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Abstract. We utilise a form for the Hubble parameter to generate a number of solutions to the Einstein 
field equations with variable cosmological constant and variable gravitational constant. The Hubble 
law utilised yields a constant value for the deceleration parameter. A variety of solutions is presented 
in the Robertson-Waiker spacetimes. A generalisation of the cosmic scale factor is utilised in the 
anisotropic Bianchi I spacetime to illustrate that new solutions may also be found in spacetimes with 
less symmetry than Robertson-Walker. We also show that the constant deceleration parameter used 
is consistent with alternate theories of gravity by considering the scalar-tensor theory of Lau and 
Prokhovnik with a k = 0 Robertson-Walker background. 

1. In troduct ion  

The Einstein field equations a rea  coupled system of highly nonlinear differential 
equations and we seek physical solutions to the field equations for applications 
in cosmology and astrophysics. In order to solve the field equations we normally 
assume a form for the matter content or suppose that spacetime admits Killing 
vector symmetries (Kramer et al., 1980). Solutions to the field equations may also 
be generated by applying a law of variation for Hubble's parameter which was pro- 
posed by Berman (1983). It is interesting to observe that this law yields a constant 
value for the deceleration parameter. Forms for the deceleration parameter which 
are variable have been investigated recently by Beesham (1993). The variation of 
Hubble's law assumed is not inconsistent with observation and has the advantage 
of providing simple functional forms of the scale factor. In the simplest case the 
Hubble law yields a constant value for the deceleration parameter. In earlier litera- 
ture cosmological models with a constant deceleration parameter have been studied 
by Berman (1983), Berman and Gomide (1988) and others. The case of a perfect 
fluid Robertson-Walker spacetime with variable gravitational and cosmological 
constants has been pursued by Berman (1991 ). A treatment may also be performed 
in alternate theories of gravity; for example Berman and Gomide (1988) consider 
applications to the Price-Hoyle and Brans-Dicke theory. 

Our intention in this paper is to extend the resuits obtained by Berman (1983), 
Berman and Gomide (1988) and Berman (1991) by obtaining solutions to the 
Einstein field equations, with variable gravitational and cosmological constants, 
in the Robertson-Walker spacetimes. The scale factor is explicitly determined by 
the law of variation for Hubble's parameter. Explicit forms for the gravitational 
constant, cosmological constant, scale factor, energy density and pressure are ob- 
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tained for various cases. As a second application we consider a gravitational field 
with less symmetry than the Robertson-Walker spacetimes, namely the Bianchi I 
spacetimes. We show that the solutions to the classical Einstein field equations 
are consistent with a generalisation of the Hubble law used in the Robertson- 
Walker models. Furthermore we consider an example of a scalar-tensor theory, 
the theory of Lau and Prokhovnik (1986), and find that the theory is consistent 
with our specified form of the deceleration parameter. These examples suggest 
the possibility of seeking solutions to the field equations in spacetimes with less 
symmetry than Robertson-Walker and in alternate theories of gravity involving 
scalar fields. 

2. Robertson-Walker Spacetimes 

In standard coordinates (x a) = (t, r, 0, ¢) the Robertson-Walker line element has 
the form 

(1) 

where S(t) is the cosmic scale factor. Without loss of generality the constant k 
takes on only three values: 0, 1 or - 1 .  The constant k is related to the spatial 
geometry of a 3-dimensional manifold generated by t = constant. The Robertson- 
Walker spacetimes are the standard cosmological models and are consistent with 
observational results. For the case of variable cosmological constant A(t) and 
gravitational constant G(t) the Einstein field equations 

(2) 

(3) 

(4) 

become 

for the line element (1). From Equations (3) and (4) we obtain the generalised 
continuity equation 

(5) 

This reduces to the conventional continuity equation when A and G are constants. 
In an attempt to obtain solutions to the field equations we assume, as is often 
done, that the classical conservation law, Tab;b = 0, also holds. Then we have that 
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equation (5) implies the two relationships 

/2 + 3 ~ ( #  + p) = 0, 
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(6) 

8 ~ u 0  + 3. = o (7) 

which facilitate the solution of the field equations. The result (6) is just the conven- 
tional continuity equation, and (7) simply relates G and A and does not explicitly 
contain the scale factor S(t). 

In this section we consider the generalised Einstein field equations (3)-(4) with 
variable gravitational constant G(t) and variable cosmological constant A(t) for 
the Robertson-Walker metric (1). We assume that the variation of the Hubble 
parameter is given by the equation 

H = D S  -m (8) 

where D and m am constants. Then the deceleration parameter 

S(t )S( t )  

« = s 2 ( t )  

and the definition 

= S(t) 

S(t) 

imply that the deceleration parameter is constant: 

q = m - 1 .  

Other forms of q have been investigated by Beesham (1993). 
The form of the Hubble parameter (8) was first utilised by Berman (1983) and 

Berman and Gomide (1988) for the case of the classical Einstein field equations 
with Ä = 0 and (~ = 0. Berman (1991) presented a solution to the field equations 
(2) for the k = 0 Robertson-Walker spacetime: 

S = (C + mDt)  l/m, (9) 

A = B S  -2m, (10) 

G --~ OS mB/(4~rA), (11) 

A Æ-2rn-mB/(47rA) # = ~ -  , (12) 

A [m(2-1-4-~)--3]s-2m-mB/(4~rA) (13) 
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where A, B, C,/3 are constants and am subject to the following condition 

3D 2 = 87rA + B. 

We note that the equation (16) given by Berman (1991), corresponding to our 
equation (13), has an incorrect coefficient on the right hand side. Equations (9)- 
(13) comprise the general solution to the generalised Einstein field equations (3)-(4) 
with variable cosmological and gravitational constants for the Hubble law (8). It 
is interesting to observe that in this solution we obtain the equation of state for an 
ideal gas given by 

p =  o~# 

where we have set the constant ~ to be 

c~=gl  [ m ( 2 + 4 - ~ - Ä ) - 3 ]  

It is possible to avoid the horizon and monopole problem with the above variable 
G(t )  and A(t) solutions as suggested by Berman (1991). Other models considered 
which also have the relationship 

1 
A c x ~  

include Berman (1990), Berman and Som (1990), Berman et al. (1989) and Berto- 
lami (1986a, b). This form of A is physically reasonable as observations suggest 
that A is very small in the present universe. A decreasing functional form permits 
A to be large in the early universe. A partial list of cosmological models in which 
the gravitational constant G is a decreasing function of time are contained in Gr¢n 
(1986), Hellings et al. (1983), Rowan-Robinson (1981), Shapiro et al. (1971) and 
Van Flandem (1981). The possibility of the G increasing with time, at least in some 
stages of the development of the universe, has been investigated by Abdel-Rahman 
(1990), Chow (1981), Levitt (1980) and Milne (1935). 

Now we present a number of classes of new solutions for all cases of k : 0, 1, - 1 

for variable cosmological constant A and variable gravitational constant G for the 
Hubble law (8). These solutions cover both the cases of m = 0 and m ¢ 0 for the 
scale factor S: 

{[ C + mDt]  1/m 

S = E e  Dt 

for m ¢ 0, 

f o r m  = 0 

where C, D, E are constants. Our new classes of solutions, extending those of 
Berman (1991), are found by assuming an ansatz that immediately leads to a 
solution of the Einstein field equation (3). In an attempt to solve the Einstein field 
equations (3)-(4) we adopt the ansatz 
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3D 2 
SE----- ~ -- A = K, (14) 

3k 
87rGu - ~ = K (15) 

where K is a constant. This ansatz has the advantage of providing further classes 
of solutions. With the equations (14)--(15) we observe that the Einstein field equa- 
tion (3) is identically satisfied. From equation (14) we have that the cosmological 
constant takes the following form for all classes of solution: 

3D 2 
A - $2 m K. (16) 

From equation (15) we can express the energy density # in terms of the gravitational 
constant G and the scale factor S: 

113k ] # =  87rG ~ + K  . 
(17) 

Then to obtain the pressure p we utilise the continuity equation (6) with the above 
forms of the scale factor S and the energy density #. On substituting (17) and the 
derivative of equation (16) with respect to the time coordinate t into equation (7) 
we obtain the differential equation 

_ = 6 r a D  2 -  
G S 2m+l 3 k / S  2 + K 

relating G to S. Thus as the scale factor S is specified by our assumed form for the 
Hubble parameter, the gravitational constant G is known in principle. The ansatz 
(14)--(15) enables us to integrate all the Einstein field equations for a number of 
values of m, k and K.  In the remainder of this section we present a variety of 
classes of solutions to the Einstein field equations for each of the cases considered. 
We list the form of the scale factor S, the variable cosmological constant A, the 
variable gravitational constant G, the energy density # and the pressure p. There 
are other classes of solution possible for other values of ra. However the integration 
process becomes extremely complicated and here we present only the simple cases 
that follow easily from the integration process. 

( a ) m = O :  

S = EeDt~ 

A = 3D 2 - K, 
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G= A, 

1[~~ ] 
# = 87rA + K , 

P = 8rcA + K . 

In these de Sitter-type solutions A and G a r e  strictly constants because of the 
restriction m = 0. The cosmological constant A vanishes when K = 3D • and is 
positive for K < 3D 2 The scale factor S is exponential in t, so that if D > 0 then 
the universe is exponentially expanding always. Such a model is not a physical 
description of our present universe but could be applicable in the early universe in 
the inflationary scenario. For m = 0 we get the deceleration parameter q = - 1 for 
this class of solutions. The equation of state is given by 

1 K 
p = - ~ #  

12rA 3 

for k ~ 0 and for the k = 0 Robertson-Walker model we have 

and the pressures are negative. 

(b) m 7~ 0, K = 0, k 76 0: 

S = [C + mDt] l/m, 

3D 2 
S 2 m  

{ rnD2 2_2m) 
G = c~exp k(1 _ m ) S  ) ,  

3k S_  2exp~  mD2 } # = 87ra [ k(m - 1) S2-2ra ' 

1 [ 4 m D  3 3k] {mD21)S2_2m } 
V=-87r--'-ä [ ~  + ~  exp k(m- 
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This case shares the common feature that G may be increasing in time in certain 
regions of spacetime with the model proposed by Abdel-Rahman (1990). The 
relationship between the energy density and the pressure is given by 

[ 4mD2 
p = - 1 + 3kS3m_ 2 lz. 

With m = 2 this relationship becomes 

( 8D3'~9k _ p = -  1 +  ] #  

which is the equation of state of an ideal gas. The positivity of the pressure is 
dependent on the values of D and k. 

(c) m # O,K # O,k = O: 

S = [C + mDt] '/'~, 

3D 2 
A = $2--- ~ - K, 

f 3D 2 } 
G = a exp [, K---~m , 

~ {3o2} 
# =  ~ e x p  K S2m , 

i r2mo2 ] { 3o2} 
P = 87ra L S--~  --m + K exp KS2m . 

The relationship between # and p is given by 

[ 2mD2 ] 
p = KS2m 1 #. 

In this case it is not possible to have an equation of state for an ideal gas as m # 0 
by assumption. However if m = ½ we obtain a simple relationship relating the 
energy density to the pressure 

F D2S_I ] 
- 1 /  # 

p =  L- ~- J 
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from the above. This has the asymptotic behaviour that as t increases 

p ~  - #  

so that the pressure becomes negative. 

(d) m = 2 , K  ¢ 0, k ¢ 0: 

S = [C + 2Dt] 1/2, 

3D 2 
A = --ffg-- - K,  

[ (3kS -2 + K)K/k" 2D2/k 

" =  8~ro~ L (3kg~-i ¥--~)K/k J ' 

1 [~~~~+~]F o~~~~} ~°~'~ 
P = 8~rc~ [ (3kS_ 2 + K)K/k x 

[4D2S-4(2K - 3kS -2) ] kS-2 [ exp{ S-2} 2D2/k 
x L ~ ~  ~-y + 1 + ~ [(3kg~-~-~~--~«/k 

Unlike the cases considered thus rar we have a specific value for m. This gives a 
value q = 1 for the deceleration parameter. A wide range of behaviour is possible 
for the gravitational constant. The relationship between the energy density and the 
pressure is given by 

1 [4D2S -4 (2K - 3kS -2) +k (kS-2+ K ) ] #  
P = -k (3kS  -2 + K) 

which differs substantially from the equation of state for an ideal gas. 

(e) m = - 2 ,  K :A 0, k ¢ 0: 

1 
S =  

~ / c  - 2 D t '  

3D 2 
A = S_--- q- - K, 
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ex {(3k/K2) $2 - (1 /2K) . s ' }  

G = i S _ 2 ( 3 k » - :  + ~)~ . 
3k 2 ~)19~~,~, ~,  ~,_ ~ »  } ' {3~~-~+,<1 { ~-~C~~~-~+ °~ '>t~ ' 

~' = 8-"~-S~ 

= 3S•(3kS - + K) 

3k 2 
× S-18kZlK3exP I 2@S4 - "-~S } " 

Here the deceleration parameter has the value q = - 3  as m = - 2 .  The relationship 

between the energy density and the pressure is given by 

[6k2 3k - S 6 
p --= 2 ~ ~  + 3S2(3kS-2  + K~] /~" 

As for case (d) we do not obtain the equation of state for an ideal gas. 

(f),~ = ½,K :/= o,k # o: 

1 
2 

3D 2 
A -  K, 

S 

-1 

P = - 87r---~ 

For this class of solutions the deceleration parameter has the value q = -½ as 
1 The relationship between the energy density and the pressure is given by 

p =  [ 3 k + K S 2 - 1  ~" 
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In this case it is not possible to have an equation of state for an ideal gas. As in 
case (c) as t increases we have the asymptotic relationship 

p ~ - #  

so that the pressures may be again negative. 

(g) m = 2, K :/: 0, k ¢ 0: 

[ 2 ] 3/2 
S = C + ~Dt]  , 

3D 2 
A = $4/--- 5 - K,  

($2/3+a)2  exp 6arctan ( 2 S 2 / 3 - a  
G = Ot 84/3  _ aS2~ 3 + a2 ~, V~ a 

1 [3ks2+,q× 

[$4/3 -- aS2/3 + 0~2 {_6arctan(2S2/3-a) D2/K«2 (~--~/ä ~ äß exp }] × ~, ~ ~  ' 

P - - 8 7 r a [  (S2 /5Tä)2-  e x p - 6 a r c t a n k ,  ~ ä  x 

[ 2o2~3k~2+~/[ ' ~s2,3+o,2 ]] 
X k S  -2  -~- K -Je ~ $4/3 _ «$2/3 q- t~ 2 x 

X 
[ s2/3 _ ~_ 

(8 2/3 "l- O,) 3 

4V~ (S  4 / 3 -  a ~  2/3 -'1-t~ 2) 

(S  2/3 -4- a)  2 (3a  2 -t- ( 2S  2/3 -- tZ) 2) 

Clearly in this case we cannot obtain the equation of state for an ideal gas from the 
above equation. 

In the above we have presented a number of new solutions to the Einstein field 
equations with variable cosmological constant and gravitational constant which 
satisfy the Hubble variation law given by Equation (8). It is remarkable that this 
simple law leads to a wide class of solutions. It is clear that other choices of 
m will lead to complex forms of the dynamical variables which makes studying 
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the physical properties of these solutions in any detail difficult. It is interesting 
to observe that solutions are admitted in which the gravitational constant may 
be increasing with time (cf. Abdel-Rahman, 1990). The ansatz utilised to solve 
the Einstein field equations (3)-(4) is very simple. It might be worthwhile to 
investigate other possibilities that lead to solutions to the Einstein field equations 
with interesting behaviour for the gravitational constant and cosmological constant. 

3. BianchiI Spacetime 

We now analyse the spatially homogeneous and anisotropic Bianchi I spacetime 
described by the line element 

ds 2 = - d t  2 + A2(t) dx 2 + B2(t) dy 2 + C2(t) dz 2. (18) 

This spacetime is a generalisation of the k = 0 Robertson-Walker spacetime and 
is offen utilised in the study of anisotropic models. For a perfect fluid energy 
momentum tensor Tab the Einstein field equations (2) with variable cosmological 
constant A(t) and gravitational constant G(t) can be wfitten as the coupled system 
of differential equations 

AB AG BC 
A B  + Ä-C + B---C - A = 8 rG#,  (19) 

+ f r 0  + ~ - A = - 8 ~ C p ,  (20) 

ï + Ä-~ + -~ - A = -8rcGp, (21) 

Ä Ä~O h 
Ä + Ä-~ + ~ - A = -87rGp. (22) 

With A = 0 and G a constant we regain the classical Einstein field equations from 
the above equations. In the case # = 0 = p and A = 0 we obtain the vacuum 
Kasner solution 

A -- [a + ~t] pl , 

B = [a + ~t] v2, 

c = [~ + ~t]p, 

where ,~ and ~ are constants and 

Pl +P2  +P3 = 1, 
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p~ + p~ + p~ = 1 

must be satisfied for a consistent solution. The constants a and/3 are not essential 
to the solution and may be eliminated using the transformation t" --~ a +/3t .  We 
note that the general Bianchi I solution for dust (# -~ 0, p = 0) is also known and 
is listed by Stephani (1990). The form of solution for dust is similar to the Kasner 
solution given above. Other special cases of solution are listed by Kramer et al. 
(1980). 

We will show that the Hubble variation (8) used previously is consistent with the 
Bianchi I spacetime (18) for the vacuum field equations. It is possible in principle 
to perform a similar analysis for the Einstein field equations (19)-(22) with vari- 
able cosmological constant and gravitational constant. To perform an analogous 
discussion to the previous section we need to define the function 

S = ( A B C )  U3 

as an "average" of the anisotmpy. Clearly this definition for the Bianchi I spacetime 
reduces to the scale factor of the flat k = 0 Robertson-Walker spacetime when we 
have A = B = C. Then the above definition gives the following form for Hubble's 
constant 

H - ~ - ~ (ln A B C ) "  
S 

This form of the Hubble parameter was utilised by Misner et al. (1973) in studying 
adiabatic cooling of anisotropy in the early urliverse. For the vacuum Kasner 
solution the Hubble law is of the form 

~[~] ~~3, g=g 
from definition. Is this form of solution consistent with the Berman variation law? 
To answer this question we taust compare this result with the Hubble law obtained 
from (8). Using the scale factor S defined above for the anisotropic Bianchi I 
spacetime we obtain the following form 

D 
H = D S  - m  (ex + fit)m~ 3" (24) 

On comparing equations (23) and (24) we have 

m = 3  D = 3 / 3 .  

Thus we have verified that the vacuum Kasner solution is consistent with the 
Hubble variation law 

D 
H =  

C + m D t  
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with m = 3. In fact the vacuum Kasner solution remains unchanged with this 
variation of the Hubble law as the only modification involves a rescaling of the 
arbitrary constant/3. 

The above solution for the Bianchi I spacetime is interesting as it suggests that 
the class of solutions presented for Robertson-Walker spacetimes may be extended 
to other spacetimes with less symmetry. It is possible that this approach may lead 
to new solutions of the Einstein field equations. We may extend the arguments 
given above in the Bianchi I spacetime to include the case of variable cosmological 
constant and gravitational constant. We illustrate this possibility with an elementary 
solution of the Einstein field equations (19)-(22). It is interesting to note that the 
vacuum Kasner solution consistent with the Berman law H = D S  - m  extends to 
the case of variable cosmological constant and gravitational constant. It is clear by 
simple inspection that this solution is admitted by the field equations (19)-(22) if 
the cosmological constant satisfies 

A = 87rGp 

and we have for the pressure 

p =  - # .  

Thus the pressures are negative for a Kasner-type solution with variable cosmo- 
logical constant and gravitational constant. We note that there is freedom in the 
solution as we can arbitrarily specify the behaviour of the cosmoiogical constant 
or the gravitational constant. Even though this solution is very simple it illustrates 
that there are solutions to the Einstein field equations with variable cosmological 
constant A and gravitational constant G consistent with the Berman law (8). The 
simplest starting point for other solutions in the Bianchi I spacetime would be to 
choose the form of A and G so that the metric functions generate a behaviour which 
is similar to that of the Kasner solution. 

4. Scalar-Tensor Theory of Lau and Prokhovnik 

The law for the variation of Hubble's parameter (8) is also consistent with scalar- 
tensor theories of gravity that reduce to Einstein's general relativity. We illustrate 
this with the scalar-tensor theory of Lau and Prokhovnik (1986). This is a theory 
with variable cosmological constant and gravitational constant but, in addition, it 
has a scalar field ¢. The theory was structured so that it is consistent with the Dirac 
Large Numbers Hypothesis (Dirac, 1938, 1979). This theory was also investigated 
by Maharaj and Beesham (1988) who presented solutions to the field equations 
of Lau and Prokhovnik (1986) for the flat k = 0 Robertson-Walker spacetime. 
The generalised field equations in the scalar-tensor theory of Lau and Prokhovnik 
(1986) are given by 

1 R Rab -- "~ gab + Agab = 87rGT«b + ~ß,a¢,b (25) 
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1 =00_;.2 ~D¢ + Ä + ~y ~ + go%~ + 8~CL.~ = o (26) 

where 

1:3¢ «b Œ g ¢;ab. 

Here Lm is the matter Lagrangian density including all non-gravitational fields. 
The quantity 

A = A(t) - 1 _00_z2 ~y w 

is a generalisation of the normal cosmological constant but is equivalent to the 
cosmological constant used before in Robertson-Walker spacetimes. The field 
equation (25) is a generalisation of the classical Einstein field equation to incor- 
porate variable cosmological constant A, gravitational constant G and scalar fields 
~b. The other field equation (26) govems the behaviour of the scalar field ¢. For 
details of the derivation of (25)-(26) see Lau and Prokhovnik (1986). 

In this section we follow the notation of Lau and Prokhovnik (1986). This 
enables us easily to compare our results with those of Maharaj and Beesham 
(1988). In the case of the k -- 0 Robertson-Waiker spacetimes for compatibility 
with the Dirac Large Numbers Hypothesis (Dirac, 1938, 1979; Lau, 1985) we can 
show 

S2(t) = f l  (a  + f t )  2/3, (27) 

G(t)  = f2(o~ + f r ) - ' ,  (28) 

(Lm =)#(t)  = f3(a  + fr)  -1, (29) 

¢ = ~ 82 - 87rf2f3 ln(a + Bit) + A, (30) 

= - l B 2 ( a  + f r )  -2 (31) A 

as established by Maharaj and Beesham (I 988). The solution to the field equations 
in the theory of Lau and Prokhovnik (I 986) is given by Equations (27)-(31 ). The 
solutions presented are analogous to those of Maharaj and Beesham (1988). It is 
interesting to observe that the cosmological constant has the behaviour 

1 
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This is the same form as the solutions presented by Berman (1991) for variable 
cosmological constant and gravitational constant without a scalar field ~b (also see 
Section 2). This form of the cosmological constant is consistent with observations 
of present day values for the cosmological constant which are small. 

Using the definition for the Hubble parameter we have that 

~ : s _  ~___~~ 
S a+/3t" 

However from Section 2 for m ¢ 0 in the Robertson-Walker spacetimes we have 
that 

D 
H =  

C +mDi 

which follows from the Berman hypothesis that the deceleration parameter is 
constant. Thus we have established that if 

m = 3 ,  C=3a, D=~,  

then the dust solutions, for the k = 0 Robertson-Walker spacetime, in the theory 
of Lau and Prokhovnik (1986) are consistent with the Hubble variation law H = 
DS -m. This example shows that the Hubble variation utilised in this paper may 
be useful in studying solutions of the field equations in scalar-tensor theories. It 
has the advantage of immediately specifying the scale factor. This is helpful in 
alternate theories of gravity as the normal variables are supplemented with the 
cosmological constant, gravitational constant and scalar fields. The Berman (1983) 
ansatz provides a mechanism to reduce the number of variables in an undetermined 
system of differential equations. 
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