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Tensile deformation of high strength and high modulus polyethylene fibers 
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Department of Polymer Chemistry, University of Groningen, Groningen, The Netherlands 

Abstract: The influence of tensile deformation on gel-spun and hot-drawn ultra- 
high molecular weight polyethylene fibers has been investigated. In high modulus 
polyethylene fibers no deformation energy is used to break chemical bonds during 
deformation, and flow is predominantly present next to elastic behavior. Flow is 
reversible after tensile deformation to small strains, but becomes irreversible 
when yielding occurs. 

Stress relaxation experiments were used to determine the elastic and flow 
contribution to tensile deformation. A simple quantitative relation could then be 
derived for the stress-strain curve that directly links yield stress to modulus. 
Experimental stress-strain curves could be reasonably described by this relation. 

Flow during tensile deformation is shown to be correlated with the introduc- 
tion of the hexagonal phase in crystalline domains. A mechanism of flow is 
proposed in which, at first, tie molecules or intercrystalline bridges are pulled out 
of crystalline blocks (reversible), followed by the break-up of crystalline blocks 
through slip of microfibrils past each other (stress-induced melting, irreversible). 

Key words: Tensile deformation; deformation energetics; stress-induced phase 
transition; c_hain slip; Polyethylene-fibers 

1. Introduction 

High strength and high modulus fibers from 
ultra-high molecular weight polyethylene 
(UHMWPE) can be prepared by gel-spinning and 
subsequent hot-drawing [1-3]. Tensile strengths 
up to 7.2 GPa [4, 5] can be achieved and Young's 
moduli of 264 GPa are reported in this work. 

The failure mechanism of these fibers is not yet 
fully understood. Fiber failure can in general be a 
result of breaking of chemical bonds [6, 7] or slip of 
chains past each other [8]. An extensive overview 
on this subject has been given by Kausch [9]. 
Recently [10], it was found that at higher temper- 
atures tensile strengths of UHMWPE fibers are 
limited by a stress-induced orthorhombic-hexa- 
gonal phase transition that causes slip of chains. 
Viscoelastic properties [11] may therefore still play 
an important role during tensile deformation of 
high strength and high modulus UHMWPE fibers. 

The aim of this work is to investigate the effects 
of tensile deformation on UHMWPE fibers. Nor- 
mally, tensile strength, Young's modulus, and 
strain at break are the only tensile properties con- 
sidered. Detailed experimental analysis of stress- 
strain behavior may give insight into the processes 
that could take place during tensile deformation 
like, for example, elastic deformation, chain scis- 
sion, chain slip, formation of cracks, etc. Precise 
knowledge on these processes is needed as a basis 
to understand why these important materials in 
practice cannot achieve the properties they theoret- 
ically could have. 

2. Experimental 

The UHMWPE fibers were prepared according to standard 
procedures in our laboratory [2, 4, 10]. Polyethylene solutions 
with different weight percentages polyethylene were prepared 
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in paraffin oil containing 0 .5wt .% anti-oxidant (2,6- 
di-t-butyl-4-methyl-cresol) by stirring at 140 ~ until the 
Weissenberg effect began to occur. These solutions were sub- 
sequently homogenized for 48 h under nitrogen atmosphere at 
150 ~ after which it was slowly cooled down to room tem- 
perature. The solution then has formed a gel which is fed into 
the spinning apparatus. After a dissolution time of 2 h at 
190 ~ the solution was spun at this temperature through a 
conical die [12] with an outlet diameter of 1 mm at an ex- 
trusion speed of 1 m/min. The gel-fibers were wound onto a 
bobbin at the same speed. The paraffin oil and the anti-oxidant 
were removed from these fibers by extraction with n-hexane. 
After extraction, the constrained fibers were dried at 50 ~ 
under vacuum for I h. The fibers were hot-drawn using a 
tubular oven at 148 ~ in a small flux of nitrogen. Draw ratios 
were determined by the ratio of the velocity out of and in the 
oven. The cross-sectional areas of the fibers were determined 
from weight and length,  assuming a density of 1000 kg/m a. 

Two different samples of linear polyethylene Hifax 1900 
were used - one with a broad molecular weight distribution 
(M w = 4 x 106 kg/mol, M~,/M, = 20, referred to as Hifax A), 
and one with a narrower molecular weight distribution 
(M w = 5.5 x 106 kg/mol, Mw/Mn~3, referred to as Hifax B). 

Tensile testing was performed on an Instron 4301 tensile 
tester equipped with type 2712-002 pneumatic action grips. 
The flat type grip faces with smooth ground surface were 7.5- 
mm wide. Gripping force was controlled by adjusting the air 
pressure in such a way that slip of fibers through the grips did 
not occur. At this level of the gripping force, however, failure 
is mostly initiated at the grips, as would be expected for 
fibrous samples. Normally, fibers were tested using a sample 
length of 100ram and a constant crosshead speed of 
10 mm/min. 

In order to obtain highly accurate stress-strain data, the 
tensile tester was digitized by installation of the Instron Series 
IX Automated Materials Testing program. Fibers were then 
tested at a sample length of 500 mm, constant crosshead speed 
of 50 mm/min and a sampling rate of 20 points/s. 

3. Results and discussion 

Cyclic deformations and deformation energetics 

Hysteresis during cyclic deformations of viscoel- 
astic materials is a very well known phenomenon 
[13]. In Fig. 1 two deformation cycles are shown of 
a UHMWPE fiber from a 2.5 wt .% gel with a draw 
ratio 2 of 60, which corresponds closely to the 
maximum draw ratio in one step at 148 ~ After 
the first cycle, the crosshead was returned to its 
original position and after a recovery period of two 
minutes the second cycle was recorded. 

The hysteresis is clearly non-elastic in the two 
deformation cycles, i.e., the strain at which the 
stress becomes zero in the unloading curve is in 
both cycles larger than the strain at which the 
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Fig. 1. Two consecutive deformation cycles of an UHMWPE 
fiber (2 = 60, 2.5 wt.% Hifax B) 

loading cycle started. Comparing the two cycles, 
one can see that the strain at which the loading 
curve of the second cycle started is smaller than the 
strain at which the unloading curve of the first cycle 
stopped. This indicates that, after unloading to 
zero stress and zero initial strain, a recovery pro- 
cess must have taken place during which the fiber 
has contracted. It has been found that in the case of 
long delay times between two cycles (about 1 to 2 
days, which corresponds to a recovery time of 
about 3000 times longer than loading and unloa- 
ding time), the stress-strain characteristics of the 
first cycle are totally recovered so that the second 
cycle becomes completely identical to the first. This 
has been confirmed on fibers that have a small 
strain at break (3-4%).  The fact that this recovery 
process takes place also proves that the apparent 
elongation of a sample after a deformation cycle is 
not caused by slip of the sample through the clamps 
of the tensile tester. If that would be the case, the 
initial stress-strain behavior could never be re- 
c o v e r e d .  

This means that the process that causes the non- 
elastic hysteresis during a cyclic deformation is 
reversible and that no plastic deformation, i.e., a 
permanent elongation after deformation occurs. 
Deformation of a fiber causes a recoverable, time- 
dependent change from its initial morphology. This 
is in accordance with results of studies on tensile 
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creep and recovery [14, 15] on polyethylenes with 
lower molecular weight. It was found that these 
materials showed an apparent critical stress below 
which there was no detectable permanent creep. 
This critical stress increased with molecular 
weight. 

The fact that the morphology of a fiber must 
have changed during cyclic deformation is also 
clear if one compares the various energies of the 
deformation process. The energy U needed to elon- 
gate a fiber from a strain gl to a strain g2 is 

L2 ~:2 

u = F d L  = v S (1) 
L1 el  

where L is the fiber length, V is the fiber volume, F 
the tensile force, and o- the tensile stress. From 
Fig. 1 it can be seen that the area under the first 
loading curve is larger than the area under the first 
unloading curve. The difference between them is 
the dissipated energy. The same holds for the sec- 
ond cycle, but this dissipated energy is smaller than 
that in the first cycle. The energy recovered under 
the unloading curve however is nearly the same for 
both cycles. The fact that total deformation energy 
and the dissipated energy differ between the two 
cycles indicates that the properties of the fiber have 
changed during deformation. 

In general, the following energies can be deter- 
mined on the basis of cyclic deformation: 

- U t o t :  total deformation energy (the area under 
the loading curve); 

- Uelastic : apparent elastic energy (the area under 
the unloading curve); 

- -  U d i  s r  dissipated energy ( U t o  t - -  U e l a s t i c ) .  

By performing a second deformation cycle, the 
dissipated energy can be split into two parts: 

- Udi~. 2: dissipated energy in the second cycle, 
i.e. the energy that can be dissipated 
again immediately; 

- Uai~,a: dissipated energy in the first cycle that 
can not be dissipated again (difference 
in Uai ~ between the first and second 
cycle). 

The amount of Uai~, a is a measure of how much 
the fiber structure has changed. When this value is 
zero (which is the case when the recovery period 
between the two cycles is sufficiently long), the 
stress-strain behavior in both cycles is identical. 

These energies have been determined for the 
fiber shown in Fig. 1. The plot of the energies as a 
function of strain in the first cycle, is given in Fig. 2. 
At the largest strain at which the energies could be 
determined 72% of the deformation energy is still 
elastic. This percentage goes up for smaller strains, 
although there is no region where the fiber is 
completely elastic. The highest value measured was 
79% elastic energy at a strain of 1.09%. From the 
dissipated energies, Uai~, 2 is substantially higher 
than Uai~, A. This means that, on this time-scale, 
most of the dissipated energy is dissipated as heat 
and that only a relatively small amount is used to 
temporarily change the structure of the fiber. How- 
ever, when the change of structure is recovered in 
time this small amount of energy will also be 
gradually dissipated as heat. All energies rise 
smoothly with increasing strain. Very similar plots 
can be found for all fibers having a strain at a break 
of 3 to 4.5%. Quantitatively, it can be said that 
fibers having lower draw ratios show a smaller 
percentage of elastic energy at the same value of 
Uto t. The total deformation energy up to break is 
about the same for all fibers. Fibers spun from 
different gels, but having the same draw ratio (like, 
for example, 2 = 3 0  from a 2 .5wt .% and a 
6 .0wt .% gel) give practically the same energy 
plots. 

The amount of dissipated energy per volume Uai ~ 
can be related to an elongational viscosity r/ 

100 - 

"7 
�9 75 �84 

S0-  
(2: 
w z 
w 

l 25 

o ~j 

10 2.0 3.0 

STRAIN [o/~) 
~..0 5 .O 

Fig. 2. De fo rma t ion  energies versus tensile s t ra in  of an  
U H M W P E  fiber (2 = 60, 2 . 5 w t . %  Hifax  B). o:  U~ot, D: 
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through the following relation: 

Udi~ = r/. (8) 2 �9 t ,  (2) 

where ~ is the deformation rate and t the elapsed 
time. The fiber in Fig. 2 has dissipated 26.3 
x 106 J/m 3 at a cycle strain of 3.37% (8 = 1.67 
x l 0 - 3 S  -1, therefore t =40.4s) .  Using (2), one 
can calculate r /=  2.33 • 1011 N . m - 2 . s .  This value 
compares very well with elongational viscosities of 
UHMWPE fibers at higher temperatures [16], and 
this viscosity must then be assigned to disordered 
domains in the fiber morphology. Such domains do 
not seriously contribute to the tensile stress, but 
elongation and contraction of these viscous regions 
results into dissipation of deformation energy as 
heat. 

Fibers that yield during deformation, give rise to 
a very different behavior. Generally, these fibers 
have a low draw ratio relative to the maximum 
draw ratio. Figure 3 shows the various energies 
versus strain for a 2 = 15 fiber spun from a 
2.5 wt.% gel. In the stress-strain curve of the fiber 
the stress gradually increases with strain up to 
about 7% and then levels off abruptly (yielding). At 
low strains the relative values of the energies re- 
semble those presented in Fig. 2. At higher strains 
the elastic energy levels off and Udis, A rises steeply. 
Udi~,2 also rises with increasing strain, but less 
steeply. After the point where yield starts the per- 
centage of Udi~, a is highest. It was found that by 
yielding plastic deformation is introduced. After 
the fiber of Fig. 3 had been strained to 8% in the 
first cycle, the crosshead was returned to its origin- 
al position, and after 64h the second cycle was 
carried out. The sample then showed a permanent 
elongation of 1.9% of its initial length. It can be 
concluded therefore that the rise of Uclis, a at the 
beginning of yielding must be attributed to energy 
put into plastic deformation. The elastic energy 
levels off, because the stress hardly rises after the 
yield point and the elastic part of the fiber morpho- 
logy is not being elongated anymore. The increase 
in strain after the beginning of the yield must be 
solely caused by plastic flow that may lead to an 
irrecoverable elongation of the fiber, and irrevers- 
ible dissipation of deformation energy. 

The results of the energy analysis on UHMWPE 
fibers, as presented in Figs. 2 and 3, differ markedly 
from similar studies by Frank and Wendorff on 
polyamide fibers [17, 18]. From ESR experiments 
they showed that deformation above a critical 
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Fig. 3. Deformation energies versus tensile strain of an 
UHMWPE fiber (2= 15, 2.5wt.% Hifax B). o: Utot, n: 
U e l a s l i c  ~ �9 : U d i s ,  2 ~ 0 : U d i s , A  

strain level gave rise to chain rupture events. By 
tensile deformation the stress-strain behavior of the 
polyamide fibers was irreversibly changed and the 
irreversible dissipation of energy during deforma- 
tion was accounted for in terms of energy release 
after chain ruptures. The breaking of chains was 
confirmed by a decrease in molecular weight. 

From the results of the preceding energy analysis 
of UHMWPE fibers, one must conclude that during 
tensile deformation of these fibers, even close to 
breaking strain, no detectable amount of chains is 
broken. Irreversibly dissipated energy is not pre- 
sent, except for yielding fibers where this energy 
has to be associated with work needed for plastic 
deformation. Stoeckel et al. [19] have found no 
relevant decrease in the molecular weight of a 
polyethylene sample after it had been fractured in 
tensile deformation. ESR studies on UHMWPE 
fibers in our laboratory have shown that under 
tensile stress no relevant amount of free radicals 
due to chain rupture could be detected [20]. Small 
angle x-ray scattering studies on strained 
UHMWPE fibers [21] show no detection of void 
formation, even at strains close to break. Although 
Zhurkov [22] found considerable increase in 
scattering intensity while straining films of oriented 
polyethylene of ordinary molecular weight up to 
break, this void formation may be attributed to the 
opening of spaces between lamellae [23]. All these 
studies, together with the results from this work, 
indicate that tensile deformation of high modulus 
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and high strength UHMWPE fibers does not in- 
volve significant breaking of chains. Viscoelastic 
processes play a major role, as will be shown by 
repeated cyclic loading. 

In Fig. 4 three loading cycles are presented for a 
2 = 15 fiber from a 6.0 wt .% gel (a non-yielding 
fiber at the applied deformation rate). In cycle A 
the fiber is strained up to 1.20 GPa stress, after 
which the crosshead speed is reversed. When the 
tensile stress has become zero, the crosshead speed 
is again immediately reversed and, in a similar way, 
a number  of cycles is performed. Cycle B is the 35th 
cycle. If one compare cycles A and B, it is clear that 
cycle A corresponds to cycles as shown in Fig. 1, 
and that cycle B is distinctly different. First of all, 
the tangent modulus in the loading curve of B does 
not decrease monotonically as in A, but goes, after 
an initial decrease, through a minimum and then 
increases again. The shapes of the unloading curves 
in A and B are similar. The end of the unloading 
curve in B, however, comes very close to the be- 
ginning of its loading curve. The hysteresis has 
almost become elastic and the dissipated energy in 
cycle B is much less than in cycle A. After per- 
forming cycle B, the crosshead was returned to the 
position corresponding to zero initial strain and the 
sample was allowed to recover during 75 min., 
before cycle C (the 36th) was recorded. 
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Fig. 4. Three consecutive deformation cycles up to 1.20 GPa 
of an UHMWPE fiber (2 = 15, 6.0 wt.% Hifax B). A: first 
cycle, B: 35th cycle, C: 36th cycle. Recovery time between cycle 
B and C is 75 min 

The stress-strain behavior changes dramatically 
after recovery. The beginning of the loading curve 
of C has shifted to about halfway in between the 
beginnings of A and B: the sample must have 
contracted itself. Typically, the hysteresis has again 
become non-elastic after recovery, and the energy 
dissipated in cycle C is much larger than in cycle B. 
Furthermore, the shape of the loading curve in C 
again resembles that of cycle A. 

One can qualitatively comprehend this behavior 
if a fiber is assumed to consist of many viscous 
elements making up a spectrum of characteristic 
times with respect to contraction (like different 
Voigt elements [11]). In the first deformation cycle 
A, many viscous elements with long contraction 
times relative to the unloading time cannot con- 
tract during the unloading time although they have 
contributed to elongation in the loading curve. 
Hysteresis therefore results. After several cycles, 
only the elements with contraction times equal to 
or smaller than the cycle time will follow the cyclic 
elongation and contraction. Hysteresis then be- 
comes almost completely elastic, like in cycle B (the 
35th). The dissipated energy will then also go 
down, because less viscous elements elongate and 
contract during a cycle, thus reducing energy lost 
into the friction caused by these movements; the 
system thus becomes relatively more elastic. After a 
long recovery time the "slow" elements will have 
more or less contracted and may again participate 
in the loading of cycle C and the dissipated energy 
goes up. This explains the contraction of the fiber 
and the change of the loading curve during re- 
covery and the similarity of the unloading curves 
(in all cycles only the relatively fast elements will 
determine the shape of the unloading curve). 

The relative shift of the maximum strain during 
cyclic deformation up to different stress levels is 
plotted versus the number of cycles in Fig. 5. From 
this, it is evident that the shift of maximum strain 
becomes relatively larger at higher stress levels. At 
a stress level close to break the shift becomes 
especially dramatic and may lead to breakage of 
the fiber (indicated by the x in Fig. 5). This type of 
behavior is obviously related to creep, for it reflects 
the property of increasing strain at a given stress 
level. 

Very similar behavior is found when cyclic de- 
formations up to a given strain level are examined. 
In Fig. 6 three cycles are shown for the same fiber as 
in Figs. 4 and 5, deformed cyclically up to 5.0% 
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Fig, 5. Relative shift of maximum strain versus the number  of 
deformation cycles up to three different stress levels of an 
UHMWPE fiber {,;~ = 15, 6.0 wt .% Hifax B). A = 0.77 GPa, D: 
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Fig. 6. Three consecutive deformation cycles up to 5.0 % 
strain of an UHMWPE fiber (2 = 15, 6.0 wt .% Hifax B). A: 

7 ,  
first cycle, B: 35th cycle, C: 36th cycle. Recovery time between 
cycle B and C is 60 min 

initial strain. Cycle A is the first cycle, B the 35th. 
Clearly, the stress decreases at 5.0% initial strain, 
and the shape of the loading curve has changed 
from A to B, in the same way as described in Fig. 4. 
The hysteresis in B has become almost elastic, and 
the energy dissipated in the cycle has gone down 
drastically. After a recovery time of 60 rain. cycle C 
was recorded. Again the recovery has resulted in a 
change of the loading curve, increase of dissipated 

energy, and contraction of the fiber. The qualitat- 
ive explanation given for the behavior presented in 
Fig. 4 is also valid here. 

The relative decrease of the maximum stress for 
different strain levels as a function of the number of 
cycles is given jn Fig. 7. The decrease of the stress 
becomes relatively larger at larger strains. As a 
function of the number of cycles, plotted on a 
logarithmic scale, the stress decreases almost line- 
arly. In this case, such behavior must be related to 
stress relaxation, i.e., the tendency to lower stress 
at a given strain level. It needs to be emphasized 
that all the properties displayed in Figs. 4-7 are 
qualitatively applicable to all high strength and 
high modulus UHMWPE fibers, although only one 
fiber with a low draw ratio was being considered 
for sake of clarity. Quantitaively, these properties 
become less pronounced for fibers with higher 
draw ratios, but are still present. 

The results of the cyclic deformations show that 
UHMWPE fibers in no way exhibit purely elastic 
behavior. Properties, inherent to viscoelastic ma- 
terials like creep and stress relaxation play a prom- 
inent role in the tensile deformation, even for fibers 
having very high crystallinity ( ,-~ 90%) and initial 
modulus (up to 264 GPa (for a 2 = 170 fiber from a 
1.5 wt.% Hifax B gel), which is about 75% of the 
ultimate modulus [24]). This observation has al- 
ready been made by Ward et al. [25] in a study on 
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Fig. 7. Relative decrease of maximum stress versus the number  
of deformation cycles up to three different stress levels of an 
UHMWPE fiber (2 = 15, 6 . 0wt .% Hifax B). O: 3.0%, ~: 
4.0%, A = 5.0% 
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creep of UHMWPE fibers prepared in our laborat- 
ory. They find that, in terms of a critical stress 
below which no permanent deformation can be 
observed, these fibers show a lower value than any 
of the other filaments studied. 

In order to understand the deformation behavior 
of UHMWPE fibers, viscoelastic properties have to 
be taken into account and will therefore be studied 
in the following section. 

Stress relaxation 

During stress relaxation, plastic flow changes the 
structure of a fiber and thus reduces stress at a 
given strain. Stress relaxation has been extensively 
studied [11, 13]. Kub~t and coworkers have re- 
ported several studies on stress relaxation on poly- 
ethylene [26-29]. In a typical stress relaxation 
experiment, the sample is elongated to a certain 
strain and the subsequent relaxation of stress is 
being followed over substantial period of time until 
stress reaches a stationary level. Relations are being 
derived to describe stress relaxation over a wide 
range of time and stress. The approach to stress 
relaxation to be used in this study is different and 
will be explained using Fig. 8. 

Figure 8 schematically shows the stress-time 
curve of a stress relaxation experiment on 
UHMWPE fibers. The fiber is elongated using a 
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Fig. 8. Stress versus  t ime du r ing  a typical  s tress r e laxa t ion  
e x p e r i m e n t  on  U H M W P E  fibers. 6o: initial s t ress  rate,  d ( t ) :  
ac tua l  s tess rate at t ime t, d-r~a x (t) : i m m e d i a t e  s t ress  r e laxa t ion  
rate at  t ime  t 

constant crosshead speed until time t, where the 
displacement of the crosshead is stopped. From 
then on the stress relaxes. All experiments show 
that, at time t, there is an instantaneous and defin- 
ite stress relaxation rate 6-relax(t ) (the dot denotes 
the time derivative). The relaxation process obvi- 
ously does not start at time t, but must already have 
been present during the elongation process. The 
stress rate in the loading curve at time t, 6-(t), must 
therefore have resulted from two different stress 
rate mechanisms. The stress relaxation rate 
6-relax(t) must have been counterbalanced by an- 
other, oppositely directed stress rate mechanism 
6-c(t ) (the subscript c is used to denote the counter- 
balancing effect), in order to result in the stress rate 
6-(t) in the loading curve. In formula this is 

6-(t) = 6-c(t) + 6-,el~x(t) , (3) 

with: 6-(t), 6-c(t) > 0 

6-reich(t) < 0 

for the situation depicted in Fig. 8. 
In Fig. 9 the various stress rates are plotted 

versus the tensile stress, at which the crosshead was 
stopped. For every measurement, a new piece of 
fiber was mounted in the tensile tester. The fiber 
used was spun from a 2.5 wt .% gel and hot-drawn 
to 2 = 15. 

From Fig. 9 can be concluded that 6-c, the stress 
rate that is counterbalancing the stress relaxation 
rate is equal to the initial stress rate 6" o in the 
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Fig. 9. Stress rates  versus  tensi le s t ress  of  an  U H M W P E  fiber- 
(2 = 15, 2.5 w t . %  Hi f ax  B). m: 6-o, O:  6c, e :  16relaxI 
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loading curve. The initial stress rate can be con- 
verted into a modulus  E 0 using 

6.0 
Eo = ~ -  �9 (4) 

In this case, one obtains an initial modulus  of 
30.2 GPa. The fact that  6.c = d-o is in accordance 
with the Boltzmann superposit ion principle [30]. 
Suppose that  during simple extension the tensile 
stress is some function of time: 

o ( t )  = f ( t )  . (5) 

The process of stopping the crosshead at time to, 
can be considered as the result of applying a strain 
rate of the same magnitude,  but  oppositely direc- 
ted, so that the net strain rate is zero. The stress 
during relaxation after t o would  then be described 
by: 

t _> to: arelax(t ) = f ( t )  - -  f ( t  - -  to) . (6) 

By taking the time derivative of (6) and inserting 
t -- to, one obtains: 

t = to :  6.relax(tO) = ? ( t o )  - -  ? ( 0 )  . (7) 

Evaluating Eq. (3) at time t o and comparing it to 
Eq. (7), it immediately follows that 6.c = 6.0, which 
has been found from Fig. 9. In physical terms, it 
must be concluded that for a yielding fiber, as 
shown in Fig. 9, the morphology that accounts for 
the initial modulus  is still present during the yield- 
ing process. The plastic flow during deformat ion of  
the fiber under these conditions does not  affect the 
morphological  element that determines the elastic 
properties,  i.e., the initial modulus.  It should be 
noted that under other  conditions,  where  extensive 
yielding may take place, deviations from Eq. (7) 
can occur due to structural rearrangements upon 
yielding (strain softening/hardening). 

Another result from Fig. 9 is that,  roughly, the 
following relation seem to be valid: 

16.~el~l = a -  o ,  (8)  

where a is some constant.  In this case, 
a = 0.048 s -  1. Equat ion (8) is also a property of an 
ordinary Maxwel l  element [11, 13, 31] and, there- 
fore, it can be stated that: 

1 
a = - ,  (9) 

where z is the relaxation time of the dashpot.  From 
(9), a relaxation time of 20.8 s can be calculated. 

The horizontal dashed line in Fig. 9 is the mean 
value of  6.0, the vertical one is the tensile strength 
(yield stress). It is clear from Fig. 9 that this yield 
stress is determined by the intercept of ]d,e]ax] and 
the mean value of  d 0. In other words ,  the yield 
stress is reached when the absolute value of  the 
stress relaxation rate equals the initial stress rate, 
i.e., the increase of stress due to stretching of elastic 
elements. When these two stress rates are equal the 
net stress rate is zero and stress is not  increased 
during elongation. The tensile strength is therefore 
limited by flow (ductile fracture). The yield stress 
can be calculated from the initial modulus  using 
Eq. (8): 

yielding: i6.relaxl -- a .  O ' y i e l d  ~ 6 . 0  

6- 0 
- - }  O ' y i e l d  = - -  . (10) a 

From (10), using 6.o = 50.3 M P a - s - 1  and 
a = 0.048 s - I ,  a yield stress of  1.05 GPa can be 
calculated, which is equal to the experimental  ten- 
sile strength. 

Different behavior is found when a fiber of 
2 = 60 from a 2.5 w t . %  gel is subjected to the same 
analysis (Fig. 10). This fiber does not yield, it has a 
low strain at break ( ~ 3 .5% ), and a much higher 
modulus  (160 GPa). Again, it can be concluded 
from Fig. 10 that 6.c = 6.0 and that i6.rel~x] = a - a .  
From Fig. 10 a = 0.026 s -  1 (z = 38 s). Although 
this value differs from that determined for the 

300 

o_ 200 

~ loo 

o" " 

f 
Y / 

10 2 0 3.0 
TENSILE STRESS {GPa) 

Fig. 10. Stress rates versus tensile stress of an U H M W P E  fiber 
(2 = 60, 2.5 w t . %  Hifax  B). m: d 0, �9  8c, e :  ]dre~axk 
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2 = 15 fiber, it can be concluded that this relaxa- 
tion constant a does not change very much as a 
function of morphology and the moduli of the 
fibers differ by about a factor of 5 (difference in 
draw ratio 4 times). 

The most striking difference between Figs. 9 and 
10 is the fact that, in Fig. 10, Jdr~Lax] at the tensile 
stress at break (3.5 GPa) is still much lower than 
d- 0. This means that the tensile strength in this case 
is not limited by flow: the fiber displays brittle 
fracture. The theoretical yield stress for this fiber 
can, however, still be calculated using Eq. (10). 
With ci 0 = 268 MPa.  s-1 and a = 0.026 s - l ,  one 
obtains O-yiela = 10.3 GPa. The ratio between the 
experimental tensile strength and the yield stress is 
therefore 0.34. From Figs. 9 and 10 it can be con- 
cluded that stress relaxation is always present, both 
in high and low modulus fibers. The immediate 
stress relaxation rate is directly proportional to the 
applied tensile stress. For a given deformation rate 
and temperature only the modulus E 0 then deter- 
mines the tensile strength (yield stress) because 
Eq. (10) can be rewritten as: 

d 0 k 
O - y i e l d  - -  - -  E 0 . (11) 

a a 

The consequence of Eq. (11) is that the ratio of 
modulus and yield s t r e s s  (Eo/O'yielcl) is a constant 
(a/k) for given deformation rate and temperature. 
This value is respectively 29 and 16 for fibers 
shown in Figs. 9 and 10. Similar observations have 
already been reported for a variety of polymers 
[32], and our values compare well with values 
found for most textile fibers [33]. Buchdahl derived 
this relation by using the criterion of mechanical 
instability in shear [32]. Equation (11) is, in fact, 
similar to expressions for theoretical shear stresses 
of crystals [34]. 

From Fig. 10, we see that fibers having higher 
moduli already may break below the yield stress in 
a brittle manner. The stress relaxation process, 
however, is still occurring in these fibers, but it does 
not limit the tensile strength. As the modulus of 
fibers increases, there is a change-over from ductile 
to brittle fracture. 

On the basis of the time-temperature superposi- 
tion principle, it can be expected that at higher 
deformation rates, i.e., lower temperatures, the 
stress relaxation process slows down. This is dem- 
onstrated in Fig. 11, where Idro~.,,I and the relaxa- 
tion modulus Ici~l.xl/k are plotted vs crosshead 

speed. Here a 2 = 25 fiber from a 6.0 wt.% gel was 
strained at every crosshead speed up to a stress of 
2.25 GPa. The value of I d-relaxJ increases strongly 
with increasing crosshead speed, also indicating 
that the stress relaxation is not caused by slip 
through the action grips. The relaxation modulus, 
however, decreases with increasing crosshead 
speed, as would be expected for lower temper- 
atures. The next step would be to examine whether 
one can see the ductile to brittle transition as a 
function of crosshead speed. In Fig. 12 the initial 
modulus and the relaxation modulus close to the 
tensile strength are plotted vs crosshead speed for 
the same fiber as in Fig. 9. The initial modulus 
varies somewhat, but this must be attributed to 
non-homogeneity of the fiber. The relaxation 
modulus close to the tensile strength is at low 
crosshead speed significantly higher than the initial 
modulus. Probably, strain hardening is taking place 
before break. At higher crosshead speeds the re- 
laxation modulus close to the tensile strength goes 
down rapidly and becomes lower than the initial 
modulus. From the corresponding stress-strain 
curves, yielding fibers are observed at the low 
crosshead speeds, and as the speed increases a 
change-over to lower strains at break can be ob- 
served (brittle fracture). 

The tensile stress of the fiber as a function of 
crosshead speed is given in Fig. 13. The ductile-to- 
brittle transition is accompanied by a change in the 
dependence of the tensile strength on the crosshead 
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Fig. 11. Stress relaxation rate and relaxation modulus versus 
crosshead speed of a UHMWPE fiber (2 = 25, 6.0 wt .% Hifax 
B) at a tensile stress of 2.25GPa. e :  Jd~l~J, O :  J d ' r e l a x [ / ~ .  

Sample length 100 mm 
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Fig. 12. Relaxation modulus at tensile strength and initial 
modulus versus crosshead speed of a UHMWPE fiber (2 = 15, 
2.5 wt.% Hifax B) illustrating the ductile-to-brittle transition. 
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Fig. 13. Tensile strength versus crosshead speed of a 
UHMWPE fiber (2 = 15, 2.5 wt.% Hifax B) showing the 
ductile to brittle transition. Sample length 28 mm 

speed. In the ductile region the tensile strength 
increases significantly with increasing crosshead 
speed [35]. In the brittle region, however, the slope 
of the line goes down strongly and also more 
scatter is observed. According to Eyring's theory of 
flow [13], the strain rate can be written as: 

~ = A - e x p {  U~ ' (12) 

where A is a constant of order of kT/h, U o is the 

activation energy, and 7 the activation volume. 
Therefore, the yield stress 0-yie m can be written as: 

U 0 RT RT 
O ' y i e l d  - -  1 t -  �9 In ~ - - - .  In A . (13) 

7 7 7 

According to this, the slope at the lefthand side in 
Fig. 13 must be equal to RT/7, where 7 is the 
activation volume. In this case, an activation vol- 
ume of 66,~3 for plastic flow can be calculated. 
Kub~t [36] has shown from studies on different 
materials that the activation volume in stress re- 
laxation is: 

kT  
7 ~ 10- a* ' (14) 

where a* is the effective stress (applied stress minus 
internal stress). If one neglects internal stresses, an 
activation volume of 48 ,~3 can be calculated from 
Eq. (14), using a = 0.85 GPa. This is within rea- 
sonable agreement with the value of 66 ~a, espe- 
cially if one considers that by neglecting internal 
stresses in the calculation, a systematically lower 
value of 7 is obtained. The very small volume of 
66 ~3 comes down to a chain segment of about 3 
monomeric units. Wilding and Ward [15] have 
found activation volumes ranging from 50 to 87 ~3 
for creep in different polyethylene samples. 

It needs to be emphasized that the Eyring equa- 
tion (12) implies several assumptions, as has been 
pointed out by White who has developed and 
applied a modified theory [37, 38]. Application of 
the White theory is beyond the scope of the present 
investigation, but it clearly shows that the activa- 
tion volume, as determined here, can be interpreted 
with some difficulty, but in a straightforward way. 
The activation volume is calculated here only for 
comparison. 

In a recent study [10] the temperature depend- 
ence of the tensile strength has been investigated. 
The tensile strength vs temperature is plotted in 
Fig. 14 for a 2 = 100 fiber from a 5.0 wt .% Hifax A 
gel. A similar ductile-to-brittle transition was 
found as in Fig. 13. At temperatures above 20 ~ 
the fibers increasingly exhibit yielding behavior and 
the tensile strength (yield stress) decreases linearly 
to zero at 152 ~ This is the temperature at which 
the orthorhombic crystal lattice transforms into the 
hexagonal phase. The existence of this solid-solid 
phase transition in UHMWPE fibers has been dem- 
onstrated by x-ray diffraction and differential scan- 
ning calorimetry [39]. This lattice transition is also 
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Fig. 14. Tensile strength versus tensile testing temperature of a 
UHMWPE fiber (2 = 100, 5.0wt.% Hifax A) showing the 
ductile to brittle transition upon decrease of temperature (from 
[10] ). At 152 ~ orthorhombic crystalline material transforms 
into the hexagonal phase. Crosshead speed 10ram/rain, 
sample length 50 mm 

well known for n-paraffins and polyethylene crys- 
tallized under high pressures. A complete review of 
this phenomenon occurring in a variety of solids 
was recently given by Wunderlich et al. [40]. The 
hexagonal rotator phase of polyethylene exhibits 
conformational disorder. The chains in such a 
phase have an especially high mobitity and can 
easily stip past each other. 

Comparing the result of the temperature study 
on the tensile strength and the results on stress 
relaxation as presented in this work, it can be 
concluded that stress relaxation is strongly linked 
to orthorhombic-hexagonal phase transition. Stress 
could be relaxed by the slipping of chains past each 
other inside the crystal lattice. In general, flow in 
UHMWPE fibers can be thought to be caused by 
local solid-solid transitions inside crystalline enti- 
ties and not by flow of amorphous domains. This 
would also account for the very small activation 
volume of 66 ~3. Wide angle x-ray experiments on 
fibers subjected to creep, however, have not dem- 
onstrated the presence of the hexagonal phase next 
to the orthorhombic. This means that stress does 
not induce a total phase transition of crystalline 
blocks. Local phase transitions not detectable by x- 
ray diffraction could still have taken place. Figure 
14, nevertheless, clearly indicates the introduction 
of the hexagonal phase at lower temperatures 
under the action of the tensile stress. 

In studies on other polymers, stress-induced 
phase transitions in fibers have been reported 
[41-43]. Niegisch [44] has observed for poly-(p- 
xylylene) that already below the melting point 
conformationally disordered phases similar to the 
hexagonal phase of polyethylene [45] are found 
and there are substantially higher creep rates in 
these phases. 

S t r e s s - s t r a i n  r e l a t i o n  

From the results on stress relaxation the stress- 
strain relation of UHMWPE fibers can be easily 
derived. It has been shown that the following rela- 
tion is valid: 

d(t) = d o - a . a  = Eo .~ ,  - a . a  . (15) 

Solving this differential equation, one obtains: 

a ( t )  = E ~  (1 - e - a t )  . (16) 
a 

Inserting t = e/g, the stress-strain relation can be 
derived: 

Eo e-b.e) c~(~)  = ~ - .  (1 - , ( 17 )  

where b = a / &  

The function in Eq. (17) is plotted in Fig. 15. 
Note that the stress asymptotically approaches the 
yield stress. Although the form of the function 
seems to describe most experimental stress-strain 
curves rather well, a simple test on the validity of 
Eq. (18) can be done as follows. 

100 

0.75 

o 

0 5 0  

I 0.25 

1 1 i l I 
1.0 2.0 3.0 ~0 5.0 

STRAIN ( l / b )  

Fig. 15. General theoretical stress strain curve for gel-spun and 
hot-drawn UHMWPE fibers 
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From Eq. (17) the following relation can be de- 
rived for the tangent modulus E in a stress-strain 
curve as a function of tensile stress 6: 

do 
E ( a )  - d e  - E ~  = E ~  - -  b . a  . (18) 

Therefore, if Eq. (17) is applicable, a plot of the 
tangent modulus vs stress should give a straight line 
with a negative slope. The slope of the line b can be 
directly related to the stress relaxation process 
and is a direct measure of the extent of plastic flow 
during deformation. 

Such a plot is given in Fig. 16 for three very 
different fibers from Hifax B: 2 = 15 (2.5 wt .% 
gel), 2 = 60 (2.5 wt .% gel) and 2 = 170 (1.5 wt .% 
gel). The latter has a very high initial modulus of 
264 GPa. From Fig. 16 the linear decrease of the 
tangent modulus is clearly affirmed for the fiber. 
During tensile deformation the modulus decreases 
with increasing stress from 264 GPa to 119 GPa at 
the stress at break of 5.4 GPa. The fiber breaks in a 
brittle manner at a strain at break of 3.0%. Similar 
results are obtained for the 2 = 60 (2.5wt.% gel) 
fiber. The 2 = 15 (2.5 wt. % gel) fiber yields, and 
modulus therefore decreases close to zero. For this 
fiber, however, the decrease of the tangent modulus 
is less linear than for the higher modulus fibers. All 
three fibers in Fig. 16 have been strained by apply- 
ing the same crosshead speed, temperature, and 
sample lengths. The slopes b for the fibers are: 28 
(2 = 170), 22 (2 = 60), and 24 ( 2 = 15). 

More precise modulus-stress plots can be ob- 
tained by calculations on digitized stress-strain 
data. Figure 17 shows stress-strain curves of three 
different fibers: 2 = 1 5 ,  2 = 3 0  and 2 = 7 0  
(1.5 wt .% gel). Figures 18 to 20 are the correspond- 
ing modulus-stress plots of these stress-strain 
curves. The modulus at a given point y in the stress- 
strain curve was determined from the slope of the 
least-squares fit through (2N + 1) points ranging 
from y - N to y + N. 
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Fig. 17. Stress versus strain for 2 = 15, 2 = 30, and 2 = 70 
U H M W P E  fiber (1.5 w t . %  Hifax B). Sample length: 500 mm. 
Crosshead  speed: 50 m m / m i n  
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Fig. 16. Tangen t  modulus  versus tensile stress of  three differ- 
ent  U H M W P E  fibers. �9 2 =  170, 1 . 5 w t . %  Hifax  B; 
o :  2 = 60, 2.5 w t . %  Hifax  B; D: 2 = 15, 2.5 w t . %  Hifax  B 
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Fig. 18. Tangen t  modulus  versus tensile stress for a 2 = 15 
U H M W P E  fiber (see Fig. 17) 
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Fig. 19. Tangent modulus versus tensile stress for a 2 = 30 
UHMWPE fiber (see Fig. 17) 
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Fig. 20. Tangent modulus versus tensile stress for a 2 = 70 
UHMWPE fiber (see Fig. 17) 

Especially Figs. 18 and 19 clearly show a nonlin- 
ear decrease of the modulus. By comparison of the 
three plots it can be seen that the plots can be 
divided into two distinct regions: a linear one at 
low stresses and a non-linear one at high stresses. 
The initial linear decrease of the modulus is most 
pronounced for the 2 = 70 fiber, and this slope 
becomes steeper going to lower draw ratios ( - 26.1 
(2=70 ) ,  - 43 .9  ( 2 = 3 0 )  and -44 .5  ( 2 =  15)). 
The transition point to the non-linear regions oc- 
curs for all three fibers after around 40% decrease 

of the initial modulus. The details of the modulus- 
stress plots are very reproducible and the curves are 
characteristic for the draw ratios of the fiber. 

Considering the results as presented solar, we 
can make a distinction between the contribution of 
elastic strain and plastic strain to the total tensile 
strain. The elastic strain at a given stress can easily 
be calculated by dividing the stress by the initial 
modulus. The difference between measured tensile 
strain at that stress and the elastic strain is the 
plastic strain, i.e., the elongation due purely to 
flow. These values are given in Table 1 for the three 
fibers shown in Figs. 17-20. The data show that 
plastic strain is a considerable contribution to the 
macroscopic strain at break. For the 2 = 70 fiber 
plastic strain is 40% of the strain at break. From 
this, it must also be concluded that a large part of 
this plastic strain is directly reversible, because the 
hysteresis strain caused by cyclic deformation 
would normally be only 10% of the cyclic strain 
under these conditions. 

The consequence of Eq. (15) is also that at every 
stress the initial modulus E 0 is present, but that the 
actual modulus is changed by a flow process. Using 
this concept the presence of negative stress relaxa- 
tion [13] can be predicted. When performing a 
loading and unloading cycle, it is always found that 
the absolute tangent modulus at the end of the 
unloading curve is lower than the initial modulus, 
whereas the tangent at the beginning of the unload- 
ing curve is higher. This then should mean that in 
the first part of the unloading curve the tangent 
modulus is increased by stress relaxation. In the 
second part, however, a process that tends to in- 
crease stress in time has to be expected, because the 
value of the tangent modulus is lower than the 
initial modulus. This is indeed the case, as is shown 
in Fig. 21. At t l ,  ]6" (t 1 ) ] is larger than do, and stress 
relaxation is present. At t 2 the absolute value of the 
tangent modulus is equal to d o. At t3, where 16- ( t3 )t 

Table 1. Tensile strength ab, initial Young's modulus E0, 
elastic strain at break Eelast~c, and plastic strain at break ~plastic 
of UHMWPE (1.5wt.% Hifax B) fibers. Gauge length: 
500 ram. Crosshead speed: 50 mm/min 

D r a w  r a t i o  a b (GPa) E o ( G P a )  8elastic ( % )  ~:plaslic ( % ) 

70 4.16 175 2.38 1.56 
30 2.26 82.1 2.75 2.65 
15 0.85 22.6 3.8 21.7 
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Fig. 21. Stress versus time during a deformation cycle of a 
U H M W P E  fiber (2 = 60, 2.5 wt .% Hifax B). t t :  normal  stress 
relaxation (18.(t,)l > 6o), t2:]8.(t2)1 = 8.0, t3: negative stress 
relaxation (I 6 (t 3 ) I < 8.0) 

is lower than ~ an oppositely acting process 
(negative stress relaxation) is indeed observed. This 
kind of behavior can be found in fibers from differ- 
ent polymers [46], and we have observed it even in 
fibers from very stiff polymers like poly(p- 
phenyleneterephtalamide). It should be noted that 
negative stress relaxation cannot be explained us- 
ing the Boltzmann superposition principle in the 
simple way as described in Eqs. (5) to (7). 

Proposed mechanism of flow in gel-spun and 
hot-drawn UHMWPE fibers 

From the results in the previous sections, it can 
be concluded that flow plays a major role during 
tensile deformation of UHMWPE fibers. Further- 
more, the process of flow was shown to be strongly 
correlated to the orthorhombic-hexagonal phase 
transition of crystalline material in UHMWPE 
fibers. Considering these results, the microscopic 
mechanism of flow, therefore, has to be a general 
and simple one. 

Although it is very difficult to translate macro- 
scopical properties of fibers into molecular pro- 
cesses due to the extreme complexity of the fiber 
morphology of flexible chain polymers, an attempt 
will be made to describe the mechanism of flow in 
these fibers using the generally accepted model for 
high strength and high modulus UHMWPE fibers, 
as shown in Fig. 22. This model can be used to 
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Fig. 22. Schematic representation of an elementary microfibril 
in gel-spun and hot-drawn U H M W P E  fibers, showing crystal- 
line blocks with length Lc and disordered domains  with 
length L a 

quantitatively describe the seemingly puzzling 
combination of high crystallinity (about 90%), 
high modulus (about 75% of the ultimate modulus 
of around 350 GPa [24, 47] ), and the relatively low 
strain at break of 3 -4% and tensile strength of 
maximally 7.2 GPa (theoretically, 21% and 
33 GPa, respectively [33, 48]) encountered in 
UHMWPE fibers [49]. 

As shown in Fig. 22 the fiber consists of crystal- 
line blocks that are connected by tie molecules. The 
fraction of tie molecules per surface area directly 
determines the tensile strength [50], whereas the 
elastic modulus and the strain at break depend on 
both the fraction of tie molecules and the ratio of 
the length L C of the crystalline block to the length 
L a of the disordered domain, through which the tie 
molecules pass [49]. Flow in such a morphology 
could be described as follows. 

As has been shown, flow is very general for all 
UHMWPE fibers and is most likely not caused by 
motion of large chain sections in the more amorph- 
ous parts of the fiber morphology (the disordered 
domain). This is also reflected in the small activa- 
tion volume of about 3 monomeric units. Upon 
tensile deformation, tensile stress is concentrated 
on the tie molecules. The bond angles of the back- 
bone of the molecules are increased and the carbon 
and hydrogen atoms of the all-trans chain move 
closer to the imaginary chain axis of the corre- 
sponding molecule. Due to this, the interaction 
forces between atoms in neighboring chains de- 
crease drastically with elongation of the chains, 
because the distance between the atoms has in- 
creased. In polyethylene, the interaction force is 
solely determined by weak van der Waals inter- 
actions that very rapidly decrease to a negligible 
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level with increasing interaction distance. Beyond a 
certain critical elongation, the chains can then 
easily slip past each other. This comes down to a 
stress-induced transition from the orthorhombic to 
the hexagonal phase. The tie molecules, however, 
are fixed at both ends in crystalline blocks, in 
which the bond angles of the polymer chains are 
only slightly increased due to the lower stress level. 
Under influence of the concentrated stress on each 
individual tie molecule and promoted by thermal 
motions the chain part of the tie molecules inside 
the crystalline blocks will be slowly pulled out, 
resulting in elongation of the fiber. Calculations on 
the static and thermally activated displacements of 
chains against a crystal lattice have been reviewed 
by Kausch [9]. 

Flow can thus be thought  to be caused by the 
gradual pull-out of tie molecules out of crystalline 
blocks and that this process is identical to localized 
transitions inside crystalline blocks from the or- 
thorhombic to the hexagonal phase. 

This process of flow can be expected to be 
largely reversible on a small timescale. Partially 
pulled-out chains can be pulled back again into 
their original position. The driving force for this is 
the lattice mismatch of pulled-out chain with the 
surrounding crystalline block and the presence of 
residual stresses, causing recrystallization after re- 
moval of the tensile stress. This is consistent with 
observations that upon tensile deformation plastic 
strains are considerable even at low strain levels, as 
the data in the Table 1 show, but that it neverthe- 
less can be largely reversed during unloading. Total  
reversal of the slip process may be achieved only 
after a long period of time, as has been discussed 
earlier. Changes in density of ultra-high molecular 
weight linear polyethylene have been reported even 
after storage of about 100 days at room temper- 
ature [51], demonstrating long-time crystallization 
events. 

The thermophysical behavior during deforma- 
tion, as was pioneered for polymers by Mfiller [52], 
was investigated for polyethylene by Godovsky and 
other Russian researchers [53]. They found that 
oriented polyethylene releases heat during elon- 
gation, which is a result from the negative coeffi- 
cient of thermal expansion. Contraction, however, 
again caused an initial release of heat, but was then 
followed by absorption of heat (as must be 
expected during contraction from the negative 
coefficient of thermal expansion). This result is 

indicative o f  a reversible slip process during 
cyclic deformation, and is consistent with our pro- 
posed mechanism. 

At larger strains another process has to come 
into action, because the process described sofar 
cannot explain extensive yielding leading to tensile 
strains on the order of the initial sample length. It is 
conceivable that, while chains start to slip out of a 
crystalline block at a large number of different 
sites, at a given moment  the coherence will be lost 
inside the crystalline block (stress-induced mel- 
ting), and separate flow of bundles of chains 
(microfibrils) will occur and these will slip past 
each other. Such a process may lead to unfolding of 
remaining lamellar material or extensive micro- 
fibrillar slip and can explain the yielding over large 
strains, even for fully oriented fibers. Once this 
process starts, flow will become irreversible and 
plastic deformation sets in. The fiber structure then 
is drastically changed by flow and, after deforma- 
tion, the morphology will settle down in new local 
energy minima. 

The modulus-stress plots in Figs. 18-20 indeed 
show two regions. If the first linear region is at- 
tributed to the pull-out of chains, it is then con- 
sistent to find that for higher draw ratios this 
region becomes more prominent  due to the in- 
creased length of the crystalline blocks. The tran- 
sition to a second non-linear region could then be 
the onset of microfibrillar slip. 

The proposed mechanism of flow comes down 
to stress-induced melting. Fibers of polymers hav- 
ing high melting points should therefore be less 
susceptible to flow at a given stress and temper- 
ature. Figure 23 shows the strain vs time during a 
creep experiment, at room temperature, of a 
poly(p-xylylene) (PPX) fiber (for preparation see 
[54]) and a UHMWPE fiber, both having a tensile 
strength of 2.3 GPa. The load corresponds in both 
cases to 60% of the load at break. The plot shows 
clearly the extensive flow and the short time to 
break (1 h) of the UHMWPE fiber. The PPX fiber 
responds profoundly differently and does not show 
any increase of strain after being loaded within the 
accuracy of the experimental set-up (0.1% strain). 

The high resistance to flow in PPX fibers is also 
demonstrated by stress relaxation. Figure 24 shows 
the stress, as a percentage of the stress at which the 
crosshead was stopped, versus log(time) of a PPX 
and a UHMWPE fiber. Both fibers had been elon- 
gated up to a tensile stress which corresponded to 
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Fig. 23. Strain versus time of PPX and UHMWPE (1.5 wt .% 
Hifax B) fibers during a dead-load test. Both fibers, having a 
tensile strength of 2.3 GPa, had loads attached corresponding 
to 60% of the load at break 
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Fig. 24. Stress versus log(time) during stress relaxation of PPX 
and UHMWPE (1.5 wt .% Hifax B) fibers. Both fibers were 
stressed up to 60% of their tensile strengths (2.1GPa and 
2.3 GPa, respectively). Crosshead speed: 10 mm/min. Zero 
time corresponds to the start of the crosshead movement 

60% of the stress at break. The UHMWPE fiber 
again shows the ease of flow in these fibers, for it 
relaxes over 75% of the initial stress during 17.4 h, 
whereas the PPX fiber is able to relax only 3.6% of 
its initial stress. 

Both PE and PPX are pure hydrocarbon poly- 
mers, with no permanent dipoles and no possibility 
of hydrogen bonding between chains. Heat of fu- 
sion is 292 J/gr for PE [55] and 159 J/gr for ppx  

(including mesomorphic transitions) [45]. The 
melting point, determined by the heat and entropy 
of fusion, however, is 142 ~ for PE [55] and 427 ~ 
for PPX [45]. This indicates that melting, i.e., 
disruption of a crystalline block under tensile stress 
is much easier to introduce in a UHMWPE fiber 
than in a PPX fiber. 

4. Conclusions 

Cyclic deformations and analysis of the defor- 
mation energetics have shown that during tensile 
deformation up to break of gel-spun and hot- 
drawn UHMWPE fibers, no detectable amount of 
deformation energy is used to break chemical 
bonds in the polymeric chain. Flow processes, as 
demonstrated by dissipation of deformation en- 
ergy, creep, and stress relaxation are predomin- 
antly present in addition to elastic processes. In 
high modulus UHMWPE fibers having a strain at 
break of 3 -4%,  this flow process is reversible, 
because initial stress-strain behavior can be re- 
covered after a cyclic deformation. 

From stress relaxation experiments it was found 
that the immediate stress relaxation rate after de- 
formation is directly proportional to the applied 
tensile stress. The proportionality is affected by 
the deformation rate. In accordance with the 
Boltzmann superposition principle, the curvature 
in a stress-strain curve could be described as the 
result of the elastic modulus and the stress relaxa- 
tion modulus. The stress relaxation process was 
used to describe the ductile-to-brittle transition of 
UHMWPE fibers as a function of deformation rate. 
Combining this result with those from studies on 
the tensile strength as a function of temperature, it 
was shown that the process of flow is strongly 
correlated to the orthorhombic-hexagonal phase 
transition of crystalline material in UHMWPE fi- 
bers. On the basis of the results on stress relaxa- 
tion, a phenomenological stress-strain relation for 
UHMWPE fibers could be derived. From this rela- 
tion - identical to the stress-strain relation of a 
simple Maxwell element - the linear dependence of 
yield stress upon modulus can be directly derived. 
Experimental stress-strain curves of, especially, 
highly drawn UHMWPE fibers can be quite accur- 
ately described by the derived relation, but indicate 
the presence of different flow processes during ten- 
sile deformation. Using the general morphological 
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model for UHMWPE fibers, a mechanism of flow 
was proposed in which, at first, flow is caused by 
pull-out of molecules (tie molecules, intercrystal- 
line bridges) from crystalline blocks, followed by 
the destruction of crystalline blocks through slip of 
microfibrils past each other (stress-induced mel- 
ting). The experimental data can be qualitatively 
described by this mechanism. 
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