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Abstract. Use of an analysis of Expected Mean Square Deviations to search for periodicities in 
an observational data sample is described. The statistic for testing the null hypothesis of non-period- 
icity is derived from a partitioning of the total sum of squared deviations from the mean. 

Unlike most existing methods, the present one does not require equally spaced observations. No 
assumptions are made concerning the statistical nature of spacing intervals. 

The method is illustrated by numerical examples. 

1. Introduction 

The need for precisely determining periods of rhythmic phenomena is well known 
and numerous methods have been devised for this purpose (e.g., Stumpff, 1937; 
Tsessevich, 1947; Kozik, 1964; Kwee and van Woerden, 1956; Lafler and Kinman, 
1965; Blackman and Tukey, 1959; Deeming, 1970; and others). With the exception of 
the methods due to Lafler and Deeming, available methods are not suitable for 
investigating sporadically observed phenomena or phenomena observed at irregularly 
spaced intervals. Yet, many observational procedures in astronomy preclude, by their 
very nature, achievement of equally spaced observations. Existing techniques of time 
series analysis, so powerful for equally spaced observations, could be applied to 
irregularly spaced data by replacing actual observations by new data generated from 
the original set by interpolation. Effects of  such a procedure are generally not known 
and, therefore, this approach is at best an artificial expedient. 

Furthermore, the availability of high speed computers makes the use of equi- 
distant ordinates of lesser importance. Consequently, for unequally spaced data, the 
development of methods directly applicable to the problem is desirable. It is fully 
realized that, in doing so, we sacrifice mathematical elegance and computational 
economy of standard methods and may, in some cases, lose a significant fraction of 
the body of  mathematical proofs justifying certain computational results. 

The problem at hand is basically a special case of a broader class of problems 
dealing with the spectral analysis of irregularly observed time series. Essentially, there 
exists no literature on this subject. In fact, the entire mathematical literature of this 
field consists of approximately three papers; one by Parzen (1963), another by Bloom- 
field (1970), and a recent one by Shaw (1971). 
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The present method, developed for a special case of randomly spaced observations 
in 1964 (Jurkevich, 1964), differs from some described subsequently (Lafler and Kin- 
man, 1965; Deeming, 1970), primarily in the statistic that is employed to establish 
periodicity. In practice, the statistic based on the Expected Mean Square Deviation is 
believed to be statistically more natural and possibly more sensitive in detecting 
periodicities than those used by Lafler and Deeming. Although ideas underlying these 
three methods are straightforward and have been used in part by unsophisticated 
presentations of rhythmic data, e.g., as a graph of means and standard errors of data 
from successive cycles overlying one another, a thorough discussion of a properly 
generalized approach is not available. 

The remainder of the paper is concerned with the description of the proposed 
method. 

2. Periodicity Search in Terms of Expected Mean Squares 

A. GENERAL REMARKS 

The purpose of the proposed analysis is to determine whether a time series ob- 
served at irregularly spaced intervals contains periodicities. As in all existing methods, 
the essential step is to construct the curve exhibiting the observed phenomenon as a 
function of phase for an assumed period, and then to decide whether the result yields 
an acceptable representation of observations. The quantity to be used in examining 
the fit, henceforth referred to as a statistic, must be selected so as to exhibit the 
properties of the periodic variation of observations as sharply as possible in the presence 
of observational errors. Once the statistic has been established, the period is obtained 
by examining the fit for a range of  trial periods until the best representation is obtained. 

B. SELECTION OF THE STATISTIC 

Consider a data sample of size N and denote the individual observation by xi, the 
overall mean by 2, the overall sum of squared deviations by V z, and the expected 
value of the overall variance by S 2. These quantities are given by 

N 

2 N xl, 

i=1 

N 

V 2 = ~ x 2 - N : ~  2,  

i = 1  

V 2 
5 2 - -  

N - 1  

If  the data sample is now divided into m groups, the corresponding statistical para- 
meters of the lth group are given by 
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where m~ is the number of observations in t h e / t h  group. The sum of the squared 
deviations in m groups is then given by 

= v ? .  
i = t  

By virtue of the well-known theorem on the addition of variances, we generally have 

V2  < V 2 . 

A consequence of this theorem is the fact that, when several samples of the same 
argument are combined into a single sample, the expected variance of the latter 
exceeds the mean of group variances if the group means are different, or is equal to 
the mean of group variances if the group means are identical. In any specific case, 
the amount by which V 2 exceeds V~ is computed from 

VL = ~ m~(2~ - 2)2. (2) 
i = 1  

A little reflection shows that, for a given data sample which is to be analyzed for 
periodicities, the quantity V 2 is not a function of the trial period. However, para- 
meters Vz 2 and :~ are very sensitive functions of the latter. For instance, if the trial 
period is simply incorrect, phase-reduced observations, when represented by a curve, 
scatter irregularly over the diagram. In this case, group means and variances are 
likely to be nearly the same and the quantity V~  is quite small relative to V~. As one 
approaches the true period, the group means become quite different; Via becomes 
considerably larger than V~ which, in turn, must decrease relative to V z. In fact, 
when the trial period is exactly equal to the true period, V~ reaches its minimum and 
V~G its maximum. The reduction of V~ relative to V 2 can conceivably be caused by 
statistical fluctuations. A decision on whether this is so or not can be made either 
by examining the fit of the phase diagram or, since observational errors can safely be 
assumed to be normally distributed, by the use of the statistical F-test. In fact, the 
possibility of using this test provided the primary motivating factor for selecting 
Expected Mean Squares as the test statistic. 

It must be mentioned, however, that within the present formulation, the F-test must 
be used with caution. All cells into which the period under investigation is divided 
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are assumed to contain observations. For a reasonably large data sample and a rela- 
tively modest number of groups (e.g., N=200,  m = 10), this condition was found to 
be satisfied. If, in addition, the observational noise is 'white', the use of the F-test 
is meaningful. In general, m, the number of groups containing observations, is itself 
a random variable and, consequently, for a given choice of period P, the degrees of 
freedom of the F ratios are random variables which follow essentially a Poisson dis- 
tribution. Another complication is essentially non-normal distribution of means with- 
in groups which arises because the times, in the case of random spacing of observations, 
are randomly distributed within a selected group interval. Hence, the distribution of 
means within groups would have a variance component above that due to noise. All 
this could drastically affect the use of the F-test and possibly render invalid the testing 
of the null hypothesis of non-periodicity. Such difficulties, connected with the validity 
of statistical theory under given circumstances, do not arise if the decision about 
periodicity is based on the quality of the phase diagram. The quantity V 2 exhibits a 
sharp minimum with relatively broad wings in the vicinity of the true period. This 
minimum is taken as an indication that, for the trial period in question, the best fit 
to the phase diagram has been obtained. 

In the following paragraphs we shall consider several properties of the selected 
statistic. 

C. LIMITING VALUES OF DETECTABLE PERIODS 

It is well known that no method of periodicity analysis can yield periods either much 
shorter than the precision to which observation times are given or much longer than 
the total interval over which observations are scattered. 

Although not surprising, the proposed method clearly exhibits these two facts. 
The phase, q~, of a given observation is computed from 

t - t  o ( m o d l )  such that O~<q~<l  
P 

with negative arguments being allowed. In the above, t represents the time of an ob- 
servation and to denotes time origin. It is clear that the phase will vanish whenever 
(t-to)/P is exactly equal to its own characteristic, that is, whenever the mantissa 
of the resulting number is zero. This will occur for any period such that P~< 10 -g where 
k is the number of decimal digits in ( t -  to). Since for any such P the resulting phase 
is zero, every observation will be assigned to the same group. Thus, all group variances 
vanish except one, and its variance is equal to the overall variance. Clearly, the 
quantity V 2 ceases to be meaningful for such periods. 

A similar situation obtains for periods P>Max(t-to) where t is in the range of 
the data. Here, again, negative arguments need to be considered. Note that obser- 
vations are assigned to groups according to index Ia computed by 

[ t-to ( m o d l )  1 suchthat  O~<rp~<l, IG = IFIX(m~o) = I F I X  m P 
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where rn continues to denote the number of groups containing data and the operator 
IFIX indicates that only the characteristic of the argument is taken. 

Clearly, Ia vanishes for any period exceeding the largest difference t - t  o which can 
be produced in the data sample under consideration. Under these conditions, all 
observations will be assigned to a single group and, as in the case of small periods, 
no reduction in the sum of the expected group squared deviations is possible. 

D. NATURE OF THE FUNCTION V 2 

It was already mentioned that the quantity V 2 is not a function of the trial period. The 
value of the quantity V~ depends, however, on the specific data content of the individ- 
ual groups. A change in this content can be effected only when at least one of the 
observations changes its group association in response to changes in the trial period. 

It is not too difficult to show that, for an observation having argument t, the group 
index I~ remains constant within the range given by 

( t  - t o )  m ( t  - t o )  
PA = > P >  =PB" 

IFIX {m - t o ) }  i F i X { m ( t ; t o ) } + l  

Within a given data sample, one expects to find one or more observations which yield 
the maximum value of PA, PAMAX, and, similarly, observations which produce the 
minimum value of PB, PBMIN" Within the range PBMIN<P<PAMAX not a single obser- 
vation changes its group assignment and, therefore, the quantity V~ z remains constant. 
Consequently, V 2 exhibits stepwise variation with P. 

E. SELECTION OF T H E  O R I G I N  t O 

For fixed values of  m, t, and P, the range over which Vm 2 remains constant becomes 
smaller with increasing to. This is seen from the fact that for large values of to, 
1 ,~IFIX [m ( t -  to)/P ] and, numerically, 

IFIX (t/~ ~ P 

Consequently, for large values of to we have 

p2 
AP = PA -- PB ~ 

, .  (t - to)" 

This implies that the more remote an observation is from to, the greater is the like- 
lihood that it will change its group association with a slight change in the trial period. 
If to were placed outside the data range or even at one of the ends of the data range, 
fluctuations in V 2 would be considerably larger, even though more uniformly distri- 
buted, than for to placed approximately at the midpoint of the range. In the former 
case, the detail to which the stepwise variation of V~ must be investigated in order to 
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locate the minimum would be computationally excessive. Therefore, it was found 
convenient to place the time origin at the weighted midpoint of the data range despite 
the fact that fluctuations in V~ 2 due to group jumps exhibit peaks near the ends of the 
data range. For a moderate data range, this behavior causes only a minor inconve- 
nience because it occurs at the ends where the present method loses its power in any 
event since it runs into the problem of limiting periods. Nevertheless, when the data 
range is very large and consequently a wide range of periods can be investigated, 
fluctuations in question may narrow down the effective range of detectable periods. 

F. P R E C I S I O N  OF THE M E T H O D  

The range P over which the function V 2 maintains a constant minimum is not to be 
interpreted as the true precision with which the period has been established. How- 
ever, the true precision obviously cannot be greater than the pseudo precision pro- 
vided by the present method. The pseudo precision specified herein can be made 
different in a number of ways. For instance, if the use of the F-test is justified, one 
could investigate how the significance level of the acceptable hypothesis changes 
with not only the trial period, but also with to. Thus, after choosing the trial period, 
one may further choose to to obtain various values of F with various degrees of 
freedom producing the largest or smallest significance level for that trial period. Such 
considerations would result in different spans of constant V 2 with respect to the trial 
period; wherein allowing to to vary results in a greater number of possible jump 
points, but the choosing of a maximum or minimum may subsequently eliminate some 
of them. 

In view of the above comments, we choose to estimate the precision of the 
computed period by examining the changes in the phase diagram in response to 
disturbances in the period which corresponds to the minimum value of V 2. 

It is also possible that many tests on noise series on many kinds of time sets may 
establish empirical relations for precision of this method. 

G. M U L T I P L E  PERIODS 

The ability of the present method to separate two or more cyclic patterns which may 
be present in the data has not been studied in detail. At the present time, it is not known 
what effect the presence of another period would have on the F-test of the null- 
hypothesis of the first period. Related to this consideration is the known fact that 
correlations among errors in a least squares analysis using a linear model of  time 
series results in undersized estimates of variability for the parameters estimated. 
Whether something similar occurs in the present method has not been studied. 

However, limited numerical tests indicate that, in cases when the two periods are 
not too closely subharmonic, fluctuations in V~ for one period include irregular 
fluctuations due to the presence of the other period and separation is effected without 
difficulty. Computations using synthetic data generated from superposition of the 
first and second harmonics of  a sinusoidal signal of equal amplitude encountered no 
difficulties. 
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These tests, incomplete as they are, indicate that for a large number of  time series 
which may occur in astronomy, the method is capable of  separating multiple periods. 

H. SELECTION OF m, THE NUMBER OF GROUPS 

No a priori statement can be made concerning a most efficient grouping of obser- 
vations for a time series with unknown periods. 

However, it appears that m =3  is the practical minimum if to is fixed because with 

m = 2  the center of  both of the intervals may occur close to the region where the data 
crosses the overall mean in case the true periodicity is present. Furthermore, for a 
simple signal, such as a sinusoid, m = 4  certainly guarantees significant differences 

between group means no matter where the origin to is located. 
As far as the upper limit of  m is concerned, all one can say is that it must not  be 

taken so large as to lead to empty groups thereby causing difficulties described in 

Section 2.B. 

3. Examples 

The application of the method outlined in Section 2 is demonstrated by three examples. 
The first treats synthetic data which closely resemble the light variation of the eclipsing 
binary VW Cephei. The simulated light curve is assumed invariant with time. The 
second example is concerned with the periodicity analysis of  the light variation of 
the Seyfert galaxy 3C120. In this example, at least two periodicities are present. Finally, 
the third example compares the results of  the present method with those of  Deeming's 

method for the spectroscopic binary HD217792 =TrPsA. 

A .  S Y N T H E T I C  V W  C E P H E I  D A T A  

This example was set up to insure a clean test case with precisely known spacing 
of observations and known errors in both the ordinates and the argument of  the light 
curve. For  this purpose, a single cycle of  the system light curve, observed by 
K. K. Kwee and shown in Figure 1, was replaced by the curve marked by crosses. 
The ordinates of  this simulated curve are derived from a four-harmonic Fourier 
series approximation of the original data. The fundamental period used to generate 
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Observations used to generate data for example (A). Points are observations of VW Cephei. 
Crosses represent an approximation for one cycle of the light curve. 
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these data was set exactly equal to 0.2783 days and the reference time t o was taken 
equal to 0.4120 days. Subsequently, using a table of random numbers, a random 
sequence of arguments was produced for which the exact value of the corresponding 
ordinate was computed. Finally, the latter was degraded by a normally distributed 
noise. Simulated observations, thus produced, are shown in Figure 2. The scale of 
this figure is just sufficient to indicate statistical fluctuations in the synthetic data. 
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Synthetic data employed in computat ions of  example (A). 
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Results of the application of the present method to these data are shown in Figures 
3, 4 and 5. Figure 3 shows that, for m =2, the minimal number of groups which can 
be used in the analysis, the method fails to indicate the presence of a period in the 
range of tested values. However, for m =4, there is an unmistakable indication of a 
minimum in the computed value of V 2. With the subsequent increase in m, the 
quantity V 2 displays deeper and deeper minima in the neighborhood of 0.28 days. 

Figure 4 displays the behavior of V 2 with the increasing time span which, in the 
present case, also implies the increasing number of observations. In this particular 
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Variation of  the quantity Vm 2 for example (A) as a function of  the trial period and the 
number  of  groups, rn. 
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case, the first cycle contains  only 12 observat ions ,  and  V 2 shows no evidence of  a 

per iod.  In  fact,  the funct ion exhibits  large f luctuat ions which are no t  appa ren t  in 

F igure  4 because o f  the scale used. However ,  for  two cycles and 26 observat ions ,  

these sharp  f luctuat ions  are smoothed  out  and  V 2 shows a well-defined,  even though  

shal low, min imum.  

Final ly ,  F igure  5 shows the deta i led  stepwise changes of  V 2 in the vicini ty of  its 

absolu te  min imum.  The la t te r  is ma in ta ined  over  an interval  0.2780 to 0.2781. No te  

tha t  these values are  wi th in  a b o u t  0.1~o o f  the value used to generate  the data .  I t  
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Variation of the quantity Vm 2 for example (A) with the number of observations N, and 
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Fig. 5. Detailed variation of V~ z for example (A) in the neighborhood of the fundamental period. 
(m = 10, the time span covers four cycles.) 
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is again appropriate to point out that the above interval is not to be confused with the 
precision of period determination. Within the present scheme of things, this can only 
be done by examining the phase diagram. 

Also, it is not surprising that, at least in the present case, a continuing increase 
in the data time span and in the number of observations displaces the minimum 
value of V z closer to the period that was used to generate the data. Although not 
displayed in figures, V~ has a second minimum in the neighborhood of the second 
harmonic. As expected, the latter minimum has broader wings and is shallower in 
depth than the minimum corresponding to the fundamental period. Higher order 
harmonics cannot be isolated with as few as 50 observations scattered over approxi- 
mately four cycles. 

This simple example provides sufficient evidence that implementation of the method 
for real observations is quite practical. 

B. SEYFERT GALAXY 3C120 

The second example uses data of Usher et al. (1969, 1970) for the Seyfert galaxy 
3C120. These observations are typical of  the fragmentary information existing for 
many variable objects which was gathered irregularly over extended periods of time. 
The data sample used in computations spans the interval from 1905 to 1970 and 
contains approximately 300 observations. Points in Figure 6 show the best documented 
portion of the sample. This figure indicates that the object may contain two reasonably 
well-defined periods of  vastly different length. This fact, surmised previously by 
Usher and co-workers, is of considerable interest for our purpose since it may test 
the ability of the method to separate such periods. 

t~ ' .  - _ . . . .  

~poct~ is Jocux nA~s 

Fig. 6. Representat ion of  photometr ic  data  o f  the Seyfert galaxy 3C120 between 1934 and 1939 by 
a synthetic light curve generated f rom periods of  353 days and 22.3 years. Abscissa is in JD2400000 

plus the indicated epoch;  ordinates are in photographic  magnitudes.  

For details of the periodicity analysis of 3C120, the reader is referred to the paper 
by Jurkevich et al. (1971). Here, it is sufficient to show the variation of V~, given in 
Figures 7 and 8. The first of theSe presents a clear indication of the minima near 
353 and 703 days. Within the uncertainty of their location, these periods constitute 
the two detectable harmonics of the short period term. 

Usher et al. suggested that the long period term may have a period of 30 years. 
However, the more reliable observations extend over no more than 38 years so that 
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Fig. 7. The run of statistic Vm ~ for the photometric data of 3C120 in the short period region. 
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Variation of statistic V,~ ~ for the photometric data of 3C120 in the long period region. 

search for the long period seems hardly justified. If, nevertheless, the search is carried 
out, an indication of a period of 22.4 years is obtained. The variation of V 2 in the 
vicinity of this period is shown in Figure 8. As expected, this minimum has very 

broad wings. 
Reduction of the data to a single-cycle modulo 353 days, with no regard for the 

existence of the long period, produces a diagram which has all the features of the 
short period variation indicated by the solid line in Figure 6. The fact that the long 
period term is ignored in this reduction causes an exaggerated scatter of observations 
about the short period trend line. The computed periods yield a very satisfactory 
representation of light variations of  3C120 over the entire data sample (Jurkevich et al., 
1971). It remains to be seen whether the synthesized light curve is suitable for extra- 

polation outside the data range. 
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On the basis of this example, the method certainly appears capable of yielding useful 
information from highly sporadic observations containing two reasonably different 

periods. 

c. SPECTROSCOPIC BINARY HD217792 

The data for the final example were taken from the paper of Bopp e t  al. (1970). The 
sample contains 52 observations, extends over 19 376 days, and exhibits a very high 
scatter in radial velocities. These observations were subjected to periodicity analysis 
both by the present method and by the method of Deeming. Description of the latter 
method is contained in the appendix of the reference cited above. 

The detailed examination of the behavior of Deeming's statistic r shows that the 
latter reaches the minimum in the interval from 178.3516 to 178.3539. It is interesting 
to note that this interval does not include the value of 178.3177 days given in the 
paper of  Bopp e t  at. For the present purpose, however, this difference is not too 
significant. The variation of the quantities r and V~ z is shown in Figure 9. The 95 to 
99.9~ significance levels for V~ are also shown. The quantity V~ attains its minimum 
in the interval 178.118 to 178.141 days. Note that at the 99~ significance level, the 
reduction of V~ relative to V 2 is maintained for periods from 177.38 to 178.65 days. 
Within this range, the hypothesis of non-periodicity is rejected. 

If, now, the midpoints of the intervals over which V z and r maintain constancy of 
their minima are taken as the estimates of the periods, the two values agree to about 
0.1~. Examination of the respective phase curves indicates that the two periods 
represent the data equally well. 

It is clear that the two methods produce closely comparable results even with data 
as inadequate as the present ones. 

2 
Vm N 10 " 3  

Fig. 9. 

O.S5 m=eO 

t7 ~ 

~'~ f 

1.0 

s. 

7.o 

r 

J ~ . . . . . . . . . . . . .  T ~ T I I l I T T 
I 7, o.~ 0.4 0.6 o,~ I7~. o.~ o 4 o,t~ o 8 17~. 0.2 

DAyS 

Variation of statistics I'm 2, and r of Deeming, for the spectroscopic binary HD217792. 
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4. Concluding Remarks 

Computationally, the Expected Mean Squares Analysis presented in this paper is 
very attractive due to its simplicity. It incorporates the simplest arithmetical opera- 

tions needed to compute the basic statistical parameters. Since no complex compu- 
tations whatever are involved, the computation is easily mechanized. Among the 

known methods applicable directly to irregularly spaced observations, only the method 

of Deeming has comparable features. 
Among drawbacks of the present method, perhaps the major one stems from the 

stepwise variation of the test statistic with trial period. Chance fluctuations in V 2 

result in numerous dips throughout the range of tested periods. Whenever such 

fluctuations occur near the true minimum, identification of the latter becomes trouble- 

some. In order to locate the smallest of the minima, it is necessary to explore in detail 

the behavior of the test statistic in the vicinity of the suspected minimum. To do this 

automatically would require a complex search algorithm. It was found that the most 
practical way to avoid complicated search routines is to conduct computations at 

a remote computer terminal so that results can be examined immediately and com- 

putations modified as needed. The author carried out his computations using a 

General Electric 605 Time Sharing System. 
It must be noted that the above remarks apply fully to Deeming's method. It is 

likely that they will remain valid for any conceivable method designed to treat un- 

equally spaced discrete data. 
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