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Abstract. Some aspects of viscous cosmological models, mainly of Bianchi type-I, are studied, in 
particular with the purpose of trying to obtain a natural explanation of why the entropy per baryon in 
the universe, cr ~ 109, is so large. Using the FRW metric it is first shown, in agreement with previous 
workers, that the expressions for the bulk viscosity as derived from kinetic theory in the plasma era 
is incapable of explaining the large value of o-. However it is possible to imagine the viscosity to be 
an "impulse" viscosity operative in one or several phase transitions in the early universe. This is the 
main idea elaborated on in the present paper. It is shown that in the k ----- 0 FRW space, an impulse 
bulk viscosity (inn "~ 1060 g cm-i  s - l )  acting at the phase transition at the end of the inflationary 
epoch corresponds to the correct entropy. If the space is anisotropic, it is natural to exploit the analogy 
with classical fluid dynamics to introduce the turbulent viscosity concept. This is finally discussed, 
in relation to an anisotropy introduced in the universe via the Kasner metric. 

1. Introduction and Summary 

Perfect fluid models have for a long time been used in cosmological theory. The 
introduction of viscosity concepts came later, and there has in fact been an open 
question as to whether the viscosity concept is needed for an explanation of the 
observed quantities in the universe. Misner (1968) was probably the first to intro- 
duce viscosity in cosmological theory in connection with his study of how initial 
anisotropies in the early universe become relaxed. Cosmological models with vis- 
cosity terms have later now and then been discussed in the literature, from quite 
different points of view. GrCn (1990) has recently given an extensive review of the 
subject, and the reader is referred to it for detailed information and more references 
to the literature. 

From a physical point of view it would in our opinion be almost surprising if the 
viscosity concept were not of importance in cosmology. An essential ingredient of 
the Riemannian model of the universe is after all to borrow the energy-momentum 
tensor from nonviscous fluid dynamics and insert it into the Einstein equations. 
From fluid dynamics we know that in many situations the nonviscous theory is 
inadequate, in particular if anisotropies, or turbulence effects, are involved. Use of 
the molecular shear and bulk viscosities means in effect an expansion of the theory 
to first order in the deviation from thermal equilibrium. Moreover, once turbulence 
occurs in the velocity field, it is the Reynolds stresses that essentially govern the 
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behaviour of the fluid. In view of these known facts from ordinary fluid dynamics 
we are somewhat reluctant in accepting cosmological theory as an exceptional case 
wherein the viscosity concepts are of no use. One main reason why the viscous 
cosmological theory has so far not gained large popularity is undoubtedly that the 
viscosky-produced entropy - at least in the lepton or plasma eras - seems to be 
small. The nondimensional entropy cr per baryon is observed to be very large, 
cr ,-~ 109, and previous investigations have shown that a straightforward use of the 
kinematically derived bulk viscosity in the isotropic and homogeneous universe 
is unable to explain this large magnitude (see, for instance, Weinberg 1971, 1972; 
Johri and Sudarshan 1988). 

The fluidlike behaviour of the universe during its early epochs is however in 
all probability very complicated. We shall in the following focus attention on two 
facets of the problem that have so far been little studied: 

1) Phase transitions in the very early universe may lead to sudden changes whose 
description may conveniently be given in terms of phenomenological viscosity 
coefficients. An eclatant example of this sort is the transition from the de Sitter 
universe back to the Riemann universe at the end of the inflationary era, at t ,.o 
10 - 3 3  S. We shall call an effective viscosity operative during such a phase transition 
(bulk viscosity in case of an isotropic universe) an "impulsive" viscosity. It is 
conceivable that the impulse-viscosity picture is applicable at later times in the 
universe's history also, at least at times prior to the lepton era beginning at t ,,, 
10 -5 s. 

2) It may turn out to be necessary to introduce turbulence when the early universe 
is pictured as a fluid. What we wish to focus attention on, is the possibility one 
has to introduce the turbulent viscosity concept in cases when the fluid possesses 
shear. We present a simple picture in which there occurs an "impulse" turbulent 
shear viscosity in a universe whose anisotropy is governed by the Kasner metric. 
The impulse viscosity is for definiteness taken to be operative at the beginning of 
the lepton era. 

The organization of the paper is as follows. In the next section we summa- 
rize useful information about the general form of the energy-momentum tensor in 
the presence of expansion, shear, vorticity, and thermal conduction, and give the 
covariant expression for the rate of entropy production. The formalism is there- 
after applied to the Friedmann-Robertson-Walker (FRW) metric; the Friedmann 
equations, and the Saha equation, are discussed. In Section 3 we consider the 
entropy production during the plasma era, basing the analysis on the kinematically 
derived expressions for the viscosity coefficients by Caderni and Fabbri (1977), 
van Leeuwen et al. (1973, 1975) and others. The numerical results derived by solv- 
ing the Friedmann equations are qualitatively in agreement with those obtained 
earlier by other workers: the amount of produced entropy predicted by this kind 
of formalism in the plasma era is far too small to account for the large observed 
value of a. In Section 4 we then turn to the "impulse" viscosity idea, requiring 
that a bulk viscosity ~infl is operative at the end of the inflationary period. We find 
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that if (in~ _'2 1060 gcm -1 s -1, the produced entropy in the phase transition is of 
the right magnitude. Finally, in Section 5 we reconsider the impulse viscosity idea 
but now from a different point of view, namely as a shear turbulent viscosity in 
a universe which is made anisotropic by adoption of the Kasner metric. We base 
this analysis upon analogy with the immense usefulness of the turbulence viscosity 
concept in classical fluid mechanics, in cases when the fluid possesses shear. It 
is well known that in fluid mechanics the mere use of molecular viscosity coeffi- 
cients would in many cases be quite inadequate; it becomes necessary to model the 
turbulent Reynolds stresses in some way, and here the use of turbulent viscosities 
quite generally stands out as a very simple and effective tool. In case of the Kasner 
universe, we find Tltur b ~--- 5 × 1031 gcm -1 s -1 operative at the beginning of the 
lepton era corresponds to the correct magnitude of tr. 

We use cgs units, although the speed of light is taken to be unity in the theory. 
Full cgs units are reinstated in expressions requiring actual evaluation. 

Finally, as already mentioned, the viscosity concept in cosmology has been 
looked upon from quite different points of view. Without going into any detail, 
let us just mention three different lines of thought that have been discussed in the 
recent literature. 

First, is has been argued that there are strong similarities between isotropic 
cosmological theories involving bulk viscosity coefficients and theories involving 
creation of matter. As Lima and Germano (1992) have pointed out, if one requires 
equality between the dynamic pressures predicted by the two theories, then one can 
express the particle creation rate in terms of known parameters and moreover obtain 
the same kind of cosmological solution as in the viscous model of Murphy (1973). 
[The paper of Murphy sent shock waves through the cosmological community since 
it claimed the initial singularity to be avoidable by introducing the bulk viscosity 
concept in the formalism. Although Belinskii and Khalatnikov (1975, 1977) later 
criticised Murphy's model for corresponding to very peculiar parameter choices, 
the model has nevertheless continued to attract interest during the years.] Theories 
involving creation of matter have been discussed from a thermodynamic point of 
view by Prigogine and coworkers (Prigogine, 1989; Prigogine et al., 1989), and by 
Calvao et al. (1992). 

Secondly, it is natural to link the cosmological viscosity to the dark matter 
problem, the explanation of which is one of the great challenges at present. About 
90 percent of the matter in the universe is non-luminous. It is currently thought 
that massive dark matter particles (such as WIMPs) may well account for the 
missing mass. [See, for instance, the recent review article by Pretzl (1993).] If the 
mixture of ordinary (luminous) and dark matter can be considered as an imperfect 
fluid, then the situation is immediately open to a natural use of the cosmological 
viscosity concept. Pavon and Zimdahl (1993) have discussed the magnitude of the 
bulk dissipative stress which can be ascribed to the presence of dark matter. It is 
also worth noticing that recent numerical calculations seem to select a mixture of 
hot and cold dark matter (Davis et al., 1992; Taylor and Rowan-Robinson, 1992). 
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As the third and final point we mention the possibility of taking magnetic fields 
into account in viscous cosmology. In a series of papers, Coley and Tupper (1983, 
1984) and Benton and Tupper (1986) have discussed cosmological models of this 
sort and shown that it is possible to satisfy the Einstein equations, the dominant 
energy condition (Hawking and Ellis, 1973), and the positivity conditions for the 
transport coefficients. Moreover, the authors show that their solutions satisfy the 
relativistic thermodynamic relations in the form originally given by Eckart (1940). 
In general, it seems that the viscous magnetic models deserve to be studied, since 
there is at present a weak cosmic magnetic field which may be the remains of a 
strong magnetic field in the plasma era. 

2. Basic Formalism 

2.1. DEFINITION EQUATIONS. ENERGY-MOMENTUM TENSOR 

We use the convention in which the Minkowski metric is (-+++). Greek indices are 
summed from 0 to 3, Latin indices are summed from 1 to 3. Let U" = (U °, U i) be 
the four-velocity of the cosmic fluid. In comoving coordinates, U ° = 1, U i = O. 

Let 9m, be a general metric. Using the projection tensor 

hu~' = gu ,  + UuU~,, (1) 

we define the rotation tensor as 

1 U w,~, = h#'~hJU[c~;Z] = 7 (  u;c~h~, '~ - Uu.c,h, '~) (2) 

and the expansion tensor as 

0,~, = h,'~h~,ZU(~;Z) = I (U#;,~h~Y + U~,;,~h#'~). (3) 

The scalar expansion is 0 = 0u u = U;lU,. The shear tensor, as defined by 

auu =- O,u - l huuO, (4) 
3 

is traceless, i.e. a# u = O. The following decomposition of the covariant derivative 
of the fluid velocity is often useful: 

Um~, = ~ v  + a~ ,  + 1-ht.,O - A~U~,. (5) 
3 

Here A ,  - b'u = U~,U~;~, is the four-acceleration of the fluid. 
Let us write down the expression for the energy-momentum tensor T#u of the 

viscous fluid, taking into account also the conduction of heat. Let r/be the shear 
viscosity, ~ the bulk viscosity, and ~ the thermal conductivity, all quantities taken 
in accordance with their nonrelativistic definitions. Then, if 
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Qu = -ahU~ ' (T . v+  T A u )  (6) 

denotes the spacelike heat flux density four-vector, we have 

T w, = pUuU,, + (p - ¢O)ht,~, - 2~1o~, + QuUv + Q~,U~,, (7) 

where p is the mass-energy density and p the isotropic pressure, both taken in the 
local rest inertial frame. The last term in (6), containing T A r ,  is of relativistic 
origin. If one ignores this term, one is left with Q~' = -~hJ'VT,~,. This expression 
is defined such that in a local rest inertial frame (designated by a "hat") Q6 = 0, 
whereas Q~ = - ~ T ~  is the heat energy per unit time crossing a unit surface 
orthogonal to the unit vector e~. 

Consider finally the production of entropy. It is here physically instructive to start 
from the nonrelativistic theory. Let ui be the nonrelativistic velocity components, 
and let a be the nondimensional entropy per particle (baryon). The ordinary entropy 
per unit volume is thus S = nkt3cr, where n is the baryon number density and kB 
is Boltzmann's constant. Then (Landau and Lifshitz, 1959) 

dS 2r/ 1 ~ ~ 2 
dt - ¥ (0 k - g6i v, u) 2 + ( v .  u) 2 +  (VT) , (8) 

where Oik = U ( i , k ) .  The transition to relativistic theory may be made by means of 
the effective substitutions 

Oik ~ Ore,, 3ik --* h,~,, V . u ~ 0, - a T k  ~ Q~,, (9) 

from which we obtain 

1 
-2 Q,Q, . (lo) 

Here, S ~ is the entropy current four-vector 

1 Q.. (11) S ~ = n k B a U "  + -~ 

The same result follows from a more careful analysis taking into account the 
relativistic thermodynamic equations (Weinberg, 1971; Taub, 1978). 

2.2 .  O N  THE FRIEDMANN COSMOLOGY 

Let us summarize some of the characteristic properties of this theory: we start from 
the FRW line element 

ds2 = -d t2  + R2(t) 1 - kr  -------g + rZ(d02 + sin2 0d42) ' (12) 

where R ( t )  is the scale factor and k = 1 , 0 , - 1  the curvature parameter. The 
coordinates are numerated such that (x °, x I , x 2, x 3) = (t, r, 0, ¢). In comoving 
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coordinates Uu.u 0 , = Fuu, so that in view of standard relations for the Christoffel 
symbols we have 

n n  
Uo;o = 0, U1;1 --- 1 - kr  2' (13) 

U2;2 = R/~r 2, U3;3 --- R/~T 2 sin 2 0 

with /~ - d R / d t .  The other covariant derivatives are zero. Equations (13) can 
alternatively be written as U~ = h v U R / R .  Using the same equations we see that 
the rotation and shear tensors both vanish, 

wuu = a~,  = 0, (14) 

whereas the scalar expansion is 

0 = 3/~ = 3H, (15) 
R 

where H is the Hubble parameter. The fluid's four-acceleration is zero, A~ = 0. 
The expression (7) for the energy-momentum tensor yields 

Too = p, Tok = O, Tik = (p - ~O)9ik. (16) 

There is thus no conduction of heat in the FRW space, which is a homogeneous 
space. The entire effect of the bulk viscosity is to reduce the pressure by an amount 
40. Note that, since 9oo = - 1, the temperature T which per definition is pertaining 
to a local rest inertial frame, is in the present case identical to the temperature 
Tx/-s-ff-~; which according to Tolman (1934) is a constant throughout a body if it 
is in thermal equilibrium. 

When applied to the FRW space, Equations (10) and (11) yield 

,.~ -~ ~0 2, S O = nkBa ,  S i = 0. (17) 

Consider now the Einstein equations. If the cosmological constant A = 0, we have 

1 
Guu = Ruu - -~gm, R = 87rGTu,. (18) 

Inserting the energy-momentum tensor (16) we obtain the Friedmann equations for 
the viscous fluid, 

3/~ z 3k 
R---- T + ~ = 87rGp, (19) 

2k /t 2 k 
+ + = - 8 7 r G ( p  - GO). (20) 



REMARKS ON THE VISCOSITY CONCEPT IN THE EARLY UNIVERSE 105  

Next, the differential conservation equation for energy, T; °~' = 0, yields 

b + (p + p)o = COL (21) 

The conservation equation for baryon particle number is 

(nU~);~ = 0, (22) 

which means that n R  3 = constant in the comoving frame. Finally from (17) we 
obtain, when substituting S" from (11) and observing that Q0 = 0 in the comoving 
frame, 

& - nk~-BT 02 . (23) 

This gives the rate of change of the nondimensional entropy per particle, in the 
Friedmann universe. 

It seems to be worthwhile to summarize briefly how the value of cr itself is 
calculated, at the time of recombination. The starting point is the Saha equation 
for the equilibrium fractional ionization z of hydrogen (Lightman et al., 1975; 
Zel'dovich and Novikov, 1971): 

z 2 ( 2 7 r m e k B T )  3/2 [" 1 2 me  "~ 
1 - z - n(2rc/Z) 3 exp ~,-~c~ k - ~ ) '  (24) 

where m e  is the electron mass and c~ = 1/137. Recombination occurs when 
the left hand side of (24) is about unity. This gives us one relation between the 
temperature T and the number density of baryons n. A second relation between T 
and n is obtained by requiring the energy density of radiation aT  4 to be equal to 
the energy density of matter n m c  2 at recombination. Here a = 7r 2 k~ / ( 15/~3c 3) = 
7.56 x 10 -15 ergcm -3 K -4 is the radiation constant (we ignore the presence of 
neutrinos). Solving the two equations, we find that the recombination temperature 
is T _~ 4000 K, the particle number density is n __- 103 cm -3, and the entropy per 
particle is 

4 a T  3 
a = ~ -~ 4 x 10 9. (25) 

3 k B n  

This large entropy is believed to have lasted up to the present. 
The natural question now is: can the entropy (25) be explained on the basis of 

reasonable assumptions about the bulk viscosity C in (23)? In the two following 
sections we shall consider this problem from two quite different points of view: 
first, a standard kind of approach consisting in solving the Friedmann equations 
and using a kinematically derived expression for the bulk viscosity; thereafter, 
an approach involving the impulse viscosity idea. In both cases, the FRW metric 
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is assumed. The equation of state for the cosmic fluid will be adopted in the 
conventional form 

p = ( 3 ` - l ) p ,  0<_3,_<2. (26) 

Here, "1, = 1 corresponds to a pressure-free fluid appropriate to the universe today; 
"1, = 4/3 corresponds to a radiation dominated universe, and 3  ̀ = 2 yields the 
relativistic Zel'dovich fluid in which the velocity of sound equals the velocity of 
light. Finally, 3  ̀ --- 0 corresponds to the peculiar tensile-stress vacuum "fluid" of 
the de Sitter universe. 

The curvature parameter k is not believed to be of main importance in the 
present problem, and we accordingly put k --- 0 in the following. 

3. Entropy Production in the Plasma Era 

It is natural to focus attention first on the plasma era (also called the radiation 
era). It is defined to start at the time when electron pairs e + and e -  annihilate 
at a temperature of T -- 2 m ~ c Z / 3 k B  ~ 4 x 109 K. The universe is then about 

= 24 s old; its total density is p --- 2.1 x 103 gcm -3, and its baryon density 
is nb ~-- 9.3 x 1021 cm -3 (Harrison, 1973; B6rner, 1988). The annihilation leaves 
radiation as the dominant constituent of the universe. In addition to a surviving 
small fraction of electrons, there are also left non-interacting neutrinos, protons, 
and slowly decaying neutrons. A little later, at t ~ 1000 s (T ~ 4 x 108 K, redshift 
z _~ 108), the nuclear reactions have terminated, and one is left essentially with a 
fully ionized plasma consisting of the ordinary species of electrons (density n~) and 
protons (density rip), being neutral in the unperturbed state (he = np ~-  1019 c m  - 3  

at t = 1000 s). The plasma era lasts for a long time, until recombination of hydrogen 
occurs at about 4000 K (z - 1400) at ~ ~_ 4 x 105 yr. 

Let us investigate the following idea: from t _~ 1000 s onwards, when the 
universe is characterized by ionized H and He in equilibrium with radiation, one 
may calculate the magnitude of the bulk viscosity 4, as a function of the temperature, 
on the basis of conventional kinetic theory. If the Friedmann equations are solved 
to give the time variation of ~(~) and T(t),  one can then in principle use (23) to 
calculate the entropy production during the plasma era. The physical reason for 
the dissipation in this era is that matter and electromagnetic radiation are not in 
thermal equilibrium with each other. The mean free path of photons exceeds that 
of electrons by a factor of 108. 

Caderni and Fabbri (1977), in their approach to this problem, made use of prior 
results obtained by van Leeuwen et al. (1973, 1975; cf. also de Groot et al., 1980) 
in relativistic kinetic theory. Here general expressions were given for the trans- 
port coefficients in multicomponent fluids. We shall write down the simplifying 
polynomial approximations that Caderni and Fabbri worked out for r/and ~ in the 
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plasma era (cgs units): 

__ 5me6C8((3) --4( ,  
r/ -- 97r3~3e4~-e x , l  -- 0.305x -1 + 8.218x -2 -- 35.80x -3 + 68.90x -4 - 

- 61.59x -5 + 20.75x-6),  (27) 

7rC2~3ne X 3 ~1 -- ~ ( + 2.273X -1 -- 21.80X - 2  q- 62.54X -3 -- 92,74X -4 + 

+ 70.04x -5 - 2 1 . 0 8 X - 6 ) .  (28) 

Here x = m e c 2 / k B T ,  ne is replaceable by np, and ((3) = 1.202 is the Riemann 
zeta function with 3 as argument. We note that x = 1 for T = 5.9 x 109 K. In our 
present case, where the highest temperature in the period is T ~ 4 × 108 K, we see 
that the corresponding value of  x is 14.8. At later times x takes larger values, and 
as regards order-of-magnitude estimates one can restrict oneself to the prefactors 
in (27) and (28). It is instructive to calculate r /and ( at the limits of the considered 
era. In its beginning when T ~ 4 × 108 K, ne ~- 1019 cm -3, 

~100Os ~'~ 2.8 × 1014 g c m  -1 s -1, (1000s ~ 7.0 × 10 -3 g c m  -1 s -1, (29) 

whereas at its termination, when T ~ 4000 K, ne ~ 4 x 103 cm -3 (Harrison, 
1973), x = 1.48 x 106, 

~/recomb ~ 6.8 × 1 0  9 g c m  - l  s - j ,  ~recomb --~ 2.6 × 10 -3 g c m  -1 s - I .  (30) 

The shear viscosity is thus vastly greater than the bulk viscosity, even though the 
first one is diminishing by more than four orders of  magnitude throughout the 
plasma era whereas the latter one stays almost constant. 

We now need to calculate how 0 and T vary with t in the plasma era. Using the 
Friedmann equations (19) and (20) for a flat universe (k = 0), and the equation of  
state (26), we obtain the following differential equation for the scalar expansion: 

O(t) + 21-702(t) - 127rG((t)O(t) = O. (31) 

We have here allowed for a general time dependence of the bulk viscosity ( ( t ) .  
From now on let us use the subscript "in" to distinguish the initial instant of  the 
plasma period that we consider. Thus, to summarize, 

t in = 1000 s, Tin = 4 x 108 K, nin = 1019 cm -3. (32) 

Moreover, we conform to usual practice in letting subscript zero refer to the present 
time. The solution of  (31) can now be written as (cgs units) 
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0(t) = 
0in e F(t) 

")'0in fti t eF(t ,) 1 + T n dr' 

(33) 

where 

t 
F(t)  = 127rG f ---2-- ¢(t ' )dt ' .  

tin 

(34) 

This implies the following scale factor: 

z/(37) 
R(t) Rin 1 + ")'0in eF(t, ) (35) 
/ ~  - -  R0 T dr' ; 

tin 

cf. also Johri and Sudarshan (1988) and Padmanabhan and Chitre (1987). The initial 
value 0in will be assumed to be given by usual theory for the nonviscous radiation 
dominated Friedmann universe: since H = 1/(2t) according to that theory, one 
has 

0 i n  - -  3 -- 1.5 x 10 -3 s -1. (36) 
2tin 

From Table 15.4 in Weinberg's book (1972) we moreover adopt the value 

Rin 5 x 10 -9. (37) 

When giving a quantitative estimate for the entropy production in the plasma era, 
we can safely put "y = 4/3.  This is so because in the major part of this era the 
universe was radiation dominated. The density n of protons is found from the 
conservation equation (22) for particle number which implies 

?Z(~) = ninR~n n°R3 
R3(  ) - R3(t ). (38) 

Because of the radiation dominance we shall take the relation between the density 
p and the temperature T to be 

p(t) = aT4(t). (39) 

[It ought to be noted that the quantity pR 4, which is a constant in a nonviscous 
radiation dominated universe, is not constant here: manipulating the Friedmann 
equations (19) and (20) we obtain (k = 0): 

~-~R (pR 3) -k- 3pR 2 = 3COR 2, (4o) 
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which, in view of the relationship p = 1/3p, leads to 

d 4 
d R ( P R  ) = 3~OR 3. (41) 

The bulk viscosity thus makes pR 4 time dependent.] Finally we note the relation- 
ship 

02(t) (42) 
p ( t ) -  247rG' 

which is actually a rewriting of the Friedmann equation (19) when k = 0. [Equation 
(42) corresponds to f2 = 1.] Imagine now, in principle, that the expression (28) for 
( is inserted into Equation (34). We have then five equations at our disposal for the 
calculation of the five unknowns 0, R, n, T, and p as functions of time in the plasma 
era, viz. Equations (33), (35), (38), (39) and (42). Fortunately, Equations (29) and 
(30) tell us that to obtain order of magnitude estimates it is sufficient to put ( = 
constant. This simplifies the situation enormously. For definiteness we assume in 
the following 

( = (in = 7 x 10 -3 gcm -~ s - l .  (43) 

Introducing for brevity the symbol 

/12~rG \ - 1  
~e = [-- 'K"-ffin] , (44) 

\ c- / 

we then obtain, for tin _< t <~ 4 X 105 yr, 

0in e(t-ti.)/t~ 
O(t) = 1 + ½70intc[e(t-ti")/tc - 1] ' (45) 

R(t) Rin [1 + 1  ]2/(37) 
.pq) - Ro ~'Y0intc(e (t-t~")#c - 1) (46) 

We now insert the calculated expressions for 0, n, and T into expression (23) for 
the rate of entropy production. Putting "7 = 4 /3  the result becomes very simple: 

5(t)  = /(247raG'~ ,/4 (in03/2 e (3/2)(t-t~n)#~ 
"~ .] kBnin \ 

(47) 

According to this model, the rate of entropy production increases exponentially 
during the plasma era. Integrating over time from ti,~ to t f  = 4 x 105 yr = 
1.26 x 1013 s, we obtain the total entropy production in the plasma era 
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Act = (24a) 1/4 ~ 18kBni---~n 
Since the exponent is very small, we can finally write this as 

( ( 3 2 )  3/4 0 3/2 tf  
Act = (24a) 1/4 ~ 12kBnin tc (49) 

N / 

Now te is in our case a very large quantity, tc = 5.1 x 1028 s, and we end up with 

A a  ~ 3 x 10 .7 , (50) 

which is extremely small. We conclude that the bulk viscosity derivable from kinetic 
theory is completely unable to explain the large entropy per baryon observed in the 
universe. 

4. "Impulsive" Viscosity at Inflationary Times 

Let us consider quite a different way of explaining the large entropy in the universe, 
namely to take cr to be a result of the violent GUT phase transitions that one 
believes took place in the very early universe, at inflationary times. We recall the 
usual picture for the very early universe (see, for instance, GrOn 1986; Soleng 
1987): From big bang at t = 0 until Planck time at about 10 -43 s, there was the 
quantum era about which virtually nothing is known. Classical spacetime acquires 
a meaning onwards from the instant when the action integral for the geometry 
becomes of the order of Planck's constant. This occurs at t ~ 10 - 3 9  S, thus larger 
that the Planck time but smaller than the time for a typical GUT inflation which 
starts at tl "~ 10 -39 s and lasts until t2 ~ 1.4 x 10 -33 s. The inflationary period is 
characterized by a de Sitter geometry with line element 

ds2=-dt2+R2exp(2v~t ) [dr2+r2(dO2+sin2Od¢2)], (51) 

according to which there is an exponential scale factor R(t) = RI e x p ( x / - ~ t ) .  
We have here required continuity of R at the starting point t = t j, when compared 
with the pre-inflationary k = 0 Riemann metric, Equation (12). During inflation, 
the vacuum acts as "fluid" under extreme tensile stress; its equation of state is 
p = - p ,  in accordance with the Einstein equations which are 

Guu = -Agm,,  (52) 

when the vacuum energy outweighs the matter energy completely. In this brief 
period from tl to t2, an enormous supercooling takes place in the universe; the 
temperature drops "smoothly" from about 10 27 K to about 1022 K, whereafter there 
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occurs a sudden (first order) phase transition back to a Friedmann universe of an 
ordinary radiation dominated type at t = t2. 

Let us investigate the following idea: Ignore any other viscosity in the universe 
than the "impulsive" bulk viscosity 

( ( t )  = ~inflt26(t - t2), (53) 

imagined to be operative at the end of the inflationary period, and estimate the 
amount of entropy rr produced per baryon by integrating Equation (23) over time 
from t = t 2 -  to t = t2+: 

~'inflt2 [ 02 ] 
= ~ (54) 

o kB t2+ 

We have here made what seems to be a reasonable choice, namely to take the 
appropriate value of O 2 / n T  to be inserted in (23) to be the Riemannian value just 
after  the termination of the phase transition. The natural question is: What is the 
magnitude of the "effective" viscosity ffinfl that will lead to the correct entropy, 
cr _ 4 x 1097 

The value of R(t)  after the inflationary period is believed to be the same as if no 
inflation were present. In our context it is natural to relate the physical quantities 
at t = t2+  to those at t = tin = 1000 s, considered earlier. For t2 < t < tin the 
universe is assumed nonviscous and radiation dominated, so that R(t) cx t 1/2. The 
conservation of particle number implies n2R~ = ninR3n, whereas the conservation 
of entropy in this time interval implies R2T2 = R i n T i n  • Thus cr can be written 

9/;2~infl 
O" : 4 k B n i n T m t ~  n . (55) 

Requiring this to be equal to 4 x 109 we then obtain, by using the data of Equa- 
tion (32), 

ffinfl '~ 1060 g c m  -1 s - j .  (56) 

An impulse viscosity of this magnitude at the end of the inflationary era is thus 
reconcilable with the observed entropy in the universe. 

5. Anisotropy and Turbulent  Viscosity 

As a general remark, from a fluid dynamical viewpoint the introduction of viscos- 
ity coefficients in cosmological theory is usually done in an almost surprisingly 
simple manner. There are two reasons why we consider this to be so. First, the 
coefficients r /and ( are the "molecular" viscosities, known to be important for 
laminar flows in fluid dynamics but usually incapable of describing processes such 
as energy dissipation once turbulence sets in. In such a case, one has to take also 
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the Reynolds stresses (usually written as -pu~u~) into account. A realistic descrip- 
tion of a complex turbulent flow will often imply a highly nontrivial Reynolds 
number-dependent parameterization in the governing equations. Secondly, even 
if the cosmological theory is formulated on the laminar level, the limitation to a 
completely isotropic space, as following from the FRW metric, is in our view an 
extreme idealization: from Equation (10) it is apparent that in the presence of shear 
both viscosity coefficients, r /as  well as ~, contribute to the entropy production. 
Moreover, at least in the situation discussed above, Equation (29), the magnitude of 
r/is enormously larger than that of ~. In view of these circumstances it appears very 
natural to modify the standard cosmological theory in such a way that an initial 
anisotropy is allowed for in the early universe, and thereafter relate this anisotropy 
to the production of entropy via Equation (10). 

As anisotropic space we shall choose the Kasner space which, similarly to the 
k = 0 FRW space, is of Bianchi type-I. The Kasner line element is 

ds 2 = - d r  2 q.- t2Pl dz 2 q- t2p2 dff 2 q- t2p3 dz 2, (57) 

where Pl, P2, P3 are constant parameters satisfying the relations 

p,  + p2 + p ,  = 1, + + = 1. (58) 

This space, in spite of its anisotropy, is homogeneous. The Kasner solution is a 
quite interesting model for the very early universe. The metric (57) is an exact 
solution of the vacuum Einstein equations Guy = 0, which are believed to be the 
appropriate governing equations in the very early universe. At later times, when 
the matter terms begin to become important in the energy-momentum tensor, there 
occurs a gradual transition to the k = 0 FRW universe (Misner et al., 1973, p. 802). 
This transition is believed to take place within, or near to, the lepton era, i.e., 10 -5 s 
to 24 s, or equivalently 1012 K to 4 x 109 K. 

The metric (57) implies, with the obvious numeration (z, y, z) -+ (x j , x 2, z3), 

1 
W#v = O, 0 = 7 ' (59) 

O11 = (j01 -- 3 )  t2pl-I , 

O33= (p3--  ~)t2p3-1~ 

022= (p2-- ~)  t 2p2-1, 

other ~r~, v = 0. 

(60) 

These equations, together with (58), imply ½craver ~'  = 1/(3t2). Thus, the contri- 
bution to the entropy production from the shear viscosity in the Kasner universe is 
independent of which set of values is actually given to the parameters Pl, P2, P3. 

We now take into account the possible presence of turbulence in the universe 
in the following indirect way. The key point is the turbulent viscosity concept 
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'0turb, borrowed from classical fluid dynamics. We may notice from this classical 
theory that ~turb is usually introduced via the generalized Boussinesq hypothesis 
for incompressible flow: 

2~r  --PU~UPk = ~turb(Ui ,k  Q- Uk,i) -- ~1 C~ik" ( 6 1 )  

its fluctuating part, and K = 1 ~ Here ui is the averaged velocity, u i 2UiUk is the 
turbulent kinetic energy per unit mass. (Equation (61) is actually the basis for 
the frequently used K - e method in computational fluid dynamics, e denoting 
the energy dissipation.) If we assume that it is the shearing stresses that are the 
dominant stresses here, then we see that for i ~ k, Equation (61) becomes formally 
the same as in the case of laminar incompressible flow. The molecular viscosity is 
relatively unimportant in the presence of turbulence, and so the averaged Navier- 
Stokes equations become formally the same as in the laminar case, only with ~/turb 
in place of ~7. 

It ought to be emphasized that we expect nturb tO be a large quantity; the inclusion 
of turbulence will normally imply that the viscosity increases by several orders of 
magnitude. An example, again taken from classical fluid dynamics, is so typical in 
this respect that it is worthwhile to include it here. Consider the classic oscillating 
water-tunnel experiments of Jonsson (1963) and Jonsson and Carlsen (1976), where 
water was forced to oscillate horizontally above a rippled bed. In such a case there 
is established an overlap layer, several centimetres thick, in which the turbulent 
viscosity at height z above theoretical bed level can be written as ?]turb = 0 .40pu . z .  
Here 0.40 is the yon Karman constant and u.  is the friction velocity. A theoretical 
analysis of the Jonsson-Carlsen experiment (Brevik, 198 l) shows that ~/turb can be 
as large as about 25 g c m -  1 s -  1, thus 2500 times as large as the molecular viscosity 
~7 = 0.01 gcm -I  s -I  for water. 

After this detour into classical fluid dynamics we return to cosmology. In accor- 
dance with the remarks above we suggest that the turbulent generalization of the 
entropy production Equation (10) is 

2 
S ; ~  = - -  ?'/turb o'/~u o "#v.  (62) 

T 

The bulk viscosity is now neglected; we base this assumption upon analogy with the 
dominant role played by the turbulent shear viscosity in classical fluid dynamics. 
The last term to the right in (10) does not give any contribution: the acceleration 
A u = 0 in the Kasner space, and Q~, which according to (6) becomes proportional 
to the spatial gradients of T, vanishes since the Kasner space is homogeneous. 
In view of the relationship ~ = t the conservation Equation (22) for particle 
number implies (nt),o = 0, which in turn implies S;~ = kBn&. Thus Equation (62) 
can finally be written 

4 
& = 3 n k B T t  2 r]turb. (63) 
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In principle, ~turb may depend on t. We note again that the entropy production is 
independent of which values are given to Pl, P2 and P3. 

The actual value of  ~turb in (63), in analogy with the situation of classical fluid 
dynamics, has to be calculated on the basis of comparison with observations. Very 
little seems to be known about the behaviour of viscosity in the Kasner universe. In 
order to get an estimate about the magnitude of  ~]turb we shall follow an approach 
similar to that of the previous section, namely to interpret ~turb as an "impulsive" 
viscosity acting at a phase transition in the early universe. For definiteness we shall 
locate this sudden transition to take place at the border between the lepton era and 
the previous epoch (at later times, the correctness of the standard Riemannian model 
is almost universally trusted). The change in entropy Act in the phase transition 
can according to (63) be written as 

Aff- -4~turb  [ 1 ] 

3kB 5 '  
(64) 

where [ ] signifies the beginning of the lepton era. Using the data of Harrison (1973) 
we have at this instant n = 6 x 1029 cm -3, T = 1012 K, t = 2 x 10 -4 s. If we 
moreover require A a  in (63) to be equal to the real entropy content cr _~ 4 x 109, 
we obtain for the effective turbulent viscosity 

r/turb "~ 5 x 1031 g c m  -1 s - l .  (65) 

This viscosity is seen to be much smaller that the previous inflationary-related 
viscosity (56), as one might expect. 
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