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Abstraet .  Recently a homogeneous cosmological model free from singularities was proposed, based 
on the general relativity theory. It described a c]osed universe (k = + 1), initially filled with prematter, 
characterized by a density p equal to the Planck density and a pressure P = - p ,  and undergoing 
oscillations. In the present work the oase ofa similar, but spatially flat, universe (k = 0) is investigated. 
In this oase there is an initial geometric singularity (the scale factor R -- 0), but not a physical one, 
since the initial density is finite. This universe begins its existence at a time ~ = -c~o and, after 
going through the prematter and radiation-dominated eras, reaches the matter-dominated stare and 
continues to expand indefinitely. 

1. Introduction 

Recently a cosmological model was proposed (Israelit and Rosen, 1989) which had 
no singularities and which oscillated in time. It described a closed universe (k = 1, 
where k is the curvature parameter in the Robertson-Walker metric), characterized 
by the fact that at the beginning of the expansion phase it was filled with "prematter" 
for which 

P : - p ,  (1) 

with P the pressure and p the density. With prematter initially present there are 
also models with k = 0 (spatially flat) and k = - 1 (open). In the above work these 
models were rejected because in each of them there was a time at which the scale 
parameter Æ of the Robertson-Walker metric vanished, and this was regarded as a 
singularity. However, orte can argue that, when R : 0, the density p in these models 
is finite, and not infinite as in the case of the "big bang" models and therefore orte 
does not have a physical singularity. Based on this standpoint, the present work 
investigates the model with k : 0. The motivation for this work is that there are 
a number of theoretical arguments in support of the assumption Æ : 0 (Primack, 
Seckel and Sadoulet, 1988). 

2. Outline of Model 

Since the present work is similar to the earlier one (Israelit and Rosen 1989), 
to be referred to as (I), it will be less detailed. We consider here a spatially flat 

Astrophysics and Space Science 204:317-327,  1993. 
Q 1993 KluwerAcademic Publishers. PrhTted in Belgium. 



318 MARK ISRAELIT AND NATHAN ROSEN 

homogeneous and isotropic universe with a geometry determined by the Einstein 
gravitational equations and described by a Robertson-Walker line-element 

ds  2 = d t  2 - Æ 2 ( t ) ( d r  2 q- 7 "2 dO 2 + r 2 s in  2 0 dq52), (2) 

with coordinates (xO,x l , x2 ,x  3) = (t,r;O,¢) and scale parameter R(t). The Einstein 
equations lead to the relations 

/~2 = (8a_/3)pR2, (3) 

= -47fR p + P  , (4) 

where p and P are functions of t, and a dot denotes a t-derivative. There is also the 
energy-conservation relation, which assures the consistency of the field equations 

B + 3(Æ/R)(p+ P) = O, (5) 

with p and P related by an Eq. of state. 
It is assumed that initially the density is of the order of the Planck density 

pp = c3/ÆG = 3 .83  × 1065 c m  - 2 ,  (6) 

and that at this density one has prematter with the Eq. of state (1). For the sake of 
definiteness it will be assumed that the initial density is equal to pp. The prematter 
period is followed by a radiation-dominated period for which the equation of state 
is that of isotropic radiation, 

1 
P = a-P; (7) 

3 

and this is followed by the present, matter-dominated period for which one can 
take 

P = 0. (8) 

3. Prematter-Radiation Periods 

To describe the transition from prematter to radiation we will take the same equation 
of state as in (I), 

4 2 
P = ~p- 3 p/pp, (9) 

so that for p = pp we get Eq. (1) and for p « pp Eq. (7). It should be stressed that 
Eq. (9) is not a fundamental equation. It has been chosen because it is simple and 
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provides a transition between the two equations of  state, but there are many other 
possible choices. Putting Eq. (9) into Eq. (5), one finds 

a4pp (10) 
P -- a 4 -I- R 4 '  

where a is an arbitrary constant. From Eq. (9) and (10) orte gets 

P = a4f lp(Æ4/3 - a4) (l 1) 
(a 4 -I- .~4)2 

Let u s t a k e a  = 1 × 10 -3 cm as in (I). Then, f o r R  « a , p  = - P  = pp, 
corresponding to prematter. In this case Eq. (3) takes the form 

kZ R2 = - -  ( t2 )  

where 

R I  = (3 /8rcpp)  U2 = 5.58 x 10 -34 cm, (13) 

so that the solution corresponding to an expanding universe is given by 

R = Rlet/t~+; (14) 

where we have chosen the constant of  integration so that, at t = 0, R = R1 « a. 
At t = - o c  we have R = 0, but the density p = tip, is finite, so that one can say 
that there is no singularity. 

Ler us now consider the more general situation described by Eq. (10). Putting 
the latter into Eq. (3), we ger 

k2  = ~/~2/((t4 _~ j~4): (15) 

with 

9 fl = (87c/3)a4pp = a4 /Æ 2 = 3.21 × 1054 cm", (16) 

For R » a one is dealing with the radiation-dominated period. Eq. (10) then gives 

fl = a4 f lp/Æ 4. 

If  one puts this into Eq. (3), one gets 

R2Æ 2 = / 3 ,  

(17) 

(18) 

which has the solution 
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R 2 = 2/31/2(t - to) (t0 = constant), 

so that Eq. (17) gives 

3 
P = 327r(t - to) 2" 

In the general case the solution of Eq. (15) can be written 

t = tl + /~,1 / (1 + x 4 ) l / 2 x  -1  dx, 

(19) 

(20) 

(21) 

where tl and R1 are any values of t and R which satisfy Eq. (14), and R~ « a. 
Carrying out the integration and making use of Eq. (14) for tl and R1, one finds 

t _ (1  1 + R4)1/2 1 [l+(R4/a4)]l/2 1 1 ( l + l n +  In - R2"~. (22) 
R1 2 äT  4 [1 + (t'g4/a4)]l/2 T 1 2 2a 2 ] 

From Eq. (22) we get 1, for various values of R and from Eq. (10) the corresponding 
values of p. For R « a Eq. (22) goes over into Eq. (14). 

For R » a one gets Eq. (19) with the constant to negligibly small. 

4. Temperature and Entropy in the Early Universe 

To investigate the temperature T and the entropy S of the universe dufing the 
prematter-radiation periods, we proceed as in (I), following Weinberg (1972). We 
take p = p(T), P = P(T), and write 

dS(V, T) = T[d(pV)  + PdV] .  (23) 

Here V is the volume of some part of the universe having a fixed boundary in the 
space of r, 0, ¢. From Eq. (2) we can write 

V = VOR), (24) 

where V0 is the volume determined by the spatial coordinates. For example, we 
can take a sphere with r _< r0 (r0 = constant), so that 

4 3 
Vo = ~zcr o. (25) 

For dS in Eq. (23) to be an exact differential one finds that one must have 

dP  1 
dT  = T(P  + P)" (26) 
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One can then integrate Eq. (23), thus obtaining 

V 
S = ~-(p + P) ,  (27) 

where the integration constant has been taken to vanish. Making use of equations 
(5), (24), (26), and (27), orte finds 

dS 
- -  = o ;  ( 2 8 )  
dt 

so that there is entropy conservation in a fixed volume V0. 
If we put P from Eq. (9) into Eq. (26) and integrate the latter, we ger 

p ( l  -- p/pp) 7 = O'T 4, (29 )  

with the integration constant cr taken equal to the Stefan-Boltzmann constant, 
cr = 6.24 × 10 - 6 4  c m  - 2  K -4, so that for p « pp orte  gets the Stefan-Boltzmann 
law for black-body radiation. Ifin Eq. (29) we take p as given by Eq. (10), we get 

(~:),,4 o~7 
T = ( a  4 .4_ Æ 4 ) 2 '  ( 30 )  

w i t h  (rOp/O') 1/4 = 1.574 x 1032 K. As t --+ - o e ,  R ~ 0, and T ~ 0. For t = 0, 
R = R s ( «  a), one gets T = 2.65 x 10 -18° K. As R increases, T increases, 
attaining its maximum value, T = 7.41 × 1031 K, for R 4 = 7a 4. During the 
radiation-dominated period (R, » a) Eq. (30) gives 

T = (pp/cr)l/4a/Æ = C , / R ,  (31 )  

with C = 1.574 x 1029 cmK. If we assume that Eq. (31) holds for the cosmic 
microwave radiation, which has a temperature of 2.73 K, then one gets for the 
present value of R 

R/v = 5.77 x 1028 cm. (32) 

From Eq. (27), if one expresses V, T, p, and P as functions of R according to 
equations (24), (30), (10), and (11), one finds 

= ~(pp/cr)-ll4ppa,3I/-O = 3.24 x 1025I;0 cm K - j ,  (33) S 

thus verifying that S is indeed constant during the prematter and radiation periods 
as Eq. (28) asserts. 

We have seen from Eq. (30) that the temperature T has a maximum for t{4 = 7 a 4  

It is interesting to note that the pressure P given by Eq. (11) also has its maximum 
value for/~4 = 7a4 namely, pp/48. For this value of R Eq. (10) gives p = pp/8. For 
/-£4 > 7a 4, T, p, and P all decrease with increasing R, and hence with increasing 
time 1. 
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5. Radiation-Dust Periods 

For ~ß = 20a = 2 x 10 -2 cm one gets from Eqs. (10) and (11) p = 3.000075P, 
so that the universe has essentially entered the radiation-dominated period char- 
acterized by Eq. (7). According to Eq. (22) this happens at a time t = 1.50 x 
10  -31  c m  = 5.0 × 10 - 4 2  sec, and the temperature given by Eq. (30) is T = 
7.87 × 1030 K. From this time on the universe is radiation dominated and is 
described by equations (17), (19) and (20) (with to = 0), so that our model has 
essentially become the standard model (Weinberg, 1972). One can therefore discuss 
the development of our model and its transition to the matter-dominated state in 
terms of  the astrophysical processes of the standard model. However, instead of 
that, we will assume a phenomenological equation of state relating P and p during 
the radiation-dominated period, the matter-dominated (or dust) period, and the 
transition period between them. 

For the present, dust-like stare in which Eq. (8) holds, Eq. (5) gives 

p = B / R  3 (/3 = constant). (34) 

Let us use the subscript N to denote the value which a quantity has now. Then 
Eq. (34) gives 

B -- pNR~«. (35) 

With the Hubble constant defined by 

H = k / R ,  (36) 

Eq. (3) can be written as 

H 2 = (87r/3)p. (37) 

Let us take HN = 5 × 10 -29 cm-  1 (for our purpose we do not need a very accurate 
value). Then Eq. (37) gives 

PN = 2.98 x 10 -58 cm -2 (38) 

If we take RN as in Eq. (32), then Eq. (35) yields 

B = 5.72 x 1028 cm. (39) 

Let us now take, as the equation of state, that given in (I), 

= ~p2/(p + PT), (40) P 

where PT is a parameter, the transition density characterizing the change from the 
radiation state, described by Eqs. (7) and (17) for p » Pf ,  to the dust-like state, 
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described by Eqs. (8) and (34) for p « PT. Eq. (40) has been chosen because of 
its simplicity. If one uses Eq. (40) in Eq. (5), one gets 

3 
p4RI2/(P + ~PT) = C ( =  constant) .  (41) 

In the radiation period (p » PT) this gives 

p3R12 = C. (42) 

Comparing this with Eq. (17), we see that 

C 12 3 (43) = a  pp. 

In the dust period (p « PT) Eq. (41) gives 

p4Æ12 3 = -~CpT. (44) 

If we compare this with Eq. (34), we get 

4 C = 5B4/pT (45) 

It follows from Eqs. (43) and (45) that 

4 Æ4.a12 3 
PT = ~ / Pp- (46) 

With B given by Eq. (39) one gets 

PT = 2.55 × 10 -46 cm -2.  (47) 

For this value ofp  one gets the corresponding value of R from Eqs. (41) and (43), 

RT = (7/4)l/12a(pp/pT)l/4 = 6.52 x 1024 cm. (48) 

Taking for R this value in Eq. (31), we ger the corresponding value of T, which 
one might call the transition temperature, 

Tr  = 2.41 × 104 K. (49) 

This is in the range 103-105 K at which the universe is considered to have entered 
the matter-dominated era (Weinberg, 1972, p. 529). 

Now let us consider the transition from radiation to dust on the basis of Eq. (40). 
By combining Eqs. (3), (5) and (40) one gets 

(_83_~) l/2 p3/2(4p+3pT) 
B + = o. (50) 

P+ PT 
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so that one can wfite 

p 

1 /2  ( t  - -  / '2 )  = - -  p3/2(4p + 3pT) 
192 

dp = O, (51) 

Let us take P2 and/'2 a s  corresponding to the radiation period, so that P2 ~:> PT, 
and P2 and t2 satisfy Eq. (20) with to -- 0. One finds that Eq. (51) takes the form 

(87r/3)l/2t = 2 p - 1 / 2  ~, + (3pT) -1/2 [~tan-l(4p/(3pT) 1/2- 7r/6] . (52) 

For p » pT, corresponding to the radiation period, Eq. (52) goes over into 
Eq. (20) with to = 0. For p « PT, corresponding to the dust period, we get 

1 
p = 67rt z. (53) 

Putting this into Eq. (34) gives 

R 3 = 67rB/, 2. (54) 

This could also have been obtained from Eqs. (3) and (4) under the assumption 
that R = 0 for t = 0. The situation is as if we had a universe filled with dust (P = 
0) that started at t = 0 with a big bang. From Eqs. (54) and (36) we get 

2 
= (55) tN 3HN ' 

so that, with the value HN = 5 × 10 -29 cm - l  , we get tN = 1.33 × 1028 cm = 
1.4 X 101° yr as the age of the universe. 

6. A History of the Universe 

In the previous sections we developed analytical descriptions of our model in 
various periods. In order to provide a clearer picture we present here a table of 
numerical values associated with various states in the history of the universe. The 
values have been calculated with the help of the equations given above. All numbers 
are in general-relativity units except the temperature T. To go over to conventional 
units, for the time t orte takes 1 cm = 0.333 × 10-10 s, for the density p: 1 cm -2 = 
1.349 × 1028 g c m  -3, and for the pressure P:  ! c m  - 2  = 1.214 x 1049 d y n c m  -2. 

As the table shows, the universe originates at t = - c o  from a geometric singu- 
larity, R = 0. However, since p and P are finite, the physical state is nonsingular. 
The density has its maximum value p = pp, and the situation is characterized by 
the equation of state (1), so that there is tension rather than pressure. The prematter 
period continues until about t = 3.63 × 10 -32 cm. During this period, with the 
exponential dependence of R, on t, as given by Eq. (14), the universe undergoes 
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inflationary expansion. This is exemplified by the fact that during the short time in- 
terval from t = 0 to ~ = 3.63 x 10 .32 cm the scale parameter R increases by a factor 
of 1.79 × 1028. During this interval the temperature grows from 2.65 x 10 -18° K 
to 1.57 × 1018 K. On the other hand, the density p remains practically constant. 

The prematter period is followed by a period of transition to the radiation- 
dominated state (from about t = 3.63 x 10 -32 cm to about t = 1.50 × 10 -31 cm). 
Some interesting events take place during this period. At t = 3.89 × 10 -32 cm, 
when/~ = a = 10 -3 cm, orte has ]~ = 0 and the expansion rate has its maximum 
/~ = 1.27 × 103°. Therefore gravitational attraction begins to brake the expansion, 
and deceleration sets in. The negative pressure decreases to zero, becomes positive 
and grows rapidly. The temperature and the pressure both reach their maximum 
values at t = 3.95 × 10  - 3 2  cm, when R = 71/4a. At this stage T = 7.41 x 1031 K, 
and P = 7.98 × 1063 cm -2. 

It should be noted parenthetically that during this transition period radical 
changes take place in the properties of matter. As the density decreases, the 
completely homogeneous prematter converts into ordinary matter consisting of 
radiation and high-energy elementary particles. One can expect that during this 
process small local perturbations develop. These perturbations subsequently serve 
as condensation centers for the formation of galaxies. 

At t = 1.50 × 10 -31  cm, when R, --- 20a, one has P = ½p, so that the model has 
entered the radiation-dominated era. At this stage the universe has a tempërature 
T = 7.87 × 103° K, and a density p = 2.39 × 106o cm -2. From now on the universe 
behaves as if started from the big bang. During the radiation and dust periods our 
model behaves like the standard model (Weinberg, 1972). For convenience we 
have introduced equation of state (40) to describe the transition from radiation to 
dust. This process is characterized by a transition density IT  = 2.55 × 10 - 4 6  cm -2, 
corresponding to a time t = 1.15 × 1022 cm and a temperature T = 2.41 × 104 K. In 
the matter-dominated period (starting at about t = 9.63 × 10 a3 cm) there is no longer 
any interaction between the radiation and the matter. The temperatures T in the table 
now refer to the background radiation. In the last line the present data are given. 
The value of the density PN is based on the assumption HN = 5 • 10  - 2 9  c m  - 1 .  

7. Discussion 

The model considered here and in the earlier work (I) are characterized by the 
fact that in the state of maximum contraction the universe is filled with prematter 
having the equation of state (1). As the expansion takes place, the prematter goes 
over into ordinary matter. In both models it was assumed that a = 1 × 10 -3 cm and 
HN = 5 × 10 -29  c m  - 1 .  There is some arbitrariness in the choice of these values. 
However, the purpose of the work is to present a general picture of the possible 
behavior of the universe, and changing these parameters by reasonable amounts 
will not change the qualitative behavior. 

In the earlier work (I) a closed model of the universe (with k --= 1) was consid- 
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ered. Such a model oscillates in time so that it describes a universe existing forever, 
without a beginning. In the present work the spatially-flat model (with k = 0) de- 
scribes a universe that had its beginning an infinitely long time ago (t : - ~ ) .  
There remains the possibility of a model of a universe that began its existence at a 
finite time ago (t = 0). This case will be investigated in a future work. 
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