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A growing 2D spherulite and calculus of variations 
Part I: A 2D spherulite in a linear field of growth rate 

G. E. W. Schulze and T. R. Naujeck 

Abteilung Werkstoffwissenschaft (IPkM), Heinrich-Heine-UniversiEit Dfisseldorf, Dfisseldorf, FRG 

Abstract: We propose to take the calculus of variations in order to compute the 
shape of a growing 2D spherulite in an uniaxial field of growth rate. We are 
concerned with the growth line (a path that is traveled in the shortest possible 
time from nucleus to a point (xl, Yl ), where a molecule just crystallizes) and the 
growth front (the times between spherulite and supercooled material). The Euler 
differential equation--a result of the calculus of variations--is derived for all 
uniaxial growth rates v(x). Here we especially investigate v(x) = px + q. 
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1. Basic cons iderat ions  

We regard a 4-#m-thick foil of polypropylene, 
which is in a supercooled state. First, we investigate 
the isothermal growth of a spherulite, which grows 
from a nucleus with a constant radial rate 
v(x) = constant. 

Figure 1 shows such an isothermally growing 
spherulite. We see that the "growth lines" are 
radial rays from nucleus to growth front and that 
the "growth front" is a concentric circle. 

The growth line is a path that runs from the 
nucleus to a point (xl ,  Yl) of the growth front in 
the shortest possible time. This path is approxim- 
ately described by the fibrils. An exact description 
of the growth line by the fibrils is not possible, 
because of the small-angle branching, which occurs 
on the tip of the touching fibril [1-3]. Of course, 
there exists an infinite number of growth lines. 

In this study, we will investigate the spherulitic 
growth if the growth rate v depends on x only 
(uniaxial) but not on y. This v(x) is isotropic, 
but constant in time. Isotropic means that at a 
point (x, y) the rate of growth is the same in all 
directions. 

We investigate a growth line y (x), which starts at 
the nucleus (0, 0) and ends at a point (xl, Yl ) of the 

growth front. We propose that the growth line is 
always the path, where time is minimum. There- 
fore, we must seek a time t that is minimum for the 
growth line y(x). This y(x) is principally deter- 
mined by the isotropic growth rate, v(x), of the 
spherulite. 

This can be expressed mathematically by 

X l , y t  a s  

t ( y ( x ) )  = Jo V(X) 

xl x//1 + y,2 (x) dx = minimum (1) 
= So v(x) 

where x/1 + y,2 (x) dx is an element of the growth 
line y(x), v(x) is the isotropic rate of growth at x, 
and t is the minimum time for the growth of line 
y(x). (The element of the growth line path is 

as = x /dx  2 + dy 2 = a l l  + y,2 (x) dx . (2) 

The integral has the dimension "time.") 
Our problem is thereby reduced to the calculus 

of variations [4, 5]: the growth line y(x) is an 
extremal (minimum of time), and the growth front 
is an orthogonal to the extremals at t. The latter is 
orthogonal due to the isotropy of the growth rate 
v(x). Therefore, the growth fronts are always per- 
pendicular to the growth lines! (See e.g., Fig. 2.) 

K 857 



690 Colloid and Polymer Science, Vol. 269 . No. 7 (1991) 

Y 

/ 

i f ( x )  / / , / 
i t 

/ i i  �9 / ", t 
I ~ l  / 

/ / /  

i / ,/ ............. y{x] 

(o.o) 
, X  

Fig. 1. a) An isothermal grown spherulite of polypropylene. We see a growth line, the growth front, fibrils, supercooled material, 
and the nucleus, b) The growth line y(x) and a function y+ (x). It holds y(x) = y+ (x) at (0, O) and at (x, y) 

2. Growth  line y (x) for v (x) = p x  + q 

Equation (1) is solved in a manner  given by 
Euler. We explain this method in Appendix A. The 
result is the Euler equation, Eq. (A10). With 
v(x) = px  + q the Euler equat ion is 

y'(x) 
= c 1 . (3) 

(px + q)x /1  + y,2 (x) 

Equation (3) is a differential equation for the 
growth line y (x). Thereby it holds that the nucleus 
is arranged at (0, 0) and the start angle of y(x) 
amounts  to 4) (0). This is equal to the initial condi- 
tions y(0) = 0 and y'(0) = tg 4)(0). N o w  we solve 
Eq. (3) with the given initial conditions, but  this is 
done in Appendix B. The result is y (x, 4) (0)), but in 
an implicit form: 

q2 
(4) 

p2 sin 2 4) (0) " 

We see in this form that y(x,  4)(0)) describes a 
circle in x and y. The origin of  this circle is ar- 
ranged at x 0 = - ( q / p ) ,  Yo = (q/P)cotg 4)(0) and 
its radius is 

q 
r - -  

p 1sin 4) (0) I " 

T w o  remarks are made about  y(x,  4)(0)): 
1) For physical reasons it holds that 

v(x) = px  + q >_ 0, or x >_ - (q/p). Therefore,  
we have only a semicircle, which is arranged to 
the right of  the straight line x 0 = - (q/p). 

2) The start angle 4)(0) can run from 0 to 2n. 
Therefore,  a family of semicircles exists for 
Yo = (q/P) cotg 4) (0). 

Figure 2 shows these growth lines y(x ,  4)(0) 
= constant) by dotted lines. The semicircle with 
4 ) ( 0 ) = ( n / 6 )  ( = 3 0 ~  is drawn in with 
x 0 = - 9 6 2 / a m  (from the origin x = 0, where the 
nucleus is arranged), Y0 962 cotg 30 ~ = 
1666/a m, and r(rt/6) = 962/sin30 ~ = 1924/am. 

3. Shortest time t for growth line to travel from 
start angle #(0) to end angle 

N o w  we investigate the time past  t where the 
growth line has progressed from an angle 4)(0) at 
t = 0 to an angle 4) at t. For this we re-write Eq. (1) 
as 

x,,y, d$ 
t (y  (x) 5 = 

(x) (0,0) v 

4, x/(dx/d4))2 + (dy/d4))2 d O .  (5) 

px(4)) + q 4,(0) 

We form dx/d4) and dy/d4) out  of Eq. (BS). These 
are squared and then inserted in Eq. (5). Further- 
more, we substitute the x(4)) from Eq. (B8) into 
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Fig. 2. Schematical representation of a spherulite, which 
grows with v (x)=px+q(p=l .9498 .10-  ~l/min, q =  
1.8757f tin/rain). The growth lines are finally semicircles 
(dotted) and the growth fronts are always circles (solid lines). 
(Two growth lines that have angles ~b (0) and (b (0) + ~, com- 
plete the growth lines to a semicircle) 

Eq. (5) and obtain 

t=  V \ps in4)(O)~__.__~psb~(_O)J d(p 

p(- q--sin -q-) +q 
r \psin~b (0) p / 

= 1  ~ dq~ = l ~ l n ( t g ~ ' ~  4' 
Pq,(o) sinq ~ P (  \ 2/J4,(o) 

1 tg ~- 
= - I n  (6) 

p r 
t g - -  

2 

This gives the shortest time t(q~,qS(0)) that  a 
growth line travels from an initial angle q5 (0) to an 
end angle qS. After rearrangement,  we obtain 

t g ~  tg ~(0) 2 = - - ~ - - e x p ( p t )  . (7) 

4. Growth  front  y = y ( x ,  t) at t = constant  

Now we take again the growth line, Eq. (B8), 
which is described by two equations 
x = x(~ ,  4)(0)) and y = y(~ ,  qS(0)). With Eq. (7), 
~5 = ~ (t, ~ (0)), we obtain from Eq. (B8) 
x = x ( t ,  ~b(0)) and y = y ( t ,  qS(0)). These two equ- 
ations determine the function y = y (x ,  t) if we 
eliminate ~(0). This is done in Appendix C. The 
result is the growth front y = y (x ,  t) at t = con- 
stant, but in an implicit form, where { }2 

x + P- -- q-cosh (pt) 
q P 

= {ps inh(p t )  } 2 

+ y2 

(8) 

We see in this form that  y(x, t) also describes a 
circle. The origin of this circle is at 
x o = (p/q) [cosh (pt) - 1], Y0 = 0 (always at the x- 
axis), and its radius R = (q/p)  sinh (pt). 
y = y(x, t = constant) describes the end points of 
all growth lines at t - constant.  These points rep- 
resent the desired growth front at t = constant! 

Figure 2 shows 10 growth fronts y ( x , t  = 
constant) for 10 values of constant  by solid 
lines. The growth fronts and the growth lines 
hit perpendicular. Especially the circle 
with t - - -1000min  is drawn in with X o =  
962 [cosh (195"10-3.1000) - 1] = 962"2.5855 = 
2487 #m, y0=0,  and R = 9 6 2 .  sinh (1 .95 .10-  3. 
1000) = 962.3 .4432 = 3312/am. 

5. Field v (x) and the temperature field 

One question of concern is: what  is the connec- 
tion between v ( x ) =  px  + q and the temperature 
field T(x)? For this reason we investigate the iso- 
thermal growth of a spherulite of polypropylene, 
and we measure its radial growth rate. We find that 
the growth rate is constant  for an isothermal 
growth.  This is calculated for eight different tem- 
peratures. 

The result of the eight rate measurements is 
shown in Fig. 3. Moreover,  Fig. 3 shows an expo- 
nentially fitted curve, v(T) = exp(a + T + b + ) with 
a + - - 0 . 2 0 8  and b + = 28.7. This result is well 
known [6]. 



692 Colloid and Polymer Science, Vol. 269 �9 No. 7 (1991) 

1 5 -  e,,  

10- 

5- 

v[T) = exp (e  t T+ b *) 

a %  - O. 2 0 8  

i . . . .  t . . . .  i . . . .  , . . . .  j 

125 130 135 140 
, ,  T[*C] 

g5 

Fig. 3. Eight points of measurement  and the fitted curve 
v (T)  = exp(a  + T + / 9  + ) 

Because we know v(x) and v(T), we also know 
T(x): 

v(x) = px + q = exp ln (px  + q) = v(T(x)) 

= exp(a  + T(x )+ b +) . 

Therefore,  we have 

a+T(x) + b + = In(px + q) 

and, consequently,  

T(x) = (1/a+)(ln(px + q) - b +) 

= ln(px + q ) (1 / a  +) - b+/a + . 

This uniaxial temperature field T (x) exists if we 
have 

v (x )  = p x  + q . 

A p p e n d i x  A 

Derivation of the Euler equation 

We determine the function y(x), which brings 
the integral 

x, ~/i + / 2  (x) dx 
t (y(x)  ) = x~=o v(x) 

X l  

= I__ ~ f (x ,  y ' )dx  (A1) 

to minimum and makes the boundary  conditions 
y(0) = 0 for (0, 0) and y(xl) = Yl = constant  for 
(x l ,  Yl ). 

We assume that there is a function 

y + (x) = y (x) + er/(x) , (A2) 

whereby e is a parameter  and 

r/(0) = t/(x 1 ) = 0 (A3) 

is true. Figure lb  describes y+ (x) and y(x). Due to 
Eqs. (A1) and (A2), the equat ion 

Xl  

t (y+(x))  = ~ f(x,y '(x)  + e~'(x))dx (A4) 
x = 0  

is true. With this, t (y  + (x)) assumes the function 
t (~). Therefore  we obtain 

dt(e)_de - ~i~o ~ dx 

x~[ df d(y' + e~f) .dx.  (A5) 
~ o -d (y' + erf ) de X = 

For e = 0 the t(e) reaches its minimum. It holds 
that dt(e)/de = 0 and we obtain with Eq. (A5) 

x~ df , ,  
x!0  ~yTy, �9 t / ax  = 0 . (A6) 

We can do nothing with Eq. (A6). Nevertheless we 
can use the integration of  a product  

Xl Xl  

x!o u. 'dx = uv i:'_-o-xI=oU'VdX. 
,\ 

x1  With Eq. (A3), whereby uv [x=O = 0, there remains 
of  Eq. (A6) 

--~=o d x \ d y  J tl(x)dx = 0 .  (A7) 

Equat ion (A7) is, in general, only true if 

dx \ dy = 0 (A8) 

is valid, or integrated as 

df (x, y') 
- c . ( A 9 )  

dy' 

With Eqs. (A9) and (A1), we obtain 

dX/1 + y,2 (x) 
dr(x, y') v(x) 

dy' dy' 

_ d x / 1  + y,2 (x) 
v (x) dy' 
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y' (x) This yields 
= = c .  (A10) 

v (x) ~/1 + y,2 (x) sin ~b (0) 
C 1 ~ - -  

Equation (A10) is the desired Euler equation, with q 
which we calculate the growth line y (x). and 

Appendix B 

Solution of the Euler equation 

We have to solve 

y'(x) 
- -  c 1 . ( B 1 )  

(px + q) ~ + y,2 (x) 

Therefore,  it is advisable to make the substitution 

y' (x) = tg 4) . (B2) 

Because 

tg4) - sin4) , 
x /1  + tg 2 q5 

it follows from Eq. (B1) that  

sin 4) q 
x - (B3) 

Pet P 

We differentiate Eq. (B3) with respect to 4) and 
obtain 

dx _ cos 4) (B4) 
d~ pq  

Because of the substitution of Eq. (B2) and because 
of Eq. (B4), we have 

dy = tg ~b dx = tg ~b cos ~b d4) = sin 4) d4) . 
Pc1 Pq 

By integration, we find 

COS 4) 
y - -  + c2 . 

Pc1 

N o w  we determine 
Eqs. (B3) and (B5): 

0 - s i n  ~b (0)  q 

PCl P 

and 

= 

(B5) 

c 1 and c 2 at (0, 0) from 

cos4)(0) 
- - + c 2 .  

Pc1 

/ )  
= qCOtg~b (0). s 

Thereby Eqs. (B3), x = x(4), ~b(0)), 
y = y(~b, 4)(0)), give the results 

x + q -- q sin q5 
p p sin ~b (0) 

and 

and 

(B6) 

(B7) 

(BS), 

(B8) 

P 
- - q cos q5 . y - cotg q~ (0) p sin 4) (0) 

These two equations squared and added yield one 
equation: y = y(x, ~b(0)), whereby 

( x  + p ) 2  + (Y - pCOtg4)(0)) 2 

q2 

p2 sin 2 4) (0)' (B9) 

which was desired. 

A p p e n d i x  C 

Calculation of the growth front 

We must first change all terms with the argu- 
ments 4) and 4)(0) in Eq. (B8) into terms with the 
arguments q5/2 and (~b(0))/2, because of Eq. (7). 
This yields 

2tg(4)/2) 
s i n  4) = 1 + tg 2 (q5/2) 

and 

1 -- tg 2 (~b/2) 
cos ~b - 1 + tg 2 (~b/2) " 

Correspondingly,  the same holds for 4)(0). An ex- 
ample is 

cotg 4) (0) = cos 4) (0) _ 1 -- tg z (4) (0)/2) 
sin4)(0) 2tg(4) (0)/2) 

After a short calculation, we obtain f rom the 
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Eq. (B8) 

q (1 + tg 2 (4)(0)/2))exp (pt) 
x +  q - -  = 

p p 1 + tg 2 (4)(0)/2) .exp(2pt)  

Rearranged this yields 

x + p - q-cosh (pt) 
q P 

P 1 -- tg 2 (4) (0)/2) exp (2pt) 
= sinh(pt)  i + tg2(4)(O)/2)exp(2pt) ' (C1) 

if the equations s i n h z = l / 2 ( e  z - e -  =) and 
cosh z = 1/2 (e = + e -z) are introduced. 

From the second Eq. (B8) we obtain after a 
calculation 

y = q sinh (pt) 2tg(4) (0)/2) exp (pt) . (C2) 
p 1 + tg 2 (4) (0)/2) exp (2pt) 

Squared and added, these two Eqs. (C1) and (C2) 
yield 

{ }2 
q-- -- qcosh  (pt) + y2 X + p  P 

- - {ps inh  (pt) }2. (C3) 

This is the desired equation of the growth front at 
t, which is so because 

{ 1 -- tg 2 (q5 (0)/2) exp (2pt) } 2 + {2 tg (~6 (0)/2) exp (pt) } 2 
1, 

{ 1 + tg 2 (4 (0)/2) exp (2pt) } 2 

which is easy to show. 
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