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Abstract. Poincard's surface of section method is used to find and classify the main periodic orbits in a 
two-dimensional galactic potential first introduced by H~non and Heiles. The stability of these periodic 
orbits is studied. Numerical integration with Bulirsch-Stoer method is used. 

1. Introduction 

In the last two decades increasing attention has been given to the study of different 
models of galactic motion and to the motion of the stars in these galaxies. Among the 
types studied are the spiral, barred, tri-axial, and elliptical galaxies. 

One of the main questions still to be answered is the following: Is the motion of stars 
in a galaxy chaotic or ordered? A theoretical answer to this quesiton remains unknown 
until now. 

H6non and Heiles (1964) and Contopoulos (1960) used a numerical approach to gain 
insight into this matter. Although their potentials were fairly simple without Coriolis 
forces nor singularities, it turned out that these potentials are very useful in theoretical 
investigations. The motion in any of these two systems represents the motion of a star 
in the rotating meridian plane of a galaxy in the neighbourhood of a circular orbit or 
in the equatorial plane of a galaxy with axial symmetry. 

Davoust (1983) used Lindstedt's method to make an inventory of the family of 
periodic orbits for Contopoulos's problem. 

The model of H6non and Heiles was studied by many authors. Among these are 
H6non (1969), Magnenat (1979), and Contopoulos (1970). Their studies concentrated 
on the question of ergodic zones of motion. Contopoulos also studied the stability of 
the periodic orbits using Liapunov characteristic exponent method. 

Up till now no one tried to classify the main periodic orbits in H6non and Heiles 
model. 

It is the aim of the present work to study this model in order to find and classify the 
main periodic orbits using Poincar6's surface of section method. The stability of these 
periodic orbits is also studied. 

The bifurcation from these main orbits will be addressed by the authors in a future 
article. 
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2. Descript ion of  the Method  

H 6 n o n  and Hei les  i n t roduced  the  ax i symmet r i ca l  po ten t ia l  

U ( x ,  y )  = a 2 l y 2  1 3 ~ x  + ~ + x 2 y -  ~ y  . 

The  euqa t ions  o f  m o t i o n  b e c o m e  

OU 8 U  
2 = - x - 2 x y ,  , f  - - 

8 x  8 y  

y _ x 2 + y 2 ,  

where  (x, y, 2, 2) are the  coo rd ina t e s  in phase  space.  
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The integral of  energy for this system has the form 

1 2 1 2 ly3 i �9 2 ~ x  + $ y  + x 2 y  - ~ + $ (x  + pU 2) = E ,  (3) 

where E is the constant  total energy. 

The method of  fixed point introduced by Poincar6 will be used to find the periodic 

orbits for this system. In this method we do not consider the whole trajectory in phase  
space but only its consecutive crossings of  a definite surface; in particular, with a plane. 

The fixed point method has been applied successfully to the dynamics of  rigid body 

in Kovalevskaya ' s  case (cf. E1-Sabaa, 1982). The solution of  Equations (2) represent the 

trajectory in phase-space  (x, y, k, p). Along this trajectory the value of  the constant  E 
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is fixed. T h u s  for  a given value o f  E the t ra jec tory  o f  the  p r o b l e m  will be  t runca ted  in 

the th ree -d imens iona l  space  (x, y, jT). Le t  us examine  consecu t ive  cross ings  o f  this 
t ra jec tory  with t h e y  - .9 p lane  in the posi t ive direct ion,  i.e., po in ts  o f  the t ra jec tory  which  
satisfy the condi t ions  

x = 0 ,  2 > 0 .  
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The investigation of this trajectory is reduced to the study of the manifold of such 
intersection points in the plane (y, p). If we define a mapping M p such that 

M P :  (yo, po) ~ (y, 9) 

that takes a point in the plane (y, 9) to another point in the same plane, then the fixed 
point of M p for which y = Yo = 0 are the symmetric periodic orbits of order p. So we 
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have  the initial cond i t ions  

x o = 0 ,  2o = 0 ,  Y = Yo, J~o > [�89 - U(0, yo)] ~/2 

Star t ing f rom the above  initial cond i t i ons  the  t ra jec tor ies  were  c o m p u t e d  numerical ly .  

T w o  different numer i ca l  t echn iques  o f  in tegra t ion  were  used.  F i r s t  the  R u n g e - K u t t a  

four th -order  m e t h o d  and secondly  the  B u l i r s c h - S t o e r  me thod .  Bo th  m e t h o d s  yie lded 

the same  results  th rough  the  s e c o n d  m e t h o d  was  cons ide rab ly  faster.  

A to le rance  T O L  = 1 0 - 3  was  chosen .  T h e  t ra jec to ry  was  d i sp layed  on a graphic  
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terminal using a Mega 2 ST computer. The orbit was considered as periodic with p 
revolutions if after p crossings of the y-axis moving in the positive x-direction the 
following two conditions were satisfied 

(1) ](Y-Yo)/Yo[ < T O E ,  

(2) l p 1(22 + p2)'/21 < TOL.  

The particle returns so to peak to its original position moving in its original direction 
(parallel to x-axis) within the specified tolerance. 
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Nine classes of periodic orbits were classified accoridng to the configuration of the 
trajectory. They are labeled A-I.  

Class A is a clas of ellipse-like simple periodic orbits shown in Figure 1. Orbits in 
class B start out as simple elliptic orbit but after one revolution the ellipse does not close 
properly but goes on to describe a nearby shifted ellipse and so on the particle returns 
to its original position after completing between 30 and 70 ellipses whose major axes 
make an increasing angle with the x-axis. Class C, Figure 2, resembles class B except 
that the outer boundary of the trajectory is not circular but more like a triangle with 
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rounded edges. It  should be noted also that  there is a triangular region in the middle 

whose area depends on Yo- 
Class D, Figure 3, is completely different. The  particle starts as usual moving to the 

right then goes down and crosses the x and y axes make  a curve upward  and crosses 
the y-axes then stops in its t racks reverses its mot ion exactly until it reaches its original 

position in the opposi te  direction and then goes on to describe the other half  of  the 
trajectory. Classes E and F are shown in Figures 4 and 5, respectively, while class G 
is shown in Figure 6. 
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Class H is shown in Figures 7(a)-7(i). It is worth noting that as E increases the 

number of revolutions decreases from 11 revolutions when E = 0.11 (Figure 7(a)) to 2 
revolution when E = 0.19 (Figure 7(i)). The characteristic curve for this class is shown 

in Figure 9. Class J is shown in Figure 8. 

The value of the energy E was taken as 0.01 at start and increased in steps of 0.01. 

For E -- 0.01 the admissible values of Yo gave trajectories in classes A and B only. 
As E increases the other orbits started to occur in alphabetical order. The classes G - I  

occur only when E > 0.1, when E > 0.2 the trajectories are no longer periodic though 

Figure 6 shows a periodic orbit for E = 0.2 which is a value slightly larger than the 
limiting value found by Hrnon and Heiles (1964). 

,•Yo 
~ 
0.64 1 

t 

t 
0.48 j 

0"32 t 

0.16 t 

t o0o 0.01 0.03 

.// 
/ 

/ 

,1., - t j  

. / "  

0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 

Fig. 9. Characteristic curve for class H. 

0.11 

0.07 

0.03 

i 

)0 
i 

0.03 0.07 0.10 0.14 0.12 
:'E 

Fig. 10. Stability curve for class H. 



PERIODIC ORBITS OF GALACTIC MOTION 315 

The stability of periodic orbits may be studied by considering orbits near the periodic 

orbits with the same value of the energy constant. Define a transformation G(t) by 

y = G ( t ) y o ,  

which transforms the point Yo in phase space occupied by the particle at time t o = 0 into 
the point y occupied by the particle at time t. Birkhoff (1927) proved that this mapping 
preserves the area. 

It can be shown (cf. Szebehely, 1967) that the stability condition for symmetric 
periodic orbits with P-revolutions is 

where 

a =  Ayl < 1 ,  

Ayo 

A y o = Y l - Y o ,  A y l = Y 2 - Y I ;  

Yo is the initial value corresponding to a periodic orbit, Yl is a value close to Yo and Yz 
is the value of y after p revolutions starting from the initial value Yl. 

It was found that orbits in class A are highly stable those of classes E and F highly 
unstable. 

A typical curve showing the relation between the total energy E and the quantity a 
for class H is shown in Figure 10. 

3. Conclusions 

Poincar6's fixed-point method proved very useful in detecting periodic orbits for the 
H6non and Heiles model. 

This method was chosen because of its success in predicting about 15 new periodic 
orbits for the restricted three-body problem. 

Also this method itself is used in establishing the stability of periodic orbits without 
recourse to any other method such as Liapunov characteristic method which saves 
computational time. 
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