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Abstract. This article reviews numerical experiments on the three-body problem carried out at the Leningrad 
University Astronomical Observatory during the past 20 years. Systematic studies of triple systems with 
negative total energy have yielded the following main results. Most ( ~ 95 %) of the systems decay; the decay 
always occurs after a close triple approach of the components. In a system with unequal masses, the escaping 
body usually has the smallest mass. A small fraction ( ~ 5 %) of quasi-stable systems is formed if the angular 
momentum is non-zero. The qualitative evolution in three-dimensional cases is the same as for planar 
systems. Small changes in initial conditions sometimes lead to substantial differences in the final outcome. 
The decay of triple systems is a stochastic process similar to radioactive decay. The estimated mean lifetime 
is ~ 100 crossing times for equal-mass components and decreases for increasing mass dispersion. 

A classification of the close triple approaches which lead to immediate escape is given for equal-mass 
systems as well as for selected sets of unequal components. Detailed studies of close triple approaches by 
computer simulations reveal that the early evolution is determined by the initial ratio of the interaction 
forces. The review concludes by discussing applications of the results to observational problems of stellar 
and extragalactic systems. 

I. Introduction 

The gravitational N-body problem was applied to celestial mechanics soon after the 

discovery of  Newton 's  universal law. However,  in the course of  three centuries the 

analytical studies have not  provided an effective solution to the main problems. Today,  

numerical methods may be used for obtaining detailed solutions. Computer  simulations 

o f  he N-body problem were first performed by von Hoerner  (1960) who studied the 

evolution o f  small systems (N = 4-25).  Further advances of  the direct method as well 

as increased computer  power have yielded significant results for systems with N = 500 

components  (Aarseth, 1974; Wielen, 1974). 

It should be noted that the study of  large N-body systems requires considerable 

amounts of  computer  time (roughly proportional to N 3), hence, the number of  different 

initial conditions which can be examined is relatively limited. On the other hand, small 

N systems offer good prospects of  systematic investigations, particularly in the case of  

N = 3. The shortening of  computer  process-time permits statistical methods to be used 

for studying the behaviour of  triple systems. This is achieved by selecting a representative 

sample of  initial conditions which then reveal general features of  the evolution. 
A wide range of  triple systems occur among stars and galaxies, and their kinematics 

and dynamics are o f  considerable cosmogonic interest. Moreover,  studies of  dynamical 

evolution of  N-body systems with N = 10-500 have shown that three-body interactions 

play a crucial role in the central regions of  open and globular clusters, as well as galaxy 
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clusters. Consequently, the study of the three-body problem is relevant to the subjects 
of celestial mechanics and stellar dynamics alike. 

2. Method and Initial Conditions 

Computer simulations of the three-body problem were introduced at the Leningrad 
University Observatory in 1964 under the leadership of Professor T. A. Agekian. The 
methods used for this investigation were developed by Agekian and Anosova (1967, 
1968) and consist of the following steps: 

(1) choice of system units; 
(2) generation of initial conditions; 
(3) numerical integration of the Lagrangian equations of motion; 
(4) Sundman's regularization of close two-body approaches. 
Note that very close triple approaches (collisions) are practically absent even in the 

case of three equal-mass bodies with zero total angular momentum. 
A standard set of system units and initial conditions for triple systems with negative 

total energy has been adopted for the statistical studies (Agekian and Anosova, 1967). 
Scaled-system units are used, in which the distance d = 1 is the mean harmonic 
separation between the bodies in virial equilibrium, and the velocity v = 1 is the 
corresponding r.m.s, velocity. The unit of time, z = 1, is then the mean crossing time 
of a particle through the system; it is defined by 

i ~  1 iv~j  
= ; ( 1 )  

( - 2E)3/2 

and the mean size is given by 

G Z 
d = , (2) 

2E 

where G is the gravitational constant; M i and Mj, the masses of the bodies; and E, the 
total energy of the triple system. This system of units provides a uniform description 
which enables quantitative results to be compared for different initial conditions. 

A convenient method for generating initial configurations is achieved in the following 
way (Agekian and Anosova, 1967, 1968). The components A and B of the triple system 
shown in Figure 1 are placed at the points ( - 0.5, 0) and (0.5, 0) in the Cartesian 
coordinate system 4, t/. A circle of unit radius centred on ( - 0.5, 0) is then drawn. The 
initial positions of the third component C are distributed with uniform probability within 
the positive quadrant (4 > 0, t /> 0). In this way, all possible configurations of the triple 
system with equal masses are sampled. If the components have different masses, it is 
also necessary to take permutations of the positions A, B, and C, thereby obtaining six 
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A(-0.5;0)0 B(+0.5;0) 

Fig. 1. All possible initial configuration regions D of the triple systems. The components of the triple 
systems are placed at the points A ( - 0.5, 0), B ( + 0.5, 0), C (~, q) in the Cartesian coordinate system. 

initial states each time. The initial velocities of the bodies are selected with virial 
coefficients (kinetic energy over potential energy) k o in the range (0, 0.5). 

The dynamical evotutioza of the triple systems is studied by numerical integration of 
the equations of motion using a standard method. Since the calculation time is roughly 
proportional to N 3, it is desirable to choose an optimal integration method that gives 
both sufficient accuracy and a minimum computer time. We have adopted a fourth-order 
Runge-Kutta method for this purpose (see Hohl and Watt, 1976). Integration steps are 
chosen according to a specified tolerance and the constancy of the ten integrals of 
motion is checked after each step. The energy constant E is the most sensitive to 
integration errors. Typical relative energy errors for the simulations at the moment of 
escape are AE/E,,~ 10 -4. The other integrals are usually preserved to two or more 
orders higher accuracy. In principle the accuracy can be improved at the expense of 
increased computer time. However, the present solution accuracy may be considered 
satisfactory for statistical investigations. Furthermore, not a single case among the 

3 x 104 experiments gave rise to difficulties with the Sundman regularization method. 

3. Main Results of the Simulations 

3.1. ORBITAL MOTIONS 

Early investigations of triple systems with negative energy were concerned with the 
general behaviour of the motions (Agekian and Anosova, 1967, 1968). Some of the 
relevant processes may be mentioned briefly. Close triple approaches play an important 
role. As a result, one of the components may be ejected to great distances or eve~ to 
infinity, leaving behind a temporary or permanent binary system. Once formed, a binary 
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can disintegrate or exchange components by further interactions, whereas a simpler 
interplay of bodies occur when close approaches and ejections are absent. During the 
dynamical evolution of the triples, these states change continuously until a sufficiently 
close triple approach produces an escaping body, with the two remaining components 
forming a final binary system. 

Figure 2 shows typical trajectories of motions in a triple system. Here the component 
masses are equal and the initial velocities are zero, resulting in planar motion with 
zero-angular momentum. Numbers along the trajectories denote the time in units of the 
mean crossing time z. For a stellar system of solar mass components and mean size 
d = 0.01 pc, one time unit corresponds to about 10 4 yr, whereas for a typical system of 

a Y, 
5 
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Fig. 2a. 
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7 
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Fig. 2b. 

Fig. 2(a-d). Typical trajectories of motions in a triple system. The points A, B, C denote the initial positions 
(Figure 2(a)). Numbers denote the time in units of the crossing time z. The solid line shows the component 
A, the thin line shows component B and the dashed line component C. Each figure follows sequentially from 

the previous one and arrows along the trajectories indicate the direction of the motion. 
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galaxies it would correspond to about 10 9 yr. The basic states of bound triple systems 
are illustrated in the figure. 

On the basis of numerical studies of typical motions in the general three-body 
problem, Szebehely (1971) and Ageldan and Martynova (1973) have introduced the 
following classification scheme: (0)close triple approach; (1)simple interplay; 
(2) ejection with return; (3) escape; (4) stable revolution; (5) Lagrangian equilibrium 
configurations; and (6) collisions and periodic orbits. The states 4, 5, and 6 are of a 
special type and can be studied by analytical methods. Stability criteria for the states 4 
have been proposed by Oolubev (1967), Szebehely and Zare (1977), Harrington (1972), 
and Black (1982). The three first authors obtained a criterion based on analytical 
methods, whereas the two others used computer simulations. The characteristic states 
0, 1, and 2 follow each other in a definite order, whereas the states 3 are final. Moreover, 
the states 6 appear to be particular cases of motions in systems without hierarchical 
structure. 
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In general, a study of triple systems can only be effective by using methods of 
computer simulations. Criteria for distinguishing between the states 0, 1, and 2 combined 
with 3 for non-rotating planar triple systems have been suggested by Agekian and 
Martynova (1973). In order to separate the states 2 and 3, it is necessary to use criteria 
for return or escape; alternative expressions have been proposed by Birkhoff (1927), 
Tevzadze (1962), Standish (1971), Griffith and North (1974), Yoshida (1972), and 
Marchal (1974). A unified form of these criteria has been suggested by Szebehely (1973) 
a s  

p>a, p>0,  pa>b, (3) 

where p is the distance from the remote body to the centre of mass of the two other 
particles. Expressions for a and b in the different criteria are quoted in Table I for the 
body of mass M3. Each of these criteria provide a sufficient but not necessary condition 
for escape. Orlov (see Figure 3 of Anosova and Orlov, 1985) has shown that the criteria 
with the smallest proportion of undetected escapers are given by the four last authors. 
An even stronger escape criterion has recently been proposed by Kuznetsova and Orlov 
(1983) and by Marchal et  al. (1984). However, for large distances (p > 4d) there is no 
essential differences between the suggested criteria (except for the simpler one due to 

TABLE I 

Escape criterion for triple systems 

Author a b 

2 G ~  2 
Birkhoff (1927) 

31El 

2 G ~  
Tevzadze (1962) 

31El 

Standish (1971) 
G(MIM 2 + M1M 3 + M2M3) 

IEI 

Griffith and North G(MIM2 + MIM3 + M2M3) 

(1974) pE[ 

Yoshida and Marchal GM1M ~ 

(1972, 1974) # ]El 

Comment: 
# = M~ + M2; ~I = Ma + M2 + M 3 

8 G ~  

Po 

2 G ~  M~ M2 + - -  

I ~ M 2 Ma 
Po - - a  P o - - -  a 

LPo P~(Po - a) 

2 G ~  + - -  § 

[Po P3PoZ Po - a 

2G~3~ ( M1 + M2 ) 

M 2 Ma 
p o - - -  a po + - -  a 

# I~ 

Po - M2 
# 
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Fig. 3. Comparison of the escape criteria: (1) Birkhoff (1927); (2) Standish (1971); (3) Tevzadze (1962); 
(4) Griffith and North (1974); (5)Yoshida (1972); Marchal (1974); (6)Kuznetsova and Orlov (1983); 

Marchal et al. (1984). The values of the units are from Equation (3) and Table I. 

Birkhoff). Thus, Tevzadze's criterion with p > 4d has been used as an escape condition 
in the present work. 

3.2. QUALITATIVE RESULTS 

The statistical material obtained at the Leningrad Observatory amounts to about 
3 x 104 triple systems with negative total energy (see Anosova and Orlov, 1985; and 
references given therein). The basic qualitative results can be summarized in the 
following way: 

(1) In the majority of cases, the dynamical evolution was completed by escape. 
(2) For approximately 20~  of the systems, the escape criterion was not satisfied but 

one of the components was ejected to a large distance from the two others. During such 
prolonged excursions, the direct integration requires considerable computer time. For 
such systems we have, therefore, introduced the notion of conditional escape. Thus, 
separations p > p* are used to terminate an integration, and we have adopted p* = 20d 
or 30d as a practical limit. 

(3) The mean escape time < T ) estimated for the triple systems (determined from 
actual or conditional escape) depend somewhat on the choice of the critical value p* in 
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TABLE II 

Dependence.of  the estimated life time "f on the distance p* of a remote component  for the triples 

p* 4 10 20 40 100 400 1000 > 1000 

T(p*) 36.5 78.7 101.9 126.1 151.4 236 337 780 
_+ 1.6 + 2.8 _+ 3.4 + 4.5 + 5.2 + 21 + 49 + 260 

the conditional escape criterion. It can be seen from Table II that < T ) increases for 
larger values of p*. 

(4) For isolated triple systems where p ~ ~ ,  < T ) also becomes arbitrarily large. 
Therefore, the mean escape time is not well defined, and one can only discuss the 
probability P(t) that escape occurs after a time t, or the probability P(p) that a remote 
component reaches a distance p from the centre of mass of the two other bodies (see 
Table III). 

TABLE III 

Dependence of the escape probability P on the distance p and on the evolution time T 

p 10 12 16 20 40 100 200 1000 
P(p) 0.649 0.737 0.812 0.855 0.931 0.971 0.983 0.997 

T 10 20 40 60 80 100 200 300 500 

P(T) 0.110 0.188 0.318 0.419 0.502 0.533 0.788 0.889 0.975 

(5) Escape (actual or conditional) always arises from a close triple approach of the 
bodies, and the moment of escape has been assumed to coincide with the minimum 
triangular perimeter. 

(6) Statistically, escape is more probable when the triple approach is closer. 
(7) As a rule, the final binaries have orbits with large eccentricities, in agreement with 

theoretical considerations for an equilibrium distribution of binaries in an irregular field 
(Ambartsumian, 1937; Heggie, 1975). This also agrees with data of a statistical study 
of escape from triple systems (Monaghan, 1976). 

(8) The escape phenomenon of triple systems is a random process analogous to 
radioactive disintegration. Thus, the distribution of escape times has an approximate 
exponential form and statistically the systems do not approach nearer to escape during 
the course of their evolution. Moreover, the distribution P(t) in Table III demonstrates 
that there is a secular process opposite to ageing (Agekian et aL, 1983); thus, at a given 
time the most distant ejection may have a period exceeding the age of the system. The 
estimate of the half-life for true escape gives Tin ~ 80z. 

(9) An increasing mass dispersion reduces the lifetime and in most cases, the body 
with smallest mass is ejected. 
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(10) The lifetime tends to increase with increasing angular momentum, especially by 
the appearance of a small proportion (~  5 ~o) of hierarchical triple configurations 
which are stable over long times. Triple approaches are absent in such systems, and the 
motions can be described by the superposition of two perturbed Keplerian orbits during 
intervals At ~ 1000z. Application of stability criteria (Szebehely and Zare, 1977; 
Harrington, 1972) to these systems confirms this result. 

(11) The qualitative picture is essentially preserved during the transition from planar 
motions to the three-dimensional case. 

(12) New qualitative results ofthree-dimensional calculations relate to the orientation 
of the final trajectories: (i) as a rule, the orbits of the binary and an escaper are not 
co-planar; (ii) in slowly rotating systems, the angular momentum of the escaper tends 
to be of opposite sign to that of the binary, whereas the spins are aligned for rapid 
rotation; and (iii) the velocity vector of an escaper is usually nearly perpendicular to the 
total angular momentum of the triple system. 

3.3.  C L O S E  TRIPLE APPROACHES 

Szebehely (1979) has shown analytically and by computer simulations that one of the 
components can attain a large velocity as the result of a close triple approach. In this 
way, a velocity V of order 102 km s-  1 can be reached in a system with solar mass 
components and initial dimension 0.01 pc; alternatively, V ~ 103 km s - 1 in a compact 
massive galaxy triplet. 

A classification of close triple approaches which lead to escape has been suggested 
by Anosova and Zavalov (1981) for equal-mass components, and by Anosova and 
Orlov (1983a) for the case of unequal masses. It has been shown that a close triple 
approach (state 0 above) is necessary for escape to occur. The most effective triple 
approaches are those in which a temporary binary is first formed, whereupon the ejected 
body returns for a favourable interaction with the two binary components. This is a 
fly-by interaction and is denoted class I; see Figure 4(a) for an example. During the triple 
approach, the trajectory of the escaping body is often nearly rectilinear and the three- 
body configuration takes the form of an isosceles triangle in the equal-mass case. In 
systems with unequal masses, such approaches can sometimes produce escape of the 
most massive body. In those triple approaches which are separated by a sequence of 
exchanges, escape from an equal-mass system seldom takes place. Such temporary 
exchanges of components are denoted class II; an example is illustrated in Figure 4(b). 
In systems with unequal components, these approaches can occasionally result in the 
escape of bodies of intermediate and maximum mass. 

Synchronization of motions also has an effect on triple approaches of class I (fly-by). 
Thus, if a single component passes through the centre of mass of the system just as the 
two other bodies are approaching, its velocity is decreased and escape does not occur, 
whereas escape is promoted if the binary components are expanding at the moment of 
closest approach. 

Subregions D x (with x = 1, 2, 3, ...) inside the region D of all possible initial configu- 
rations (cf. Figure 5) which lead to escape after the first triple approach have recently 
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(a) Fly-by interaction- close triple approach of class I. (b) Temporary exchange of components - 
close triple approach of class II. The symbols are analogous to those in Figure 2. 

been discovered (Anosova and Zavalov, 1986). These regions which are shown in 
Figure 5 can be characterized as follows: 

(1) The 'axis' of the regions D x are the contours 

x = rAc/rBc = Unc/UAc = const . ,  (4) 

for which the ratio of  interaction forces (and the ratio of relative potential energies UAc 

and UBc) from the two first bodies A and B to the third body C is equal. 
(2) On the contours of the regions Dx the values that are approximately equal to an 

integer appear to be connected with a resonance phenomenon. 
(3) The boundaries of the regions Dx correspond to condition escape; i.e., distant 

ejections resulting from the first triple approach. 

(4) In the regions Dx with increasing value of x, the number n* of double approaches 
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The escape times T(~, ~) for case Ia (see notes to the tables) 

of the bodies B and C in a temporary binary before the triple approach also increases; 
for x ~ 1, n* = 0, and for x ~ 2, n* = 1, e tc  Thus, the time of escape increases for larger 
values of x 

(5) The velocities of the escapers also increases with x; this is connected with a 
hardening of the final binaries with increasing x 

(6) The degree of closeness of triple approaches in all regions D x is roughly equal; 
this may be connected with non-synchronization between the minimum perimeter p and 
the binary separation r~ in the different regions 

(7) The regions D x have a complicated structure; they are almost symmetrical relative 
to the contours but different bodies escape from each side; always a component A 
escapes from the right side, a component B from the left, and a component C escapes 
from a narrow strip along the contours  

(8) On escape of components A or B, the centre of mass of the other two bodies is 
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only approached once, whereas component C escapes after two approaches (one weak, 
one strong) to the temporary binary AB. 

(9) The orbits of the bodies during a triple approach is determined by the initial 
configuration. Thus, for hierarchical systems near an isosceles triangle with a base Gc 
or rBc, the only passage of component A or B takes place through the centre of mass 
of the other two bodies. On the other hand, for configurations near an isosceles triangle 
with a base GB greater than rAc (or rBc), two passages take place, one slow and the 
other a rapid fly-by. 

(10) The basic result of this study is that a determining parameter for the course of 
dynamical evolution in these triple systems is given by the value of the ratio 

x = r A c / r B c  = U B c / U A c .  

4.3 .  Q U A N T I T A T I V E  RESULTS 

The main statistical results of the three-body study are summarized in Table IV. The 
following quantities are displayed: the number of experiments N; the average value and 
r.m.s, deviation of the escape time T for true or conditional escape and of the 
eccentricity e; and the corresponding references of the results. The different types of 
initial conditions are indicated in the last column. A time limit of te = 150z for the 
simulations was chosen by Szebehely (1972), whereas Standish (1972) adopted t k = 104 

TABLE IV 

The mean quantities T and ~ in the three-body problem 

N T + aT e + ae Authors Problem 

200 95.4 + 6.9 - Agekian and Anosova (1968) Ia 
100 87.1 + 8.6 0.742 _+ 0.024 Standish (1972) 

1500 112.3 + 2.8 0.707 + 0.009 Anosova (1977) 
1000 115.7 + 4.0 0.722 + 0.008 Agekian et al. (1983) 

300 27.8 _+ 2.1 - Anosova (1969) Ib 
92 48 0.76 Szebehely (1972) 

100 39.3 + 7.8 0.901 + 0.015 Standish (1972) 
1100 64.5 +_ 2.8 0.820 + 0.008 Anosova and Polozhentsev (1978) 
5500 59.4 + 1.1 0.802 _+ 0.003 Anosova and Orlov (1983) 

100 117.1 + 13.0 - Anosova (1969a) IIa 
100 73.8 + 7.8 0.851 _+ 0.016 Standish (1972) 

5000 91.5 _+ 1.5 0.833 + 0.003 Anosova et al. (1984) 

400 66.4 + 6.1 0.680 + 0.013 Standish (1972) IIb 

4500 89.0 _+ 3.0 0.711 + 0.007 Anosova and Orlov (1985) IIIb 

Notes: 
Ia: plane problem; equal masses;  k o = O, L = O. 
Ib: plane problem; unequal masses;  k o = O, L = O. 
IIa: plane problem; equal masses;  k o r O, L r O. 
IIb: plane problem; unequal masses;  k o r O, L r O. 
IIIb: three-dimensional problem; chance choice of masses  and k o. 
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interaction steps and sometimes t k = 1000z. Anosova et al. (1984) assumed instead a 

distance of conditional escape p* = 20d and in other experiments discussed here, 

p* = 30d. 
Table IV shows that the lower value of the average escape time for equal-mass 

components is ( T )  ~ 100~ for p* = 20d. However, from Table V it can be seen that 

TABLE V 

The distribution of the escape time of the triple systems 

AT(z) Ia IIa  I I Ia  IIIb 

0-10 0.168 0.134 0.077 0.137 
10-20 0.081 0.087 0.061 0.115 
20-30 0.078 0.077 0.053 0,085 
30-40 0.066 0.066 0.049 0.074 
40-50 0.057 0.056 0.045 0.065 
50-100 0.212 0.217 0.194 0,202 

100-200 0.216 0.198 0.215 0.197 
200-300 0.085 0.068 0,086 0.076 
300-400 0.028 0.026 0.050 0.032 

> 400 0.009 0.071 0.170 0.017 

Notes:  

Ia: plane problem; equal masses;/Co = 0, L = 0. 
IIa: plane problem; equal masses; ko # 0, L ~ 0. 
IIIa:  three-dimensional problem; equal masses;/Co r 0, L r 0. 
IIIb: three-dimensional problem; chance choice of masses and/Co. 

TABLE VI 

The distribution of the eccentricities of the final binaries 

he Computer simulations Theory 

Ia IIa IIIa  IIIb I + II III  
Monaghan Ambartsumian 

0 - 0.1 0.015 0.002 0.008 0.006 0.005 
0.1 - 0.2 0.042 0.008 0.012 0.017 0.015 
0.2 - 0.3 0.061 0.017 0.037 0.048 0.026 
0.3 - 0.4 0.064 0.025 0.054 0.045 0.037 
0.4 - 0.5 0.072 0.034 0.075 0.074 0.051 
0.5 - 0.6 0.098 0.052 0.098 0.090 0.066 
0.6 - 0.7 0.133 0.066 0.124 0.140 0.086 
0.8 - 0.9 0.337 0.156 0.202 0.199 0.160 
0.9 - 1.0 0.539 0.229 0.246 0.440 

0.010 
0.030 
0.O50 
0.070 
0.090 
0.110 
0.130 
0.170 
0.190 

Notes  : 

Ia: plane problem; equal masses; k o = 0, L = 0. 
IIa: plane problem; equal masses; k o ~ 0, L # 0. 
IIIa:  three-dimensional problem; equal masses; k o r 0, L # 0. 
IIIb: three-dimensional problem; chance choice of masses and k o. 
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the distribution has a maximum in the interval (0, 20~) which contains 20-30~o of all 
events. This maximum is particularly large for triple systems with unequal mass 
components. The distribution offinai eccentricities is represented in Table VI. As much 
as a third to a half of all eccentricities fall in the interval (0.9, 1.0) for different initial 
conditions. Figure 6 shows the dependence of the escape time on the mass dispersion 
a, where the latter is expressed in terms of the maximum and minimum component mass 
and given (cf. Anosova and Orlov, 1983) by 

~r = 1 - M m i n l M m a  x . (5) 
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Fig. 6. The time dependence of escape for different mass  dispersions a. T(a)  is the solid line with filled 
circles and T(M3) is the dashed line with open circles (M3 is the mass  of component  C). Time is in units 

of  the mean crossing time ~. 

This study has shown that the evolution is mainly affected by the largest mass ratio, 
whereas the body of intermediate mass is less important. Figure 6 also shows that the 
escape time depends almost linearly on the coefficient of mass dispersion such that 
escape occurs more rapidly for larger values of a. 

Data obtained by different authors on the escape of bodies with maximum, 
intermediate, and minimum mass is displayed in Table VII. It can be seen that the 
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TABLE VII 

The fraction of escaping bodies with maximum (N1/N), intermediate (N2/N), and minimum (N3/N) mass 
in triple systems 

N N1/N N2/N N3/N Authors 

300 0.00 0.05 0.95 Anosova (1969) 
92 0.011 0.120 0.869 Szebehely (1972) 

480 0.060 0.138 0.802 Standish (1972) 
1100 0.000 0.245 0.755 Anosova and Polozhentsev (1978) 
5500 0.040 0.164 0.796 Anosova and Orlov (1983) 

lightest body escapes in approximately 80~ of the cases, compared to about 16 and 4~o 
for the intermediate and maximum mass. Results of three-body studies at the Leningrad 
Observatory since 1964 are summarized in Table VIII (see Anosova and Orlov, 1985). 
The first and second column contains the number of experiments N and the maximum 
time tk for rotating triple systems without escape. In these systems, the component C 
remains in the lower fight-hand side of region D (see Figures 1 and 8). It has been shown 
(Anosova et  al., 1984) that these systems satisfy the stability criteria of Golubev (1967), 
Szebehely and Zare (1977) and Harrington (1972). The third column gives the average 
and r.m.s, value of the reduced escape time < T*> which includes unfinished cases, 
where it has been assumed that T = t~. In the following five columns is given the 
corresponding values of the evolution parameters for escape (actual or conditional), as 

TABLE VIII 

Summary of results of  three-body simulations at Leningrad Observatory 

N tk T ~ T D--E ~ "d ~ No.~./N p Problem 

2500 1000 113.7 0.751 0.600 0.237 0.713 0.158 30 Ia 
+ 2.2 _+ 0.038 + 0.006 + 0.003 _+ 0.006 

5500 1000 - 59.4 0.752 0.876 0.435 0.794 0.131 30 Ib 
• 1.1 +_0.027 • 0.009 _+0.006 +0.003 

5000 1000 140.0 91.5 0.398 1.167 0.276 0.833 0.210 20 iI 
_+3.2 • 1.5 _+ 0.015 • • 0.001 _+0.003 

3000 500 172.9 !16.1 0.314 1.040 0.284 0.710 0.253 20 IIIa 
+ 2.8 • 1.9 _+ 0.013 • 0.008 • 0.002 _+ 0.004 

!000 500 115.3 89.0 0.298 1.247 0.414 0.711 0.230 20 IIIb 
_+ 4.3 • 3.0 • 0.020 • 0.019 • 0.006 • 0.007 

Notes: 
Ia: plane problem; equal masses;  k o = 0, L = 0. 
1b: plane problem; unequal masses;  k o = 0, L = 0. 
IIa:  plane problem; equal masses;  k o # 0, L # 0. 
IIIa:  three-dimensional problem; equal masses ;  k o r 0, L # 0. 
IIIb: three-dimensional problem; chance choice of masses  and k o. 
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well as their dispersions; the escape time T in units of the crossing time; the relative 
excess energy of the escaper (DE) evaluated with respect to the escape criterion; the 
perimeter p of the configuration triangle at the closest triple approach; and the semi- 
major axis a and eccentricity e of the final binary. Finally, column 9 shows the proportion 
of conditional escape and column 10 contains the assumed value of p*. 

Correlation coefficients between the evolution parameters of 10 4 triple systems have 
been obtained, and the main ones are shown in Table IX. In particular, there is a strong 
correlation between the values of p and DE, a, and DE. Thus, p and a are also well 
correlated in the sense that close triple approaches produce energetic escapers and small 
final binaries. Results of rotating systems are presented in Table X. Here k o denotes the 
initial virial ratio of kinetic and potential energy, whereas the last two columns contain 
the proportion of final prograde and retrograde orbits of the escapers. It can be seen 
that prograde orbits dominate in cases of fast rotation, whereas retrograde escape is 
more prevalent for slow rotation (ko = 0.1). 

T A B L E  IX  

The corre la t ion  coefficients be tween the evolut ion pa ramete r s  

Prob lem (7, n) (DE, p) (DE, a) (p, a) (p, e) 

Ia  + 0.875 - 0.464 - 0.693 + 0.679 + 0.329 

I I a  + 0.722 - 0.444 - 0.721 + 0.610 + 0.216 

I I I a  + 0.865 - 0.462 - 0.803 + 0.601 + 0.229 

IIIb + 0.871 - 0.446 - 0.476 + 0.694 + 0.221 

Notes: 
am~ x = 0.32 - r.m.s, devia t ion  of  the corre la t ion  coefficients. 

I a :  p lane  problem;  equal  masses ;  k o = 0, L = 0. 

I I a :  p lane  problem;  equal  masses ;  k o r 0, L # 0. 

I I I a :  th ree-d imens iona l  problem;  equal  masses ;  k o ~ 0, L # 0. 

I I Ib :  th ree-d imens iona l  p roblem;  chance  choice of masses  and  ko. 

T A B L E  X 

Frac t ion  of  the tr iple sys tems wi th  p rograde  

(Ne/N) and  re t rograde  (Nrg/N) mot ions  

0.1 0.406 0.594 
0.3 0.600 0.400 
0.5 0.644 0.356 

5.3. E S C A P E  F R O M  I N I T I A L  C O N F I G U R A T I O N S  

Various studies have demonstrated that small changes of initial conditions can lead to 
widely different outcomes (Anosova, 1969a; Agekian and Anosova, t974, 1977; 
Standish, 1976). It has been shown (Agekian and Anosova, 1974, 1977) that the region 
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D of all possible configurations breaks up into a number of small islands s, inside which 
the escape time T is a continuous function of the initial coordinates. At the boundaries 
ofs  the function T(~, 7) has a discontinuity such that T(~*, ~/*) -~ ~ .  During a crossing 
of the boundary, the number of triple approaches n(~, ~/) may change by an arbitrary 
value. Moreover, the islands s may consist of subregions s*, inside which the function 
n(~, 7)= const. When crossing the boundary of s*, the function T(~, ~/) changes 
continuously and n(~, 7) changes by 1. These results are summarized in Figures 5, 7, 
and 8. The initial positions of component C are indicated and the numbers shown 
correspond to the time of escape. The regions which include n(~, ~/) = 1 are shaded in 
Figures 5 and 7. These figures show that the average escape time increases for an 
increasing degree of hierarchical structure, as measured by the initial configuration 
parameter ~/* = p/rmin where rmi n is the distance between the closest components. 
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corresponding numbers give the time of escape. 

For systems with different masses and the same initial configuration, the escape time 

depends on the mass Md of a distant component. At first, for M d = m m a  x the mean 
escape time is smaller than for M d = Mini n. The former is due to the fact that the triple 
approach occurs earlier, whereas in the second case a massive binary forms which 
stabilizes the system as a whole by wide triple approaches. It has also been shown 

(Anosova and Orlov, 1984, Figure 7) that islands with n(~, t/) -- 1 increase in area for 
increased mass dispersion. 

Two types of periodic orbits have been discovered in rotating systems with equal- 
mass components and no hierarchical structure (Anosova et aL, 1984): (i) in systems 
of a 'chain' type one body successively approaches the other two in turn without the 
latter approaching each other (three such chains in 5000 systems were noted in planar 
cases); (it)in one 'toroidal' system successive approaches take place between all the 



DYNAMICAL EVOLUTION OF TRIPLE SYSTEMS 235 

/ 

�9 " . . . .  

' . ,  : ~  
" i .  "~',-" Lt ~ 

/ ~  ~ w  

(3L-~ 

Fig. %. 

~X~.~'~ ,,.\, x 0 
~,\ ~ 

~. "\ 

o... . . . . . . . . .  .:.....<..-\ 

! 
1 

J 

~ ~ "  "ff"~ 

/ 
I 

Fig. 9b. 

Fig. 9. Periodic orbits in rotating systems with equaLmass components and no hierarchical structure. 
(a) Systems of the 'chain' type. (b) Systems of the 'toroidal' type. Open circles denote the initial positions 

of the components A, B, C. 



236 J.P. ANOSOVA 

bodies (only one case from 5000 systems was noted). Both types of periodic motions 
are illustrated schematically in Figure 9; the symbols are analogous to Figure 2. Note 
that the usual stability criteria which have been proposed for hierarchical systems refer 
to the minimum distance between the s a m e  pair of bodies during the whole evolution. 

In 1981 a film was produced at the Leningrad Observatory which shows the complete 
evolution of a planar triple system with negative energy. 

4. Applications to Observed Triple Systems 

Since triple systems are common in the galactic field as well as in star clusters, the results 
of the three-body problem are of considerable importance. Questions relating to the age 
of clusters containing triple stars and a qualitative picture of their evolution are of special 
interest. 

The computer simulations point to two types of behaviour for systems with negative 
energy. First, dynamically stable hierarchical systems exist in which the outer body 
executes an approximate Keplerian orbit with respect to the inner binary which retains 
its identity throughout. In these systems, the dynamical evolution may be effectively 
studied by analytical methods. In the second case, the motions of the bodies are of 
complicated form and the minimum two-body separation is associated with different 
pairs of bodies. Systems of the latter type are characteristically unstable and their 
investigation requires methods of computer simulations. 

Triple stars and galaxies are referred to as having hierarchical (seldom as e-Lyr type) 
or non-hierarchical structure (often as Trapezium type). Thus, the dynamically stable 
and unstable triple systems are usually distinguished observationally by the ratio of the 
maximum and minimum angular separation. However, the apparent configuration is not 
sufficient to decide on the relevant category: (i) projection effects may hide the true 
configuration; and (ii) apparent hierarchical forms may occur in both types, as numerical 
experiments have shown. 

Data of astrometric, photometric, and spectroscopic observations of the components 
must be used to study the evolution of actual triple stars. The maximum attainable 
accuracy is required to obtain reliable information about parallaxes, relative positions, 
and velocities (from proper motions and radial velocities), as well as individual masses 
in order to exclude optical triples (see Anosova and Orlov, 1985; Anosova, 1984). One 
must also take into consideration the effects of observational errors. The above studies 
have shown that in order to obtain reliable results, a dynamical investigation can only 
be conducted for triple stars within 100 pc of the Sun. For larger distances, the present 
errors are such that even the correct sign of the total energy cannot be guaranteed with 
confidence. This study has also revealed that the catalogue stars do not contain 
sufficiently accurate information for a dynamical study, even for such well-known stars 
as a Cen and a Gem (Castor). However, an investigation of the character of the motions 
in triple stars and galaxies can still be undertaken, since the configurations are 
statistically related to these motions. 

Statistical studies of the configuration distributions for simulated and observed triples 
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have been conducted by Anosova and Orlov (1983b, 1985). Projection effects have been 
estimated theoretically (Ambartsumian, 1951; Agekian, 1954) and by computer simu- 
lations (Anosova, 1968; Anosova and Orlov, 1983b). These studies have shown that 
the projection effects do not influence the distributions significantly. Distributions of the 
true configurations of triple systems and their projection on the coordinate planes are 
displayed in Figure 10(a). The configurations have been scaled by the parameter 
l/t/* = rmi,Jp, where rmin is the distance between two neighbouring components. 
Figure 10(b) shows the corresponding effect for a distribution f (k)  of virial coefficients 
k = Tk/[ U]. These results do not depend on the choice of the mass dispersion coefficient 
a and of the initial values k o. 

Distributions of observed triple stars are based on data from the Index Catalogue of 
Double and Multiple Stars (Anosova and Orlov, 1983b), where probable optical systems 
are excluded (Anosova, 1969c). Distributions of galaxy triples have been analysed using 
available data (cf. Karachentseva et al., 1979; Karachentsev and Karachentseva, 1981 ; 
Karachentseva and Karachentsev, 1982). Figure 11 gives results of distributions obtain- 
ed by computer simulations (solid lines) and observations (dotted lines). Also shown 
(dashed lines) are configuration distributions chosen at random. It can be seen that the 
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results of numerical experiments are in good agreement with the observed data of triple 
stars but not with the randomly chosen configurations. In the case of galaxies, the small 
statistical sample prevents a definite conclusion. Moreover, these results are affected by 
the approximation of treating galaxies as point masses in the simulations and also by 
limitedness due to the selection criteria (Karachentseva et  al., 1979). Since the dynami- 
cal evolution of the great majority of the simulated systems terminate in escape, the 
similarity with the stellar configuration distributions can be considered as an argument 
for the instability of the observed triples. 

The mean escape time of astronomical triple systems can now be estimated. 
Table IV gives ( T * )  = 100~ as a lower value of the average escape time of bound 
systems. Thus, for solar mass components and a typical dimension d = 0.01 pc, 
( T )  = (1.6 + 1.5) x 106 yr, and for triple galaxies with M/=  101~ andd  = 50 kpc, 
( T )  = (1.8 + 1.7) x 1011 yr. 

Actual triple systems are subject to regular and irregular forces due to other stars or 
galaxies. A distant component in bound orbit with respect to the binary itself may, 
therefore, become unbound by external effects, justifying the introduction of conditional 
escape. Critical values of p* corresponding to the tidal radius are given in Table XI for 
five external fields; the solar neighbourhood, open clusters, central parts of globular 
clusters, the Local Group, and clusters of galaxies. The additional parameters given in 
the table are: v, the mean particle density; R, the characteristic radius of the clusters; 
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TABLE XI 

The life t imes T(p*) for actual triple systems 

Quantities Solar Open Globular Metaga|axy Galaxy 
neighbourhood cluster cluster cluster 

v 0.12 pc -3  10 pc -3  200 pc -3  0.02 Mpc -3  2 Mpc -3  

D - 5 pc 20 pc - 5 Mpc 
p* 1.3 pc 0.2 pc 0.08 pc 2 Mpc 0.4 Mpc 
p*, d 130 20 8 40 8 
T(p*)/~ 160 100 70 130 70 

and d, the mean size of the triple systems. Hence, the quoted lower values (T*)  ~ 100z 
for isolated triple systems can be considered as an average lifetime of actual stellar and 
galactic systems. 

5. Suggestions for Further Studies 

We may consider the present sample of g 3 x 104 simulations as representing data for 
a complete statistical study of dynamical evolution and escape for isolated triple systems 
with negative total energy. Further investigations at the Leningrad Observatory (by 
Anosova, Orlov, and Zavalov) are planned along the following lines: 

(1) A detailed study of strongly interacting states (close triple approaches). 
(2) A study of dynamical evolution and escape of bound and unbound triple systems 

in the presence of external regular and irregular fields. 
(3) Investigation of the dynamical states of observed triple stars, taking into account 

errors in astrometric and astrophysical data. 
(4) Statistical and analytical generalizations of the earlier results obtained for 

simulations of triple systems with negative and positive energy. 
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