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Thermodynamics of swelling in unfilled and filler-loaded networks*) 
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Abstract: Within the framework of the van der Waals-network model a consistent 
interpretation of swelling and simple extension in differently crosslinked net- 
works is presented. It is observed that the excess parameters in the 
Staverman-Koningsveld-Kleintjens version do not depend on the degree of 
crosslinking. Swelling of filler-loaded rubbers shows universal features because of 
not depending on the type and the properties of the filler. By introducing the 
Einstein-Smallwood modification in an adequate manner one understands this 
phenomenon without any further parameter adjustments. It is the consequence of 
having "quasi-permanent" filler-to-matrix contacts that are not modified in 
presence of solvent molecules. The excess-parameters in the swollen matrix are 
not affected. The entropy elastic stress due to the swelling induced deformation of 
the matrix is apparently too small as to enforce chain-slippage. The strength of 
the adhesion of the polymer inhibits filler-to-solvent contacts. These results 
defend the mean-field treatment of the boundary problem as presented by 
Einstein-Smallwood, and allows a valuable proof of the thermodynamics of 
swelling in networks. 
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Introduction 

All known theories of equilibrium swelling in 
networks implicate substantial simplifications 
[1-5]. The mixing entropy is taken to be identical 
with the one of a polymer solution [8, 9]. In the 
classical Flory-Rehner approach the network is, in 
addition, represented as a single infinitely large 
molecule. It is, on the other hand, clear that the 
properties of real networks are controlled by the 
finite length of chains [1-6]. It is significant that it 
was found that the autonomy of network chains 
remains relatively large. This is the reason why 
modified single-chain models are successful [1-5]. 
In this situation, it appears to be interesting to 
prove whether it would not be consequent to define 
the network chains themselves as thermodynamic 
components to which the free enthalpy of mixing 

should be related [4, 5]. If this approximation holds 
true, this represents another interesting extension 
of classical thermodynamics [7-9]: A swollen net- 
work as a super macromolecule should display 
nearly the same distinguishable configurations as a 
reference polymer solution without crosslinks and 
with a molecular weight distribution which is 
identical with the chain length distribution in the 
network. The "limited localization" of statistically 
indistinguishable chains should not matter so much 
provided that the chains are long enough, essen- 
tially, in comparison with the size of the solvent 
molecules. 

In this paper this idea is condensed by linking 
thermodynamics of polymer solutions and the van 
der Waals network theory. We introduce, in addi- 
tion, the interaction parameter as formulated by 
Koningsveld et al. [10]. Equilibrium swelling data 
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obtained for differently crosslinked unfilled and 
filled networks are then studied for proving the 
reliability of the model. 

Theory I: unfilled networks 

The chemical potential o f  the solvent 

We apply the thermodynamics of polymer solu- 
tions in the Flory-Huggins version [1-9, 11-14]. 
The difference between the chemical potential of 
the solvent in the solution and in the pure system is 
defined by 

_Y_!"~q> +Zq~2,  A#mix'l - -  In (1 - -  ~Op) + 1 y p }  p 
R T  P 

(t) 

where R is the gas constant and T, the absolute 
temperature. The volume fraction of the polymer 
may be written as 

npy[, 
q~p - . (2) 

npyp + nly I 

Yi gives the volume of the ith component related to 
an arbitrary unit of reference, np and nl are the 
mole numbers of the polymer and the solvent. The 
second term on the righthand side of Eq. (1) is the 
activity coefficient that accounts for particle size 
modification of the entropy of mixing. Z is the 
Flory-Huggins interaction parameter. 

Taking Eq. (1) as a definition of the free enthalpy 
of mixing in a swollen network is equivalent to 
treating the chains of mean length yp as particles in 
spite of their being linked in the network. This 
unconventional treatment is justified if the equilib- 
rium configuration of the chains does not depend 
on their being linked in the network. The entropy 
of mixing should be about the same as the one in 
the polymer solution of reference. Under equilib- 
rium conditions the chains operate, on the average, 
as "undistinguishable particles". Hence, the inter- 
penetration volume of only the neighboring chains 
matters. Within this volume it must be guaranteed 
that about the same solvent-polymer configura- 
tions are realized as in the solution of reference. 
These conditions are likely to be approximated if 
the network chains are not too short [8, 9]. A 
swollen network can then be treated as a quasi- 

binary system [15] with chains of length yp: 
Y r n a x  

yp= ~ x ~ ;  (3) 
rl=l 

x, = mole fraction of chains of length ~/. 

It is now an interesting step to introduce the 
interaction parameter in the Staverman- 
Koningsveld-Kleintjens version (SKK model) [10, 
16]: 

( Z = s0 + rio + (1 -_~-(~p)2 �9 (4) 

For isothermal experiments and with s o = 0 the 
parameters fl0 and fli and 1 - 7 can be replaced by 
Zo- Equation (4) is, therefore, reduced to 

)~0 (5) 
X - (1 - 7~pp) 2 " 

7 is related to the ratio of the molecular surfaces 
O'e/O- 1 of the components according to 

? = 1 -- a2 (6) 
(71 

The strain energy of  a van der Waals network 

It is an advantage of the van der Waals network 
model that the strain energy W~ is analytically 
given in every deformation mode s [17-19]: 

= -- G [(Ii,max -- 3) (in(1 - G) + G) W~ 
L-- 

+ 5 a , (7) 

with the modulus defined by 

p R T  
G - 2 , (8) 

Mu2max 

where p is the network density. Mu is the stretch- 
ing-invariant unit. I~ defines the first strain in- 
variant in the deformation mode s. When defining 
2 as the strain in the direction of a uniaxial stress, 
we arrive for simple extension at 

2 
11 = 2  2 + ~ :  uniaxial .  (9) 

Calling the strain in a swollen network 2 3 - 2q we 
are led to the strain invariant in the equitriaxial 
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mode: 

13 = 322: equitriaxial . (10) 

The strain invariants become identical at the max- 
imum strain 2~,m,x, where the chains themselves are 
considered to be fully stretched [17, 20]. We may, 
therefore, always use the first strain invariant 
11,max, 

2 
= ~max ~- '~max - -  yp ' (11) I1 ,max 2 

which is uniquely related to the chain length 
parameter yp. For ~max >)> 1 we are led to the 
approximate relation 

,)~max ~,~ %~pp, (12) 

which involves the maximum strain of a phantom 
chain of the length yp. The function r/= is defined by 

/ I ~  - 3 
t / s=  q i1~m2-- 3" (13) 

a is the second van der Waals parameter that 
accounts for global interaction between network 
chains. The size of this parameter depends on the 
functionality of the junctions. This is believed to be 
the consequence of having the junctions fluctuation 
regulated by the functionality [5]. 

The mechanical equation of state 
(simple extension) 

From Eq. (7) the nominal force in the mode of 
simple extension is derived to be given by 

f -  82 - GD 1 -  r h a . (14) 

D is the derivative of (I t - 3)/2-= q51(2) 
= (2 2 + 2/2 - 3)/2; 

D = 2 -- 2 -2 (15) 

The elastic term of  the elastochemical potential 
of the solvent 

The equilibrium swelling of a network is de- 
scribed by introducing an additive term in the 
Gibbs function [1-5]. This means that the strain 
energy is a form of energy that may be exchanged 
independently. For the equitriaxial swelling defor- 
mation we derive the elastic component of the 

elastochemical potential: 

A # ; l a n t , 1  1 ( 8 ( W 3 V ) ~  
R T R T 8hi ] r,p 

y, ( 1 / I3--~ '~ ol/3 (16) 
= ~  1--~/3 a ~ ] ~ / / w p  , 

with V as the volume. Comparing this equation 
with the mechanical equation of state [Eq. (14)] 
one realizes the analogous analytical form of the 
van der Waals modification. But one has to keep in 
mind that the mode of deformation is different. 
The maximum strain parameter in the equitriaxial 
mode of deformation 2max, 3 is substantially shorter 
than the one in simple extension: 

/~max,3 - -  /'[max x/~ . (17) 

Under equitriaxial extension the van der Waals 
network is mechanically much more stable than 
under simple extension. The finite chain length as 
the essential structure parameter determines the 
maximum strain and the density of chains. In the 
heuristic limit of infinitely long chains, one arrives 
at a value of [Eq. (16)] 

lim A#evlant,l = 0 . (18) 
yp-.~ 

This makes it clear that in the van der Waals 
network model the eigenvolume of the chains is 
accounted for in a very natural manner. 

To formulate the elastic potential of the 
Gaussian network [1] the density of phantom 
chains has to be introduced additionally. This leads 
to the elastic term of the elastochemical potential: 

zj ~,gauss 
P % l a s t , l  Yl (01/3 (19) 
R T  Y p  "r p , 

where the factor Yl/Yp e n t e r s  irrespective of 
whether or not the network is comprised of 
Gaussian chains of infinite contour length. 

Flory-Rehner approach vs. the van der Waals 
approach 

In the Flory-Rehner approach the network is 
comprised of infinitely long Gaussian chains. We 
are led to the relationship [1-5] 

Yl ca 1/3 A#gausSRT -ln(1--cpp)+CPP+ZCP 2+~pp.,p ; 
*)~3 = "~q = @ ; 1 / 3  (20) 
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In the van der Waals network model chains of 
mean length yp are introduced. This length is now 
assumed to characterize the size of the polymer 
component in the mixture: 

yp 1 -- ~/3 2 "~P " 
(21) 

It is instructive to show the reduced elastic term 
of the elastochemical potential Affelastj/RTq) p ~  1/3 

plotted against 2 -3 as the Mooney plot in the 
equitriaxial mode of deformation (Fig. 1). For the 
networks under discussion the equilibrium swelling 
deformation of both networks lies in the range 
1 _> ~0p _> ~0" ~0.025, where the reduced van der 
Waals force falls below the constant value of the 
Gaussian network. It is for this reason that the 
degree of swelling of these real networks is larger 
than the ones computed with the help of the 
Gaussian model. Finite chain extensibility and glo- 
bal interaction have measurable influence on the 
equilibrium degree of swelling of real networks. 
It was also shown that the activity coefficient 
1 - yffyp comes into play essentially if the size of the 
solvent is comparable with the length of the net- 
work chains [8, 9]. 
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Fig. 1. M o o n e y  plot  of the  reduced equi t r iaxia l  swelling 
force of the van der  Waals  n e t w o r k  qvaw = yffyp{1/(1 - 1/3) 
-a[( I3-3/2)]  1/2} and the  Gauss ian  ne twor k  (qg . . . .  = 

yffyp=const) (crossing over  ~0") as a func t ion  of 
~0p = 2 q 3  (paramete t r s  2ma x = 10.7, a = 0.27, T = 295 K, 
M u = 68 g m o l - 1 ,  Yt = 1.335); the  a r rows  indicate  the  equil ib-  
r ium swell ing of  (a) the van  der  Waals  ne twork  and  (b ) the  
Gauss ian  n e t w o rk  

Comparison with experiments 

Swelling experiments 

With the Flory-Rehner relation every descrip- 
tion of differently crosslinked networks should lead 
to a typical dependence of the interaction para- 
meter on the density of junctions. It would substan- 
tially support our approach if equilibrium swelling 
of differently crosslinked networks could be de- 
scribed with a constant set of SKK parameters. 
Such a finding would be reasonable because 
solvent-polymer interaction is a very local phe- 
nomenon. Under these circumstances, the 
network's entropy of mixing is expected to be 
modified by the particle size effect only 
( ( 1  - -  yl/yp)~Op) [8,  9 ] .  

To prove this hypothesis, let us rewrite Eq. (2) as 

1 1 
x/Z - ~ 0  (1 - y~0p) . (22) 

If the SKK approach is adequate, we should ob- 
serve a linear dependence of l /x /~  on ~0p. It is 
evident from Fig. 2 that this holds true in all the 
systems studied here. It is, therefore, easy to deduce 
the parameters Z0 and y (see Tables 1 and 2). 
Experimental data for (natural rubber) NR-solvent 
systems as measured by McKenna [21, 22], Table 3, 
are shown in Fig. 3. The Zo- and y-values are 
collected in Table 4. The Flory-Huggins z-para- 
meter of our experiments on NR swollen in 
benzene (Fig. 3) are fairly well computed with the 
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Fig. 3. Z- 1/2 vs. the volume fraction of NR networks swollen 
in �9 benzene, Q methylene ethylene ketone, [Z] ethylene acet- 
ate, [] acetone (after [20]), �9 in benzene 

Table 1. NR, a = 0.27 

toluene n-dodecane 
(y~ = 1.355) (y~ = 2.505) 

phr DCP "~max (~p Z ~0p Z 

0.07 11.8 . . . .  
1.08 10.7 0.1859 0.4732 0.2639 0.5222 
1.35 10.0 - - 0.2861 0.5336 
1.62 9.7 0.2126 0.4856 - - 
1.89 8.7 - - 0.3364 0.5619 
2.20 8.6 0.2502 0.5048 - - 
2.35 8.3 0.2610 0.5096 0.3595 0.5789 

NR 

toluene n-dodecane benzene 

YI 1.355 2.505 1.147 
Xo 0.3976 0.4033 0.4164 
y 0.4481 0.4575 0.3470 

Molecular weights of the stretchingqnvariant 
M u (NR) = 68 g tool-  1 

Table 3. Experimental data of McKenna [20] 

Benzene Methyl ethyl Ethyl Acetone 
ketone acetate 

units: 

M ]  78 72 88 58 
y] 1.147 1.059 1.294 0.853 

phr DCP ~p ~p ~p ~p 

1 0.158 0.575 0.527 0.854 
3 0.256 0.648 0.602 0.882 
5 0.335 0.709 0.665 0.907 

10 0.405 0.759 0.725 0.943 

Table 4. Zo and ? 

NR Zo 7 

benzene 0.4255 0.3020 
methyl ethyl ketone 0.4117 0.5221 
ethyl acetate 0.4300 0.4957 
acetone 0.2027 0.7334 

Table 5. NR-benzene,  a = 0.3, y~ = 1.147 

2ma x ,(~9p ,~ Zcalculated 

NR/benzene, a = 0 . 3 ,  Yl = 1.147 

phr DCP ~max ~p Z l / x / ;  

1.08 10.30 0.1745 0.4718 1.4559 
1.35 9.65 0.1905 0.4775 1.4471 
1.62 9.27 0.2014 0.4822 1.4401 
1.89 8.80 0.2131 0.4841 1.4373 
2.03 8.47 0.2256 0.4909 1.4273 

10.30 0.1745 0.4718 0.4716 
9.65 0.1905 0.4775 0.4790 
9.27 0.2014 0.4822 0.4823 
8.80 0.2131 0.4841 0.4860 
8.47 0.2256 0.4909 0.4900 

same SKK parameters as deduced from McKenna's 
data (Table 5). 

The solvent-polymer interactions should be con- 
trolled by local contacts, y gives the ratio of contact 
surfaces between polymer segments and solvent 
molecules [10, 16]. We obtain here the ratio of the 

contact surfaces of NR with toluene or benzene: 

O'to 1 __ O'to I 0"NR 1 - -  ~ b e n z  
. . . .  1.17, (23) 

O-benz 0-NR O'benz 1 - -  ~tol 

which is in satisfactory accordance with 
Koningsveld's value of 1.24 [10]. 
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Hence, isothermal equilibrium swelling in differ- 
ently crosslinked networks is successfully inter- 
preted with constant SKK interaction parameters. 
Global interaction between network chains seems 
not to be modified in the presence of small solvent 
molecules. 

If the interaction parameters are known, it is 
possible to elicit the maximum strain parameter 
(that means the density of quasipermanent junc- 
tions) from equilibrium swelling experiments. 

fairly well understood in terms of a quasibinary 
solution. 

The above result makes it clear that in a swollen 
network the strain energy is stored in the network 
itself. Moreover, the presence of small solvent mol- 
ecules does not appreciably affect the overall net- 
work properties. This allows one to consider a real 
network as a "weakly interacting van der Waals 
conformational gas". 

Simple extension 

The nominal force in simple extension experi- 
ments of the dry networks is correctly calculated 
with the same network parameters as used above 
(Fig. 4). 

Conclusions 

Different experiments like simple extension of 
dry networks or swelling of networks are con- 
sistently described with an invariant set of network 
parameters (M, ,  2r~ax, a). Since the strain energy is 
equipartitioned, chains of different lengths are 
energy-equivalent. This allows one to describe the 
elastic properties of the actual network by an equi- 
valent monomodal network with the chain length 
equal to the mean chain length in the real network. 
If the network chains are defined as the polymer 
components, equilibrium swelling in networks is 

Theory II: filled networks 

The  general si tuation 

It is now a significant and indicative finding [23] 
that the equilibrium degree of swelling for carbon 
black or silica fillers (Fig. 5) is uniquely reduced, 
not showing any dependence on the chemical and 
physical properties of the filler particles investi- 
gated. We must, therefore, develop thermodynam- 
ics of the swelling of filler-loaded rubbers that 
reproduces this finding. It is self-evident that one 
can make use of the Einstein-Smallwood relation. 

Some  definitions 

v is the filler volume fraction defined by 

V f i l l e r  
V ~  

Vfil,~ + V~.bb~ " 
(24) 
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Fig. 4. Nominal force NR networks at 353 K stretched with a 
strain rate of vae r = 0.66% min-1; 2ma~: O 10.6, �9 10.0, 
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Fig. 5. Volume fraction of the NR networks swollen in 
benzene as a function of the volume fraction of the filler 
(O Nl10, Q Ultrasil VN2, [] Aerosil 130V) 
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This volume fraction is related to the filler weight 
fraction wfin~ r according to 

V = Wf i l l e r  (25) 
W fi l l e r  -~  W r u b b e r j O f i l l e r / j O r u b b e r  ' 

where the densities of the constituents p~ come into 
play. The filler mass fraction is often expressed in 
terms of parts of filler per hundred parts of rubber 
(phr) as 

phr (26) 
Wfiller phr + 100 

What we have to find out is how the intrinsic strain 
of the rubber-elastic matrix 23 = 2q is interrelated 
with the macroscopic degree of swelling Q e x p :  

Qexp = V f i l l e r  -1- Vrubber -1- V s ~  (27) 
V f i l l e r  -t- g r u b b e r  

V~ gives the volume of the constituents, the filler 
particles, the rubbery matrix and the solvent. From 
the degree of swelling in the rubbery matrix defined 
by Eq. (27) we arrive at the following expression 
for the intrinsic degree of swelling: 

Q = V r u b b e r  -~- V s o l v e n t  __ Qexp - -  V (28) 
Vrubber 1 - -  V ' 

)[q = Q1/3 . (29 )  

By writing 

pRT 
Gv - 2 ' (31) 

Mu2m,v 

we may define the effective maximum strain para- 
meter J[max,v as 

2 2 a x , v  - ~ '2ax ~ Y p , v "  (32)  
l + C v  

Hence, the Einstein-Smallwood modification may 
be interpreted as a reduction of the maximum 
chain extensibility. 

If the interaction parameter a is invariant, the 
upturn in simply extended filled rubbers should be 
shifted to lower strains. Such a shift is, in fact, 
observed and fairly well described within the 
framework of one of the first versions of the van 
der Waals formulation of the mechanic equation of 
state of filled rubbers including the formulation as 
in Eq. (32) (Fig. 6) [31-34]. Under the premise that 
the filler-to-matrix contacts are quasipermanent,  so 
that the density of the effective crosslinks in the 
swollen network is fixed, the above approach is 
elegant and correct (discussed later). 

It is now unconventional and interesting to use 
the equivalent chain length Yv,v = yp/(1 + Cv) in 
the mixing term of the elastochemical potential as 
well. The boundaries around each filler particle or 
particle aggregate are assumed to diminish the 

The van der Waals-Flory approach 

Swelling in filled networks enforces an equitri- 
axial deformation of the rubbery matrix with 
distortions in the next neighborhood of each filler 
particle or particle aggregate. The filler-to-matrix 
contacts being quasipermanent,  these boundary 
effects can be accounted for by the Einstein- 
Smallwood modification of the network modulus 
[24-30]: 

pRT 
G v -  2 (1 + C v )  (30) 

Mu2m, x 

where C is a universal parameter depending only 
on the form of the colloid particles. If the filler 
particles or aggregates are spheres, C is equal to 
2.5, independent of the size. One arrives, therefore, 
at the same value for monodispersed or polydis- 
persed filler ensembles provided that the particles 
and aggregates are spherical in shape. 

f 
MPo 

O 

2 3 4 5 6 X 

Fig. 6. S t r e s s - s t r a i n  p a t t e r n  of  N R  filled w i t h  TiO2-f i l l e r  pa r -  
t icles.  T h e  sol id  lines are  c o m p u t e d  f r o m  Eq.  (14): �9 v = 0, 
�9 v = 0.091, ~ v = 0.167, �9 v = 0.239, 2ma X = 10.7, 
a = 0.28, M u = 45 g m o l - 1 ;  filler: T i O 2 ;  C = 2.5, 
2 . . . . .  = 2max/(1 + Cv) 1/2 r ep l ac ing  2 . . . .  2i = [2 - -  (v/2)lJ3]/ 
[1 - -  (v/2) 1/3 ] r ep lac ing  2 
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mean entropy of mixing in the matrix according to 
(1 -- yffyp#) q)p. 

(e) 

Comparison with experiments 

The equilibrium degree of swelling can then be 
computed with the help of Eq. (21) in the equitri- 
axial mode of deformation whereby 2max, v has to (f) 
replace 2ma X. With the help of the same parameters 
as in the unfilled NR network (Table 2), we arrive 
at the representation of the measurements (Fig. 5) 
as depicted in Fig. 7. 

We come to the following conclusions: 

(a) The mean-field approach based on the ther- 
modynamics of filled van der Waals net- 
works is adequate. 

(b) Quasipermanent filler-to-matrix adhesion 
reduces the effective chain length so that the 
entropy of mixing in swollen filler-loaded 
networks is diminished. The reduction is 
fairly well defined by the Einstein- 
Smallwood modification. 

(c) Filler-to-matrix contacts are quasiperma- 
nent. The adhesion of NR segments is in any 
case strong enough to inhibit any exchange 
with solvent molecules. This explains the 
universal features in the swelling behavior of 
filler-loaded rubbers. 

(d) The cluster ensemble of filler particles like 
a) 

carbon black or silicates should form aggreg- 
ates of spherical symmetry in accordance 

with the results of electron microscope 
studies (Fig. 8). 
The calculations are altogether done with 
the same van der Waals parameter a. Overall 
interactions within the rubber matrix should 
not be changed very much in the presence of 
the filler. 
The Einstein-Smallwood reinforcement 
must be a local phenomenon because in the 
opposite case one should find particle- 
particle interaction effects [35, 36]. Straight- 
forwardly argued, it may be that the 
elastochemical potential /z(x,y,z) is 
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Fig. 7. Equilibrium swelling of filled NR benzene against the 
filler volume fraction (Fig. 5). Solid lines, computed (para- 
meters Table 5) 

b) 

Fig. 8. Electron microscope picture of a filler-loaded NR 
(carbon black) (a) Nl10 and (b)N660, v=0 .18 ) ;  total 
magnification 10 s 
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brought to its constant value simply by 
adjusting the concentration within a rela- 
tively small layer around each filler particle 
or filler particle aggregate. 

It is the last suggestion which needs justification. 

Finite-element calculations 

The thermodynamic description as a mean- 
field approach allows one to apply the method of 
finite-element calculations based on the material 
equations [Eqs. (7) and (21)] [37]. The network 
parameters Mu, 2ma x and a, as well as the thermo- 
dynamic parameters, are altogether kept invariant. 
Hence, the calculations are done with an a priori 
homogenous matrix whereby permanent adhesion 
at the filler particle surface is introduced as a 
boundary condition. By establishing equilibrium, 
we are led to the pattern of iso-concentration lines 
as depicted in Fig. 9. When approaching the filler 
surface the degree of swelling is continuously re- 
duced; in the present case down to about 60% as in 
the matrix far off (see also [38]). One learns from 
this calculation that the thickness of the modified 
layers is comparable to the radius of the filler 
particle. The Einstein-Smallwood approach, there- 
fore, seems to be a good approximation, even in 
swollen networks with surprisingly high loadings 
(in the present case v < 0.2-0.22). This is different 
than in the stress-strain behavior of filler-loaded 
rubbers [37]. 

19 �9 39 

Fig. 9. Isoconcentration lines around a filler particle with 
permanent contacts plunged into a swollen matrix. The lower 
the numbers the lower the degree of swelling (19-39). 
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By plotting the strain 2q against/~max,v , it is seen 
from Fig. 10 that all the finite-element calculations 
fall onto a master curve, where we also find the 
experimental data of unfilled networks [39]. This 
verifies an interesting empirical correlation which 
is not yet explained. It defends, on the other hand, 
the mean-field representation of the finite-element 
calculation. We also find excellent agreement by 
comparing the thermodynamic calculations, with 
the help of Eq. (21) (the modified parameters for 
filled systems introduced), and the finite-element 
calculations (Fig. 11). 
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This leads to the following consequences: 

(a) Permanent filler-matrix contacts reinforces 
the rubber in the van der Waals network 
approach described by a well-defined reduc- 
tion of the maximum strain parameter. This 
is equivalent to reducing the effective chain 
length. This can be quantified by using the 
Einstein-Smallwood relationship. 

(b) The layer in which the concentration of the 
solvent is depressed is relatively thin so as to 
make the single-filler-particle model a good 
approximation up to filler volume fractions 
of about v = 0.2 (whereby this number de- 
pends on the mean size of the filler particles 
or filler particle aggregates). 

(c) According to the finite-element calculations, 
actually, solid contact layers on the filler 
surface must be very thin. 

The Einstein SmalIwood reinforcement seems to 
be related to entropy-elastic chains in parallel ar- 
rangements anchored at the filler surface. 

w h y  in swoiten filler-loaded rubbers the adhesion 
of the polymer segments is quasipermanent and 
independent of the filler's properties. The swelling- 
induced volume increase together with a non- 
homogeneous distribution of the solvent makes the 
"single-particle" approach of Einstein-Smallwood 
a very good approximation. 

A new consequence of the Einstein-Smallwood 
approach is to assume that the entropy of mixing in 
filled rubbers should be diminished within the 
boundary layers of the filler particles. This suggests 
that this effect may be interpreted in terms of a 
reduced effective chain length y~,/(1 + Cv). This 
elucidates a spectacular power of the boundary 
problem as formulated by Einstein-Smallwood. 
Colloid particles embedded in a continuum and 
making quasipermanent contacts lead in very dif- 
ferent physical situations to analogous and uni- 
versal modifications of the macroscopic properties 
(viscosity, elasticity, rubber-elasticity, viscoelas- 
ticity, and thermodynamic properties like the mix- 
ing entropy). 

Conclusions 

It is shown that simple extension and equilib- 
rium swelling can consistently be explained within 
the framework of the van der Waals network 
model. The overall behavior is fairly well charac- 
terized as that of a weakly interacting conforma- 
tional gas. 

Because of having achieved a quantitative under- 
standing of swelling in differently crosslinked net- 
works, it is justified that the network chains are 
treated as quasiautonomous particles in spite of 
their being linked in a network. Interaction of any 
kind (overall interactions as well as solvent- 
polymer interactions) seems to have Iocal origins so 
as to be nearly identical in filled and in unfilled 
networks. The van der Waals type of description of 
polymer-solvent contacts as proposed by 
Staverman-Koningsveld-Kleintjens turns out to 
be a very reasonable approach. 

In describing the equilibrium swelling in filler- 
loaded networks the Einstein-Smallwood ap- 
proach is very adequate. The swelling is reduced in 
a universal manner because each filler particle is 
screened by a well-defined rubber layer. Within 
these shells the concentration of the solvent falls 
rapidly to very low values. The solvent does not 
contact the filler surface itself. This is the reason 
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