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A growing 2D spherulite and calculus of variations
Part I: A 2D spherulite in a linear field of growth rate

G. E. W. Schulze and T. R. Naujeck
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Abstract: We propose to take the calculus of variations in order to compute the
shape of a growing 2D spherulite in an uniaxial field of growth rate. We are
concerned with the growth line (a path that is traveled in the shortest possible
time from nucleus to a point (x, , y, ), where a molecule just crystallizes) and the
growth front (the times between spherulite and supercooled material). The Euler
differential equation—a result of the calculus of variations—is derived for all
uniaxial growth rates v (x). Here we especially investigate v (x) = px + q.
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1. Basic considerations

We regard a 4-pum-thick foil of polypropylene,
which is in a supercooled state. First, we investigate
the isothermal growth of a spherulite, which grows
from a nucleus with a constant radial rate
v{x) = constant.

Figure 1 shows such an isothermally growing
spherulite. We see that the “growth lines” are
radial rays from nucleus to growth front and that
the “growth front” is a concentric circle.

The growth line is a path that runs from the
nucleus to a point (x, y,) of the growth front in
the shortest possible time. This path is approxim-
ately described by the fibrils. An exact description
of the growth line by the fibrils is not possible,
because of the small-angle branching, which occurs
on the tip of the touching fibril [1-3]. Of course,
there exists an infinite number of growth lines.

In this study, we will investigate the spherulitic
growth if the growth rate v depends on x only
(uniaxial) but not on y. This v (x) is isotropic,
but constant in time. Isotropic means that at a
point (x, y) the rate of growth is the same in all
directions.

We investigate a growth line y (x), which starts at
the nucleus (0, 0) and ends at a point (x,, y, ) of the
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growth front. We propose that the growth line is
always the path, where time is minimum. There-
fore, we must seek a time ¢ that is minimum for the
growth line y(x). This y(x) is principally deter-
mined by the isotropic growth rate, v{x), of the
spherulite.

This can be expressed mathematically by

X1, Y1 dS

o0 v{x)

t{y(x)) =

_ xf 1+9y%(x)
—x=0 U(x)

where \/1 + ¥ (x) dx is an element of the growth

line y(x), v(x) is the isotropic rate of growth at x,
and ¢ is the minimum time for the growth of line
y(x). (The element of the growth line path is

ds = /dx* + dy? = /1 +yZ(x) dx . (2)

The integral has the dimension “time.”)

Our problem is thereby reduced to the calculus
of variations [4, 5]: the growth line y(x) is an
extremal (minimum of time), and the growth front
is an orthogonal to the extremals at . The latter is
orthogonal due to the isotropy of the growth rate
v(x). Therefore, the growth fronts are always per-
pendicular to the growth lines! (See e.g., Fig. 2.)

dx = minimum (1)
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Fig. 1. a) An isothermal grown spherulite of polypropylene. We see a growth line, the growth front, fibrils, supercooled material,
and the nucleus, b) The growth line y(x) and a function y* (x). It holds y(x) = y™ (x) at (0, 0) and at {x, y)

2. Growth line y(x) for v(x) = px + ¢

Equation (1) is solved in a manner given by
Euler. We explain this method in Appendix A. The
result is the FEuler equation, Eq.(A10). With
v(x) = px + g the Euler equation is

y'x) _
(px + @) /1 + ¥?%(x)

Equation (3) is a differential equation for the
growth line y(x). Thereby it holds that the nucleus
is arranged at (0,0) and the start angle of y(x)
amounts to ¢ (0). This is equal to the initial condi-
tions y(0) = 0 and y'(0) = tg ¢(0). Now we solve
Eq. (3) with the given initial conditions, but this is
done in Appendix B. The resultis y(x, ¢ (0)), butin
an implicit form:

(3)

2 2
<x + %) + <y - %cotggb(O))
_ 7
T pZsin?¢ (0) ()

We see in this form that y(x, ¢(0)) describes a
circle in x and y. The origin of this circle is ar-

ranged at x, = — (q/p), Yo = (q/p)cotg ¢(0) and
its radius is

q

plsing(0)]

Two remarks are made about y(x, ¢ (0)):

1) For physical reasons it holds that

vix) =px +q=0,o0r x > —(q/p). Therefore,
we have only a semicircle, which is arranged to
the right of the straight line x, = — (g/p).
2) The start angle ¢(0) can run from 0 to 27.
Therefore, a family of semicircles exists for
Yo = (q/p) cotg ¢ (0).
Figure 2 shows these growth lines y(x, ¢(0)
= constant) by dotted lines. The semicircle with
$(0) = (1/6) (=30°) is drawn in with
Xo = — 962 um (from the origin x = 0, where the
nucleus is  arranged), 1y, = 962cotg30° =
1666 pum, and r(7/6) = 962/sin30° = 1924 um.

3. Shortest time ¢ for growth line to travel from
start angle ¢(0) to end angle ¢

Now we investigate the time past ¢ where the
growth line has progressed from an angle ¢(0) at
t = 0 to an angle ¢ at t. For this we re-write Eq. (1)
as

X1,¥1
Ky = | 25

(00 v(x)

_ f /dx/de)” + (dy/de)*
$10) px(P) +4q
We form dx/d¢ and dy/dé out of Eq. (B8). These

are squared and then inserted in Eq. (5). Further-
more, we substitute the x(¢) from Eq. (B8) into

)
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Fig. 2. Schematical representation of a spherulite, which
grows with v(x) = px + q(p = 1.9498.107% 1/min, g =
1.8757 um/min). The growth lines are finally semicircles
{dotted) and the growth fronts are always circles (solid lines).
(Two growth lines that have angles ¢(0) and ¢ (0) + 7, com-
plete the growth lines to a semicircle)

Eq. (5) and obtain

\ 511’1

M / 1 2cos2
i i) o

d¢
q .
s0) p(psimb(msmd’ B 5) i
1 ¢ do 1 o \1?
§ In{ tg—
pd)(o)smqﬁ p 2/}
w?
2
="In 6)
P o0
2
This gives the shortest time #(¢, ¢(0)) that a

growth line travels from an initial angle ¢ (0) to an
end angle ¢. After rearrangement, we obtain

5 5 eXPp (pt) . )

4. Growth front y = y(x, t) at t = constant

Now we take again the growth line, Eq. (B8),

which is  described by two equations
x=x(¢, $(0)) and y = y(¢, $(0)). With Eq. (7),
¢ =0¢(t ¢(0), we obtain from Eg. (B8)

x = x(t, ¢(0)) and y = y(¢, ¢(0)). These two equ-
ations determine the function y = y(x,t) if we
eliminate ¢ (0). This is done in Appendix C. The
result is the growth front y = y(x, t) at t = con-
stant, but in an implicit form, where

2
{x + g — %cosh (pt)} + 2

2
= {%sinh (pt)} (8)

We see in this form that y(x, t) also describes a

circle. The origin of this circle is at
xo = (p/q) [cosh (pt) — 1], yo = O (always at the x-
axis), and its radius = (q/p) sinh (pz).

y = y{(x, t = constant) describes the end points of
all growth lines at ¢ = constant. These points rep-
resent the desired growth front at ¢ = constant!

Figure 2 shows 10 growth fronts y(x,¢=
constant) for 10 values of constant by solid
lines. The growth fronts and the growth lines
hit  perpendicular.  Especially  the circle
with ¢=1000min is drawn in with x,=
962 [cosh  (195:1073-1000) — 1] = 962-2.5855 =
2487 um, y,=0, and R=962-sinh(1.95-1073.
1000) = 962 -3.4432 = 3312 um.

5. Field v(x) and the temperature field

One question of concern is: what is the connec-
tion between v(x) = px + g and the temperature
field T (x)? For this reason we investigate the iso-
thermal growth of a spherulite of polypropylene,
and we measure its radial growth rate. We find that
the growth rate is constant for an isothermal
growth. This is calculated for eight different tem-
peratures.

The result of the eight rate measurements is
shown in Fig. 3. Moreover, Fig. 3 shows an expo-
nentially fitted curve, v(T) = exp(a* T + b™) with
at = —0.208 and b* = 28.7. This result is well
known [6].
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v[Lz] We assume that there is a function

151 e e v (x) = y(x) + en(x) (A2)

V{T_{: exp(a T+b’) whereby ¢ is a parameter and
a’=-0.208

10 b'=287 n(0) = n(xy) =0 (A3)
is true. Figure 1b describes y* (x) and y (x). Due to
Egs. (A1) and (A2), the equation

5-4

t{y" (%)) = I flx,y' (x) +en'(x)dx  (Ad)
is true. With this, {y* (x)> assumes the function
¥ T T -y T ° i
04— - s T s T{°C] t(e). Therefore we obtain

Fig. 3. Eight points of measurement and the fitted curve
v{(T)y=expla* T+ b")

Because we know v(x) and v(T), we also know
T(x):

v(x) = px + g =expln(px + q) = v(T(x))
=exp(atT(x)+b").
Therefore, we have
a*Tx)+ b =lnpx+q)
and, consequently,
Tx)=1/a*)(ln(px +q) —b*)
=In(px + q)(1/a*) —b" Ja™

This uniaxial temperature field T (x) exists if we
have

vix) =px+gq.

Appendix A

Derivation of the Euler equation

We determine the function y(x), which brings
the integral

>—§W

t{y(x)

= ] feyrds (A1)
to minimum and makes the boundary conditions
y(0) = 0 for (0,0) and y(x,) = y, = constant for
(xl V1 )

dt(e) ™} dfd
ds x2o de
N3 df d(y' + en')

=xi0d(yl+81’]’) ' dg dx

(AS)

For ¢ = 0 the #(g) reaches its minimum. It holds

that dt(e)/de = 0 and we obtain with Eq. (AS)
*odaft
xloiy—"”d"“o' (A6)

We can do nothing with Eq. (A6). Nevertheless we
can use the integration of a product

X1 X1

j u dx = uv |y — j uvdx .

With Eq. (A3), whereby uv |}
of Eq. (A6)

4 df B
-4 E(gy)n(x)dx =0.

Equation (A7) is, in general, only true if

d (dftxy)\ _,
dx ay' N

is valid, or integrated as

df (x,5") _
dy

With Eqs. (A9) and (A1), we obtain

~o = 0, there remains

(A7)

(A8)

1+y2(x)
v(x)
dy’
_d/1+y%x)
T vx)dy

df (x,5')
dy
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/ T . .
_ y' (x) ___.. (A10) his yields
vix) /1 + ¥ (x) _sing(0) (B6)
Equation (A10) is the desired Euler equation, with q
which we calculate the growth line y (x). and
cz=§fMg¢w> (87)
A dix B Thereby Eqs. (B3), x =x(, ¢(0)), and (BS),
ppendix y = y(¢, $(0)), give the results
Solution of the Euler equation
f 7 P S —— ¢
We have to solve p psing(0)
/(x) d (B8)
y(x . —¢,. (B1) an
(px +q)/1 + ¥ (x) q
N . y — =-cotg ¢ (0 OS¢
Therefore, it is advisable to make the substitution p psmqﬁ
=tg¢ . (B2) These two equations squared and added yield one
equation: y = y(x, ¢(0)), whereby
Because
g

\/T__ﬁ‘—g—z—g =sing ,
it follows from Eq. (B1) that
sing g
= e v

We differentiate Eq. (B3) with respect to ¢ and
obtain

dx _ cos ¢
per

(B3)

PP (B4)

Because of the substitution of Eq. (B2) and because
of Eq. (B4), we have

dy = di — ¢ cosq,’>d :sin(bd .
y =tgpdx gqﬁpcl o o, ¢

By integration, we find

(B5)

Now we determine ¢, and ¢, at (0, 0) from
Egs. (B3) and (BS):

0= sing(0) g
pecy p
and
0o cos 9 (0) .
pey

2 2
(x + %) + (y - %cotg(b(O))

q2

" pPsin? ¢ (0)

which was desired.

Appendix C

Calculation of the growth front

We must first change all terms with the argu-
ments ¢ and ¢ (0) in Eq. (B8) into terms with the
arguments ¢/2 and (¢(0))/2, because of Eq. (7).
This yields

o 2tg(9/2)
0= e (4]
and
o2
cosp = L8 (¢/2)

1+1g°(¢/2)
Correspondingly, the same holds for ¢(0). An ex-
ample is

_ cos$(0)

sing(0) — 2tg(¢(0)/2)

After a short calculation, we obtain from the
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Eq. (BS)
g _q(1+g?(¢(0)/2)exp (pt)

P p1+ 82 ($(0)/2)-exp2pt)
Rearranged this yields

x+ g — %cosh (p1)

_q. 1 — tg® (¢(0)/2) exp (2pt)
=y O T g0 e 0 Y
if the equations sinhz=1/2(e*—e™ %) and

coshz = 1/2 (e + e~ ?) are introduced.
From the second Eq. (B8) we obtain after a
calculation

2tg(¢(0)/2) exp (pt)
1+ tg*(¢(0)/2) exp (2pt) ~

Squared and added, these two Egs. (C1) and (C2)
yield

2
{x + % — %cosh (pt)} + 2

2
- {%sinh (pt)} .

y= %sinh (p2) (C2)

This is the desired equation of the growth front at
t, which is so because

{1 —g*(4(0)/2)exp2p1)}* + {2t($(0)/2)exp (p1) } -1
{1+ tg?(4(0)/2)exp(2pt) } ’

which is easy to show.
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