
THERMODYNAMICS OF A MODEL OF NONADIABATIC SPHERICAL 

GRAVITATIONAL COLLAPSE 

TH. GRAMMENOS 
Nuclear and Particle Physics Division, Physics Department, 

University of  Athens Panepistemiopolis-llissia, Athens, Greece 

(Received 13 September, 1993) 

Abstraet. In this work, a thermodynamic treatment of a Friedmann-like model of nonadiabatic 
spherical gravitational collapse is presented. The calculations have been performed according to 
Eckart's theory of dissipative relativistic fluids, while the diffusion approximation has been adopted 
for the radiation transport. The conclusions deduced are in agreement with the predictions of the 
theory of late stellar evolution. 

1. Introduction 

The study of gravitational collapse of a body representing a realistic astronomical 
matter distribution is of great importance for astrophysics. Hence, the introduction 
of physically tenable conditions (conceming mostly several forms of dissipation) 
into idealized problems of collapse has been attempted by several authors in the 
past (Misner and Sharp, 1965). In a recent paper (Kolassis et al., 1988a), Kolassis, 
Santos and Tsoubelis (hereinafter KST) studied the collapse of a spherical body 
consisting of a shear-free fluid in the presence of radial heat dissipation. Chan et  

al. (1989), and Grammenos and Kolassis (1992) presented some further results 
concerning the dynamic evolution of the above model without any reference to its 
thermodynamics. 

A completely proper thermodynamical investigation of a collapsing dissipative 
fluid remains still an open subject, since various simple approaches to the relativistic 
thermodynamics of dissipative fluids show some pathological behavior in several 
aspects. Therefore their application is limited in a way. Beyond that, the detailed 
behavior of a dissipative relativistic fluid depends strongly on the thermodynamic 
properties of the fluid which are, in general, inadequately known for realistic matter. 

The most comprehensive and attractive alternative of a series of new (second 
order) theories is the Israel-Stewart class of theories (Israel, 1976), but despite the 
superiority of these theories, many calculations are still performed in the Eckart 
(Eckart, 1940), or Landau-Lifshitz (Landau and Lifshitz, 1979) frame. We believe 
that the unstable and noncausal behavior associated with these (first order) theories 
occurs in a nonphysical domain (Hiscock and Salmonson, 1991 ) and if, in addition, 
one assumes small deviations from thermal equilibrium, the application of anyone 
of the first order theories is justified. Moreover, the results obtained in this way 
are not in contradiction with the predictions of the theory of late stellar evolution 
(Zel'dovich et  al., 1971 ). 
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In Section 2 of this'paper we give a rather brief review of the KST model, pre- 
senting only the main equations for the sake of completeness. Finally, in Section 3 
we give a thel-modynamical treatment of the collapsing fluid in this model, fol- 
lowing Eckart's theory of dissipative relativistic fluids and assuming the diffusion 
approximation scheine for the radiation transport. 

2. The Fr iedmann-Like  Model 

The spacetime extefior to the sphere is described by the outgoing Vaidya metric 
(Vaidya, 1953) due to the heat flow: 

d~~--- (~ ~~»'~) d~:- ~d~« +~~ (d~~+ ~~~~Od~~) ~~.~, 
with z i = (v, r, O; 1) and ra(v), representing the (Newtonian) mass of the sphere 
as measured by an observer at infinity, is a function of the retarded time coordinate 
'U. 

The energy-momentum tensor Ta~, related to (2.1) via Einstein's equations, is 
that of pure radiation. In geometrical units (c = G = 1 ) we have 

1 dm_060 (2.2) 
To+~- 4r, r 2 d v b ~  9" 

The quantity L = - d m ~ d r  represents the total luminosity perceived by an observer 
at rest at spatial infinity (Lindquist et al., 1965) and must therefore be positive. 
This implies that ra(v) is a nonincreasing function of v, which in turn denotes that 
the sphere is losing mass due to the outgoing radiation. 

The shear free motion of the fluid in the sphere's interior a!lows the use of 
isotropic and comoving coordinates (t, r, 0, ~) in which the line element of the 
interior reads 

ds 2 = - A  2 dt 2 + B2[dr 2 + r2(d02 + sin 2 0 d~2)], (2.3) 

where A, B are assumed to be positive functions of r, t. 
The corresponding energy-momentum tensor is 

T~~ = (• + p)u°u~ + pg~~ + q~u~ + q~~L~, (2.4) 

where # is the energy density in the rest frame of the fluid, p is the isotropic 
pressure, u '~ = (1/A)óó ~ is the fluid's four-velocity, and q'~ = qdi~ the energy flux 
vector which can be interpreted as heat flux. The heat fiux vector qm taust be radial 
due to the sphefical symmetry (Kolassis et al., 1988b). 

The Einstein field equations for the metric (2.4) are 

1 [2BB.~ù (~__~r)2 4B']  ( ~ ) 2  
8 7 r # -  ./32 - + r B J  + 3  ~ , (2.5) 
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8 ä p = --~ L- - + - ~  + A B  " ~-ÄA J + 

1 - 2  - +.Ä--~- +-Äs. (2.6) 

8~qB -- A B  l a ß  - (2.7) 

plus an equation due to the isotropy of the pressure 

Ä -  + - 5 -  = + + . (2.s)  

The dot and prime mean differentiation with respect to ~ and r, respectively. 
The metrics (2.1) and (2.3) are matched on a spherical hypersurface £ defined 

by 

r s  = b = constant, (2.9) 

while the junction conditions yield 

=:e = ( r B ) : ,  (2.10) 

z,z = (qB)~ ,  (2.11) 

[r(rB)']2 = [~~'~ ( 1 -  2~~') ÷ A ] p ,  (2.12) 

[,.'SB2 ,-3B'2] 
r a ( v ) =  [ ~ r2B' ~ J2 (2.13) 

With the assumption that the fluid trajectories are geodesics we have 

A = 1, (2.14) 

while a particular solution for B, satisfying the field equations is given by 

23 = - ~  1 r2 A J u2, (2.15) 

= , (2.16a) 

A = ae ~', (2.I6b) 

with a _> 0, 2~~ r constants. 
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If the heat flux vanishes, i.e. a = 0, one obtains dust in a spatially flat (k = 0) 
Friedmann-Robertson-Walker interior with a Schwarzschild exterior: 

3 ( M )  1/3 
B ~--- ~ /;2/3 (2.17a) 

4 2 
8fr# = g t -  , (2.17b) 

p = 0, (2.17c) 

q = 0, (2.17d) 

m(v)  = M. (2.17e) 

The total luminosity at infinity is given by 

dm 262)~ ( 2  1 + bT,x'~ 
L -  dv - (1---~-2,k)2 \ u  + l--b2)t ] (2.18) 

As a consequence of the junction conditions one obtains 

~7 ( 2  1 + ó2A'~-I 
= - + F - - ~ ) u  - ' (2.19) 

which implies that the instant of the (apparent) horizon formation ~ttt = f(ab 2) is 
the root of the equation 

2 1 + b2A 
- + - -  -- 0. (2.20) 
u 1 - b2A 

It has been shown in Grammenos and Kolassis (1992) that all energy conditions 
are satisfied during the whole period of collapse until the horizon formation, i.e. 
the model is physically acceptable, for the range 

0 < ab 2 < 0.85. (2.21) 

3. Thermodynamieal Considerations 

The collapsing fluid has to satisfy the following relations (Treciokas and Ellis, 
1971): 

(a) The equation of conservation of matter (baryon conservation), 

(pu#).4, = 0, (3.1) 

where p is the baryon number density as measured in the rest frame of ~tt~. 
(b) The temperature T >_ 0 and the specific entropy (entropy per baryon) sare  

assumed to obey the Gibbs relation, 
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1 
T ds  = dFI + p d - ,  (3.2) 

P 

where the internal energy density Il is defined by 

v = ,o(1 + rt), (3.3) 

# being the energy density of the fluid. 
At this poin.t one taust notice that the Gibbs relation holds certainly near thennal 

equilibrium , i.e. at the ear]y stages of the collapse. For large deviations from 
thermal equilibrium which is the case at the late stages of the collapse, one taust 
be extremely careful with the use of relation (3.2). 

(c) The second ]aw of Thermodynamics, 

s~ __ 0 (3.4) 

according to which we have a positive entropy flux production. The entropy flux 
vector s ~' is defined by 

qU 
s u = p s u  ~* + - ~ .  (3.5) 

The second law together with the conservation law and the axiom of local equi- 
librium (Gariel, 1986), which stares that the specific entropy is a function of the 
energy density p. and the particle density n, only, lead to a linear law for the heat 
flux q, the relativistic Fourier law (Eckart, 1940): 

qU = _~hU~'(T,~, + Tu~,;~~a), (3.6) 

where ~ is the thermal conductivity which has to satisfy 

>_ 0 (3.7) 

and 

h u~' = 9 w' + u~u ~' (3.8) 

is the projection tensor. 
The linearity in the gradients of temperature and velocity is thusjustified only in 

the approximation of small deviations from thermal equilibrium. As we mentioned 
in the introduction, more complicated (non-linear in the deviation from equilibrium) 
theories of dissipative fluids have been proposed (Israel, 1976; Carter, 1989), but 
we shall assume that Equations (3.1)-(3.6) are sufficient for our purpose. 

It follows directly that inequality (3.4) is ensured by Equations (3.6) and (3.7), 
so that it will not be considered further. 

Considering at first the metric coefficients of (2.3) A,/3 as unspecified, and since 
we have heat flux only in the radial direction, the only non-vanishing component 
ofqU is the # = 1 component given by 
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(AT) ' .  (3.9) 
q -- A B  2 

Assuming now that we have radiative transfer in the diffusion approximation 
(Frank-Kamenetskii, 1962; Kippenhahn and Weigert, 1991), we can set 

»; = 7 T  '~, (3.10) 

where 7 > 0, r~ > 0 are constants. Substituting Equation (2.7) for.q into Equa- 
tion (3.9), we 0btain the following differential equation for the temperature: 

T"T'+Ä T 4 ä ' r A  [AB - = 0 .  (3.11) 

Now, returning to the particular solution (2.14)-(2.15), we get from Equation (3.9) 

q = - ~ 2  ~ b2)~ (3.12) 
x / 

Substituting (3.10) into (3.12) and integrating yields 

T,~~+1_ 7z+ l  ( A ) 
2ä 'yM u,2(1 - r2A) + F( t ) ,  (3.13) 

with F( t )  an arbitrary' function of time, to be determined later on. We taust point 
out that for q obtained by (2.7) via (2.14)-(2.15), we have 

ö~q > O, ô~q > O, O(«b:)q > 0, (3.14) 

sO q is a monotonically increasing function of r, u and ab 2. 
We choose r~ = 3 which represents the case of radiation interacting with matter 

(Frank-Kamenetskii, i 962), while 7 reads (Kippenhahn and Weigert, 1991 ) 

4cc 
"r = 3t(~; '  (3 .15)  

where e is the radiation density constant for photons and K is the Rosseland mean 
opacity. Thus, we have from Equation (3.10) 

4ec T3 
~: = , (3.16) 

3 K p  

while Equation (3.13) becomes 

rrTM u 2 ( l - r L X )  + F ( t ) .  (3.17) 
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Now, the effective surface temperature of a star is given by (Misner, 1969): 

T~: 4~L-~ L, (3.18) 

with 8 a positive constant (Frank-Kamenetskii, 1962) and L given by Equa- 
tion (2.18). With the help of Equations (2.10), (3.17), and (3.18) we determine 
the arbitrary function F ( t )  to be 

ùF(~) 2 (  ,~ ) 2Ò2,~ [2 
rrTM. u2(1 _ b2A) -t- 7r(53/af2( i ZB2/~)2u 4 -47 - -  

Finally, we have from Equation (3.17) utilizing (3.19) 

T4 _ 2 ,~2(b2 - r 2) q- 2b2A 
7r"/3I u2(1 - b2A)(1 - r2),) 7rSM2(1 - b2A)2u 4 

while on the surface E, 

2b2A I2  I +  b2A] 2 

1 + b2A] 2 

1-gä] 
(3.19) 

'2 1 +  J b2 A- 2 
- +  
~z 1 - b2,~ ' 

(3.20) 

2 [ /~2(b2-r2! ] 

where we have used (2.20) 
The baryon conservation law, Equation (3.1), can be integrated for arbitrary 

A(r ,  t), B ( r ,  t) giving 

po(~) 
p ( r , t )  -- B3 . (3.23) 

For the particular solution (2.15), the baryon density reads 

1 b2A] u6' (3.24) 

H 
(3.22) 

Differentiation of (3.20) and (3.21) with respect to ab 2 shows that T as well as T2 
are monotonically increasing with ab 2. Furthermore, T'  < 0, so the temperature 
decreases outwards. Considering now the early stages of the collapse, i.e. u ~ - o c ,  
it follows that T --* 0, as well as Tr. --* O. The surface temperature T2 ~ 0 also at 
the stage of the horizon formation u ~ UH, but not the general temperature: 

(3.21) 
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where p0(r) > 0. 
Frorn the differentiation of (3.24) with respect to ab 2 we conclude that p is also 

an increasinq function of a,b 2. On the other hand, we find 

p ,  Pó(r) ( 1 -  r2,k'~ 3 6po(r) ( 1 - r 2 A )  2 
U 6 1 b2AJ - -  U 6 (1 -- b2A) 3r)~" (3.25a) 

Assuming a density distribution of the form (Majumdar and Tomozawa, 1992) 

po(r) = Cr -w, (3.25b) 

where w and C positive constants, it follows that pó < 0, so Po decreases outwards. 
Substituting now the above Ansatz for Po into (3.25a) we find 

p' < 0 (3.26) 

so that p decreases outwards. We also find that 

B > 0 (3.27) 

so that p increases monotonically with the time u. Initially (u ~ - e c )  p vanishes, 
while at the instant of the horizon formation ,tH, p becomes 

p(~,,) = po(,') (1 -r2A) 3 
I b2•, } It u6"  (3.28) 

The total baryon number N, enclosed by a sphere of arbitrary radius r~, is given 
by (Misner, 1969) 

rE 

N = f p,tO(-9) 1/2 d3x.  (3.29) 

0 

Substituting p from (3.23), - 9  from (2.3) and insertinq u ° = 1 lA,  we find 

ON 
= 0, (3.30) 

Ot 

i.e., N is time-independent for any A(r, t) and B(r, t). Furthermore, N (i.e. ,o0(r)) 
is fixed by the initial conditions. Substituting now the Ansatz (3.25b) for Po into 
(3.29) we get for w 

O < w < 3 ,  

while the constant C reads 

2b 3 3 - w 

(3.31) 

(3.32) 
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On the surface r s  = b, we have 

N 
C - M3rc2bW(3 - w). (3.33) 

From the Gibbs relation, Equation (3.2), one obtains the following set of differ- 
ential equations for the specific entropy: 

pTs '  = [#' - (# + p)P'], (3.34a) 
P 

pTk = [fi - (# + p) -P-]. (3.34b) 
P 

Substituting into (3.34a) the corresponding equations for #', p and p' which one 
obtains from (2.5), (2.6), and (3.23) with the particular solution (2.14)-(2.15), 
yields 

6rA [2 A(ó 2 - r 2) 
pTs '  = 7 1 . ~ I 2 ~ 4 (  1 _ 7.2&)2 I_ ~ (1 -- b2A)(1 - T2&) q'- 

1 (po  6rA ) 
q 7rM2u~ kPO 1 Z ~A x 

I 3 { 2  ,~(b2 r2 ) 2 4b2) ~ 

× [ 2 ~ - -  *t (1 -- ó2A)(I - ~.2~) q- (1 -- b2A) 2 

2(1-27A~i----r2A) + I - r 2 A  1 -b2A 2 .(3.35) 

The algebraic investigation of (3.35) has shown that 

s' > O, (3.36) 

i.e. the specific entropy increases outwards during the whole period of collapse 
until the horizon formation, in accordance with the theory of stellar evolution 
(Zel'dovich etal.,  1971). 

Due to the complexity of (3.34b), it has not been possib|e to deduce a conclusion 
concerning k (~ < 0 could be expected). 
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