we have to emphasize the fact that we could find, at 
most, one pair of points L6, LT, because Equation (17) has only one root. 

4. The Stability of the Equilibrium Points 

Generally, the stability of the equilibrium points is determined by investigation of 
the motion resulting from a small displacement of the infinitesimal body from its 
equilibrium position (X0, 0, Z0). 

Here we find very useful to emphasize the fact that at an equilibrium point the 
resultant force of the all effective forces is equal to zero and the infinitesimal body 
becomes motionless. That is why, it is of great importance for us to know what 
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kind of forces could determine a small displacement of the infinitesimal body from 
the corresponding equilibrium position. 

As it was before mentioned, in the photogravitational restricted three-body prob- 
lem, we have taken into account only forces caused by gravitation and radiation- 
pressure of the two finite bodies Sl and $2  The equilibrium positions participate in 
the motion of the coordinate system, therefore the centrifugal forces cannot be used 
in order to cause a displacement of the infinitesimal body from the corresponding 
point. 

The presence of another kind of forces will destroy the initial conditions of the 
corresponding problem. 

Therefore, in order to obtain a small displacement, of the infinitesimal body 
from its equilibrium position, we have to give a push to the corresponding particle. 
But, in our binary system, such a push could be determined only by a change in the 
gravitational force or, what is more likely, such a push could be caused by some 
variations in the luminosities of the two stars. 

Consequently, in our isolated binary system (S1, $2) the required push is pos- 
sible only in the XZ-plane, where are confined the three points: $1, $2 and 
(Xo, O, Zo). 

Moreover, if the "initial" position and velocity vectors of the third body are in 
the XZ-plane, the corresponding motion will be confined to this plane, because 
there are no forces taking it out of this plane. That is why, Equations (1) and (3) 
will be linearized by using the substitutions: 

X = X0 + x e "xt, Z = Z0 + z e "xt, 

where z, z and A are constants. In these conditions, Equations (1) and (3) lead to 

(A 2 - -  U X X ) Z  -- U x z z  = O, 
(19) 

_ _ U x z  z .j_ (A2 _ U z z )  Z m O, 

where we have 

Uxx = I + 3 [ Q-~-sl (X° + #)2 +-~-(X° + # -  I)2] r02 

[ ~  Q2(x0 + ù -  1)] Uxz = 3z0 Q1 (x0 + #) + r05--- ~ 

[r-~~l Qa] 
Uzz= 3zg Q1 + ~c2 

Now, from Equations (19), for the characteristic equation, we may write 

~4_~2+3Z~ QI+Q2 +~.~o~_O. 
7'01 7"O2 

(20) 
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Here we have to take into consideration Equations (15) and (13), so that 

roZ2-r21 = 1 - 2 X o - 2 #  Ql = Xo7"o3» Q2 = -Xoro32, 

and Equation (20) becomes 

A 4 -- A 2 a t- C = 0 

with 

XùZ~ 2 
c = 3 ~ ( 1  - » x 0  - 2~) .  

T017"02 

(21) 

Hefe, for 1 -/~1 < 0 and 1 -/32 > 0 we have X0 < 0 and it follows that C < 0. 
Therefore, Equation (21) has always, at least, one root real and positive. In such a 
case we may quote what Szebehely (1967, Chapter 5) has written: 

"When some or all of the characteristic roots have positive real patts the equi- 
librium point is unstable. This is true also when some of the roots are multiple". 

5. Conc lud ing  R e m a r k s  

(i) From the above presented theoretical considerations, it follows that, when the 
binary system ($1, SE) is isolated in space and the motion of the infinitesimal 
body is govemed only by gravitational forces and effects of the radiation- 
pressure, the displacement from the equilibrium position (X0,0, Z0) may 
be caused only by those forces which are operative in the XZ-plane. This 
means that, after the corresponding disturbance, the infinitesimal body remains 
in the XZ-plane and, consequently, the corresponding "triangular points" 
()to, 0, Z0) are unstable. 
So we have to repeat our old remark (Todoran, 1993): In the restricted three- 
body problem, there are no stable equilibrium points, at least as far as the 
effect of the radiation-pressure is concemed. Therefore, our old remark is not 
so wrong as it is appreciated by Drs. Ragos and Zagouras (1994). 

(ii) The above obtained result is of a great importance for the study of double star 
evolution because, in the above mentioned conditions, the particles, ejected 
from the two finite bodies, cannot be "trapped" in the neighbourhood of the 
"new" triangular points, as long as these points are unstable. 

(iii) From technical point of view, the above obtained result is important because it 
put in evidence the fact that the X Z-plane is not suited for a space colonization. 
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