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Spin Properties of Conduction Electrons in Sodium 

J. M. Perz* and D. Shoenberg 

Cavendish Laboratory, Cambridge, England 

( R e c e i v e d  M a r c h  1, 1 9 7 6 )  

It was found that very carefully prepared Na crystals gave quite large- 
amplitude de Haas-van Alphen oscillations, as if little or none of the metal 
had undergone the martensitic transformation in cooling to liquid helium 
temperatures. Detailed study of the absolute amplitude and the harmonic 
content of the oscillations gave the ratio of the spin susceptibility to that of a free 
electron gas as X/Xo = 1.632+0.007, the spin-splitting factor as g= 
2.636+0.024, and the parameter B0 in Fermi liquid theory as B0 = 
-0.241 + 0.007. These determinations are appreciably more accurate than 
earlier ones, and are consistent with them and agree well with recent theoretical 
estimates. In the analysis of the observed oscillations it was necessary to take 
account of strong magnetic interaction effects, particularly at 0.6 K, and the 
results provide some evidence for a modified form of the theory of magnetic 
interaction in the presence of significant phase smearing. 

1. INTRODUCTION 

Recent studies by Randles 1 and Knecht 2 have demonstrated that 
measurements of oscillation amplitudes in the de Haas-van Alphen (dHvA) 
effect can be used to determine the spin susceptibility and the g-factor of the 
conduction electrons of a metal. These spin properties can differ appreciably 
from those of a free electron gas because of spin-orbit and many-body 
interactions. Both interactions are of comparable importance in the noble 
metals, but only the many-body interaction is appreciable in the alkali 
metals, so that the results are correspondingly simpler to interpret in terms 
of basic theory. So far only K, Rb, and Cs have been studied; because of the 
martensitic transformation, only feeble dHvA oscillations have been 
observed in Na 3-5 up to now and no dHvA effect has yet been observed in 
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crystalline Li.* We have recently succeeded in preparing single crystals of 
Na which gave considerably larger dHvA amplitudes than those reported 
earlier and this has made possible a determination of the spin characteristics 
of Na appreciably more accurate than those based on other methods. 7-9 The 
experiments have also provided interesting new evidence about the effect of 
magnetic interaction in the dHvA effect in the presence of phase smearing 
due to slight sample inhomogeneity. The improvements in sample prepara- 
tion which made the experiments possible are described in Section 2.1; it is 
likely that these improvements inhibited the martensitic transformation 
(which normally occurs on cooling through 36 K) either partially or com- 
pletely, thus providing good-quality single crystals of the high-temperature 
(bcc) phase at the low temperatures necessary to display the dHvA effect. 

2. E X P E R I M E N T A L  T E C H N I Q U E S  

2.1.  Sample Preparation 

The technique of sample preparation was in essence that described by 
Knecht, 2 in which a rod-shaped crystal was grown under oil in a glass 
capillary, which was sealed after removal of the oil. Experience showed, 
however, that unless great care was taken in handling before cooling to 
liquid helium temperatures, no dHvA oscillations were observed. This is in 
line with Barrett 's observation 1° that the fraction of a Na sample that 
undergoes the martensitic transformation to the hcp phase at about 36 K 
depends strongly on the initial degree of strain in the sample and that if the 
sample is carefully handled and no deliberate strain introduced, the fraction 
transforming can be reduced to as little as 5%. Presumably, then, samples 
that have been accidentally damaged by awkward handling transform 
sufficiently to reduce considerably the amplitude of the dHvA effect.t 

Another factor which appeared to be important in obtaining good 
dHvA oscillations was the procedure of cooling the sample through the 
martensitic transformation point. Experience suggested that rapid cooling 
was essential and that it was important to avoid temperature fluctuations 
which could carry the sample more than once through the transformation 
point. 

*Feeble oscilations, 6 corresponding to an average over crystal orientations, have been seen in 
colloidal Li; although in principle the amplitude of these oscillations could be used to give 
information about spin properties, this has not yet been done. 

tReduction of amplitude in a sample that has undergone partial or total transformation would 
be expected both because the hcp phase would not all have the same orientation, and because 
any remaining bcc phase might be considerably and inhomogeneously strained by the material 
that had transformed, thus causing reduction of amplitude through phase smearing. 
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To grow a crystal, a small length (typically 3 ram) of molten Na was 
introduced into a slightly longer glass capillary of uniform bore (typically 
1 mm diameter) by means of a hypodermic syringe under oil. The crystal was 
then grown by laying the capillary horizontally in the oil bath and cooling the 
bath at about ½ C per minute with a temperature gradient of order 0.01 C 
per mm along the capillary. After cooling to room temperature the capillary 
was very gently removed from the bath and excess oil removed by suction 
with a hypodermic syringe, followed by gentle washing with heptane (check- 
ing that the sample could move freely in the capillary during this washing). 
The heptane was then sucked out and the last traces removed by evaporation 
under rough vacuum. Finally, short lengths of terylene fishing line were 
inserted at the two ends to hold the sample in place and the ends sealed with 
epoxy resin to prevent access of air. Initially, all this was done in a glove box 
in dry helium, but it proved difficult to avoid clumsy handling and eventually 
it was found better tq do the necessary handling operations in the open and 
put up with the consequent slight corrosion at the ends of the sample. 

The sealed-off samples were examined both visually under a micros- 
cope and by transmission Laue x-ray photography. There proved to be a fair 
degree of correlation between nonappearance of dHvA oscillations and 
observation of slight cracks and wrinkles under the microscope on the one 
hand and of Laue spots broken up into clusters (sPread over a few degrees) 
on the other. Thus eventually only samples showing no vfsible damage and 
giving sharp Laue spots were chosen for cooling to liquid helium tempera- 
tures and these did in fact nearly always give good dHvA oscillations. 

The sample volume was determined by direct measurement of the 
dimensions .(the diameter being taken as that of the capillary bore before 
filling, less a small correction for shrinkage on solidification) with due 
allowance for the rounded ends; the room-temperature volume was reduced 
by a factor 0.955 to allow for thermal contraction. For some of the samples 
the volume was also determined by the eddy current method described by 
Knecht, 2 and was usually found to be consistent with the other estimate to 
within 10% or so, which is of the same order as the joint uncertainty of both 
determinations. This shows that there are no appreciable cavities in the 
samples. The eddy current determination was made on only one of the two 
samples (sample 16) which gave the most reliable results and the volume was 
found to be 8% lower than that estimated from the dimensions (this lower 
volume was used in the reduction of the data). 

2.2.  Measurement  and Analysis  of  the d H v A  Amplitudes  

The field modulation technique (see, for instance, Ref. 11) was used 
with detection at the modulation frequency, so that the deflection of the 
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output chart recorder is proportional to dM/dH and the oscillatory varia- 
tion of dM/dH with H is displayed as H is slowly swept. The oscillations of 
dM/dH were also recorded digitally on paper tape, from which their Fourier 
components could be computed. The constant of proportionality between 
the output of the recording system and dM/dH was determined as described 
by Knecht. 2 The only other feature of the technique that needs mention is 
that the very high conductivity of Na necessitated the use of very low 
modulation frequencies (typically between 5 and 10 Hz) to avoid the eddy 
current complications discussed by Knecht. 

The connection between the dHvA amplitudes and the spin properties 
comes through the Lifshitz-Kosevich (LK) formula, which specifies the 
amplitudes ar of the Fourier components of the oscillations in the form [see 
(A3) and (A4) of the appendix] 

ar =f(H, T, r)Gr (1) 

where 

G, = cos [(rar/2)grn/rno] = cos [rTr(g~/2gs)(X/Xo)] (2) 

m/mo is the ratio of the cyclotron mass to the free electron mass, X/go is the 
ratio of the spin susceptibility of the conduction electrons to that of a free 
electron gas, go is the free electron value (2.0023), and gs the CESR value 
(2.0015); the difference of the factor g2o/2g~ from unity is small but just 
significant, Note that the value of G1 automatically specifies all the other Gr. 
Thus in principle the spin properties (i.e., the Gr and hence X/Xo or g) can be 
determined if the a~ are known. However, we have so far ignored magnetic 
interaction (MI), which comes about because the effective field in the metal 
is B rather than H. Because of MI the a r of (1) are related in a complicated 
way to the harmonic amplitudes actually observed. This problem can be 
dealt with fairly simply if the MI is weak enough, as it was in Knecht's 
experiments on the other alkali metals, but more elaborate'procedures are 
needed to deal with the appreciably stronger MI that is found in Na, 
particularly at very low temperatures. These procedt~res are outlined in 
Section 3 and more fully described in the appendix; some interesting novel 
aspects of the theory appear when MI and phase smearing are both 
important. 

3. E X P E R I M E N T A L  R E S U L T S  

The dHvA oscillations were successfully observed with six samples (one 
of which showed undiminished amplitudes in a second run~ even though it 
had been warmed to room temperature in between) and about as many gave 
no oscillations at all. Nearly always the negative experiments could be 
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correlated with evidence of slight damage to the sample or with too slow 
cooling to 10w temperature.  The early experiments were somewhat exp- 
loratory in character and suffered from various unsatisfactory features which 
were gradually eliminated as experience was gained. Thus in the first fe w 
experiments there was some doubt  about the field homogeneity and the 
modulation frequency was not quite low enough to ensure freedom from 
eddy current effects. Again, some samples showed rather high Dingle 
temperatures with not very straight Dingle plots and in some there was clear 
evidence that not all the sample volume was effective (which implies 
uncertainty in the demagnetizing coefficient). However,  in spite of  these 
doubtful aspects, the preliminary experiments made it likely that the 
amplitude-determining factor G1 [see (2)] lay between 0.35 and 0.45 and 
thus provided a helpful guide in the interpretation O f the two best experi- 
ments, one at 1.2 K and the other  at 0.6 K. 0 n ! y  thes e two experiments will 
be discussed further. 

3.1. The Experiment at 1.2 K (run 11, sample 12)* 

A few oscillations at the highest field (84.9 kG) are reproduced in Fig. i 
and show the sharpened peaks and broadened bottoms characteristic of 
fairly strong MI. From Fourier analysis of the digitized recordings O f a few 
oscillations at each of a number of fields down to about 35 kG, the 

*This sample contained a small percentage of K (probably less than 0.05 %), introduced in the 
hope that it might help to inhibit the martensitic transformation. From details of the eddy 
current behavior at liquid helium temperatures it could be inferred that the resistivity of the 
sample was still very low and not high enough to cause any appreciable contribution to the 
Dingle temperature. 

He 
Fig. 1. Recorder trace at 84.9 kG and 1.2 K. The 
length of the vertical line on the right indicates a 
change of 4~dM/dHe = 1, assuming that all the 
sample volume is effective. The period Of one oscilla- 
tion is 25.5 G. 
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amplitudes R, and phases* ~b, for each field were determined in the relation 

4qrdM/dHe=Y~Rr sin(rkh+cp~) (3) 
r 

where h is the difference of the field from some arbitrary reference field/40 
in the range of observation and k = 2~rF/H 2. The R, and ~b~ are adjusted to 
allow for the finite modulating field and for the time constant of the 
recording system (these adjustments become appreciable at low fields and 
for  high r) and R~ is defined to be positive. Note that in (3) we distinguish 
between He, the "external" field, and the H field in the metal; the relation 
between them is 

so that 

H = He - 47rnM (4) 

B = He +4~r(1 - n ) M  (5) 

where 4~-n is the demagnetizing coefficient of the sample (for this sample 
n = 0.10). 

As explained more fully in the appendix, the LK formulation in effect 
expresses M as a function of B, so that the relation between M and He 
becomes a complicated implicit one. When MI is not too strong (in the sense 
that the amplitude of 47r dM/dB as given by LK is appreciably less than 
one), this implicit relation can be solved to give M as an explicit function of 
He by an iterative procedure due to Phillips and Gold 12 (PG). This solution 
can be summarized in the form 

4ir dM/ dHe = Z c~la ~l sin (rkh + ~Or) (6) 
r 

where al  is the fundamental amplitude in the LK formula and Cr and ~/'r are 
rather complicated functions of the ar (and of the Dingle temperature x and 
the demagnetizing coefficient n), as specified in the appendix; note that cr is 
defined to be positive. 

If a l  is small enough (i.e., for weak MI) and all ar for r > 2 can be 
neglected, as was usually the case in Knecht's experiments, the expressions 
for cl, c2, ~01, and ~02 become relatively simple and comparison of (6) and (3) 
can be used to yield estimates of a~ and a2 in several different ways. 
However, for the stronger MI and the stronger a2 and a3 of Na, Knecht's 
approximation is not quite accurate enough, and because of the complicated 
way in which the cr involves the a~ we adopt a trial and error procedure. In 

*The phases ~b, depend of course on the origin of h, but the differences ~b r - F~I are independent 
of this origin. 
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this procedure a trial value of G1 (and thus of all the other Gr) is assumed, 
which, by way of the LK formula, determines the ar and hence the cr and 0r- 
As is explained in the appendix, there are two extreme variants of the MI 
theory. In the conventional or "old" treatment, MI is applied to the a, in 
which the Dingle factor 3" has been included, where* 

y = exp (-2~rZkx/flH) (7) 

/3 is eh/mc and x is the Dingle temperature, so that a value of x is required to 
determine the at. In the "new" treatment, however, MI is applied to the aro, 
in which the Dingle factor is omitted, and the phase smearing that produces 
the Dingle factor is applied only after the MI; the result of this procedure still 
has the form (6) but the cr are now independent of x and are completely 
determined once G1 is assumed. 

Some graphs showing the field dependence of several of the cr and ~0r on 
various assumptions are shown in Figs. 2 and 3. Once the Or, which are in a 
sense "correction factors," are known, comparison of (3) and (6) gives 

crla~l = Rr (8) 

and we see that al  for any given field can be determined in a variety of ways. 
In the "absolute amplitude" (AA) method, in which we require abso- 

lute calibration of the recording equipment and also the sample volume, we 
use R1 and find al as 

lax[ =R1/cl (9) 

A plot of In (aaH s/z) against 1/H from the al's obtained in this way using 
the trial value G1 = 0.4 is shown in Fig. 4 and it can be seen that this Dingle 
plot is indeed a good straight line, confirming the exponential law assumed in 
the theory. The slope of the plot gives T+x and we find 

x = 0.23 K (10) 

and the intercept gives the value of 

In (4.11 x IO-4F2TG1) (11) 

where F is the dHvA frequency and the Fermi surface has been assumed 
spherical. From (11) we find Ga = 0.36. This estimate is insensitive to the 
trial value of G1 used in deriving cl, but it is inversely proportional to the 
assumed volume, which unfortunately is not known to better than 5% or so. 
In any case the AA method as applied to Na probably sets only a lower limit 
to Gx, because a fraction of the sample may have undergone the martensitic 

*For Na; m/mo = 1.24 and (7) becomes y = exp (-1.822 x lOSx/H). 
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Fig. 2. Field dependence of the c coefficients. The quan- 
tities plotted are defined to approach unity in the limit of low 
fields. At 1.2 K all the quantities are calculated for 1 - n 
0.9; curves a and b are for G1 = 0.38, while c and d are for 
G1 = 0.42. The broken lines (a, c) refer to the old treatment 
of MI, the solid lines (b, d) to the new. At 0.6 K only cl is 
shown for 1 - n  = 0.92 and G1 = 0.40; as above, the broken 
line (a') refers to the old and the solid line (b') to the new 
treatment; in the new treatment ci decreases by roughly 2% 
for 5% increase in G !. 

t r ans fo rmat ion  and  so become  ineffective. In  some o f  the earl ier  experi-  
men t s  the A A  est imates  of Ga were  as low as 60% of those ob t a ined  by the 
MI  me thod  to be descr ibed below,  which are i n d e p e n d e n t  of the sample  
vo lume  and  of the cal ibra t ion of the recording  equ ipmen t .  

In  the MI  method ,  we use (8) to give 

[all = [(Rr/R1)(Cl/c,)] 1/r-x (12) 

so that  for any  trial value of G1 (which de te rmines  q/c,)  a value of a l  can be 
deduced  f rom the exper imenta l ly  observed  rat io RJR1, which does no t  
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Fig. 3. Field dependence of phase of the har- 
monics at 1.2 K. The broken lines are calcu- 
lated by the old treatment and the solid lines 
by the new treatment of MI for the trial values 
of G1 indicated. At sufficiently low fields the 
phases ~b2--2~bl, ~b3-3~1, and ~b4-4~b 1 
should approach 270, 180, and 90 ° , respec- 
tively. The circles are the experimental 
points, as corrected for the time constant of 
the recording system. Below 70 kG a shorter 
time constant was used, with a consequent 
increase in noise; this is probably the cause of 
the greater scatter of the points below 70 kG. 
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involve the sample volume or the calibration constants. For self-consistency 
any such estimate of ax should agree with the theoretical value of al based 
on the assumed value of G1 and the value of Dingle temperature x already 
determined, i.e., 

]a~[ = 4.11 x IO-4F2TGIH -5/2 exp [-2"trZk(T+x)/flH] (13) 

Effectively, (13) is equivalent to the absolute value of al determined from 
the fundamental amplitude as described above but with the sample volume 
adjusted to give the assumed value of G1. The degree of consistency is best 
assessed by comparison of direct, rather than logarithmic, plots of the field 
dependence of al  as determined by (12) and by (13) and this is shown in Fig. 
5 for the alternative assumptions Ga = 0.38 and 0.42. Bearing in mind the 
weakness of the harmonics,* the  agreement between the estimates of al 

*At 85 kG, R2/R 1 = 0.24, R3/R x = 0.085, and R4/R a = 0.0375, while at 52 kG, R2/R 1 = 0.13 
and R3/R x = 0.036; these figures have been corrected for finite modulation and time constant 
effects, sO that the harmonics actually observed are even weaker. 
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Fig. 4. Dingle plots of In (alH 5/2) against 1/H calculated assuming G1 = 0.4 (a) 
1.2 K, with Cl calculated by the new treatment; (b) 0.6 K, with cl calculated by.old 
treatment; the solid straight line is drawn through the upper field points, the broken 
one through the lower field points; (c) 0.6 K, with Cl calculated by new treatment; 
note theimproved !inearity. The lower scale of 1/H refers to curve a and the upper to 
b and c. Appropriate correction has been made to allow for the difference of exp and 
2 sinh (the correction is negligible at 1.2 K). 

based on the second, third, and even the fourth harmonics is very satisfac- 
tory. Comparison with the "absolute"  curves, i.e., based on (13), particu- 
larly at high fields where the MI method is most  accurate, suggests that G1 is 
between 0.38 and 0.42, but closer to 0.42 than to 0.38. 

Further  evidence comes f rom the phases of the harmonic components  
relative to the fundamental .  I t  is easilY seen f rom (3) and (6) that  the 
appropriate  comparison is between the observed values of ~br- r~bl and the 
calculated values of ¢~- r¢~. The graphs of Fig. 3 show that  there is very 
satisfactory agreement  between the observed and predicted field depen-  
dence of the phases and once again that G1 is probably  closer to 0.42 than 
0.38 if the new t rea tment  of MI  is used. It  can be seen, too, that  had the 
conventional t rea tment  of MI  been used (i.e., MI  after, rather  than before,  
phase smearing) a slightly higher value of G1 (perhaps 0.01 higher) would 
have been needed to give agreement  between observed and predicted 
phases. It  shohld be noticed that  because of the complexity of the relation (6) 
when the P G  iterative procedure  is taken to sufficiently high order of 
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Fig. 5. Field dependence of lall at T = 1.2 K for the trial values G1 = 0.38 and 
0.42. The solid curves are calculated from (13) for x = 0.23 K. The points are 
derived from the experimentally observed ratios of harmonic amplitudes 
("MI method") as follows: Q) from R2/R1, + from Ra/R1, × from R4/R~. 

To avoid confusion, only the points based on the new treatment are shown; on 
the old treatment the Q) and x points would move down by about 2 and 4%, 
respectively and most of the + would move up by about 2%; these changes 
are not very significant on the scale of the diagram. 

approximation,  it is no longer a straightforward mat te r  to apply Knecht 's  
"harmonic  ra t io"  (HR) method,  in which a2/a 1 is derived f rom the observed 
R1/R2, d~, and ~b2. However ,  the comparison of phases that has just been 
discussed in a sense replaces the H R  method in providing an independent  
m e t h o d  of estimating G1. 

3 . 2 .  T h e  E x p e r i m e n t  at 0 . 6  K (run 12 ,  s a m p l e  16 )  

As can be seen f rom Figs. 6 and 7, not only is MI  very strong over  a wide 
field range at this lower temperature ,  but the line shape at the higher field is 
evidently strongly influenced by the L K  harmonics. I t  is still possible to use 
the P G  iterative procedure  to estimate cx in (6), and hence ax f rom R1, so 
that the A A  method can be used to find G1 from the intercept of the Dingle 
plot (see Fig. 4b, c). Using the trial value* G1 = 0.4, the A A  method gives 
G1 = 0.42, which i s very reasonably consistent with the estimate based on 

*An increase of 5% in the trial value of G1 would increase the result of the AA method by 
roughly 2 or 3%; but would not significantly change the Dingle temperature. 
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1 

l !  R'.. ,/ \ ,  

Fig. 6. Oscillation of 4~dM/dHe with field at 0.6K and 51.9kG; here h is the 
difference of He from an arbitrary origin H 0 and k = 2~F/H2ol Solid curve: experi- 
mental, reconstituted from Fourier analysis of digitized record after correcting 
harmonic amplitudes for finite modulation current and for time constant (the latter 
correction almost negligible). Dotted curve: Theory, old treatment, G1 =0.38, 
x = 0.22 K or G1 = 0.42, x = 0.25 K. Dashed curve: Theory, new treatment, G1 = 
0.38, x = 0.14 K or G1 = 0.42, x = 0.16 K. The difference between the alternatives is 
too slight to show clearly on the scale of the diagram. 

the higher temperature experiment; this consistency shows that no appreci- 
able fraction of the sample has become ineffective through the martensitic 
transformation. It is also evident from Fig. 4 that the Dingle plot based on 
the new version of MI theory (i.e., MI applied before rather than after phase 
smearing) is much more linear than that based on the old version; this 
suggests that the new version is the more correct, though probably new and 
old should be regarded in some sense as extreme approximations. The value 
of the Dingle temperature is found to be x = 0.17 K. 

The use of the PG iterative procedure to interpret the higher harmonic 
amplitudes and phases proves rather inconclusive because of insufficiently 
rapid Convergence. Indeed, the validity of the PG procedure for values of a 1 
comparable to unity becomes uncertain because it ignores the possibility of 
domain formation over part of each  cycle when the amplitude is large 
enough (as it is, using the new version of MI theory). In fact triai values of G1 
around 0.4 did give reasonable estimates of al  by the MI method as applied 
to the observed ratio R2/RI, but the estimates still changed by something 
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Fig. 7. Oscillation Of 4¢rdM/dHe with field at 0.6 K and 84.8 kO; k and h as in Fig. 
6. (--) Experiiiiental, reconstituted as in Fig. 6. (xxx) Theory, old treatment, 
G1 = 0.38, x ~ 0.25 K. ( • • - ) Theory, old treatment, G1 - 0.42, x = 0.28 K. ( - -  -) 
Theory, new treatment, G1 =0.38. x-0 .15 K. (- . . . .  ) Theory, new treatment, 
G1 = 0.42, x = 0.16 K. 

like 10% when  the PG procedure  was carr ied to eighth ra ther  than sixth 
order ,  and m o r e o v e r  the phase  compar i son  was ou t  by someth ing  like 10 ° at 
the highest  field. 

I t  was therefore  decided to try an al ternative approach,  that  of  trial and 
e r ro r  synthesis. As  before,  a trial value of GI  was assumed and the L K  
formula  applied to c om pu t e  the oscillation of  M as a funct ion of  B (without  
any  Dingle  fac tor  on  the new t rea tment ,  but  including a Dingle  factor  ~r for  
the r t h  ha rmonic  on  the old t reatment) .  F r o m  the M-B relation, the M-He 
relat ion can be immedia te ly  computed ,  since He is given by (5) and also the 
dM/dHe vs. He relation, since it follows f rom (5) that  

dM/dHe =(dM/dB)/[1-47r(1-n) dM/dB] (14) 

On  the old t r ea tmen t  the dM/dHe vs. He relat ion obta ined  in this way  is the 
one  to be compared  directly with exper iment .  O n  the new t rea tment ,  
however ,  the p rocedure  is m o r e  complicated.  First, the ampli tudes can be so 
large (because no Dingle  factor  has been  included) that  the M-He curve 
becomes  S-shaped (as in Fig. 8), and over  the range A to B, the sample  
should b reak  up into domains  with a l inear dependence  of  M on  He; the 
value of 4~" dM/dHe over  this range should  be I/n, which for  this sample is 
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4 ~ k M  

1 

~-- iB 

A 

Fig. 8. Theoretical magnetization curve for 0~6 K and 84.8 kG after 
MI, but assuming a perfect sample (zero Dingle temperature); k and h 
as in Fig. 6. The broken part of the curve is not realized; instead M 
follows the straight line AB, which cuts off equal areas and has slope 
I/n, which is 12.5 for this sample. 

12.5. Second, the harmonics of the M-He oscillation (modified to allow for 
the domain region, as in Fig. 8) now need to be damped by the factors 3r; the 
harmonics are found by Fourier analysis* and after multiplication by 3r they 
are resynthesized to give the final oscillation line shapes of M and dM/dHe. 

The results of these procedures are compared with the experimental 
curves in Figs. 6 and 7 for the trial values G1 = 0.38 and 0.42 and for various 
values of the Dingle temperature x (and hence of 3') chosen to give the best 
fit to the height of the maximum of the oscillation; it can be seen that the best 
synthetic curves do reproduce the observed curves fairly well. In comparing 
the various curves with the observed ones, it should be remembered that the 
Dingle plot of Fig. 4 indicates a Dingle temperature of x = 0.17 K (using the 
new treatment, since the old did not give a linear plot) and it can be seen that 
the values of x that give the best fits in Figs. 6 and 7 are closer to 0.17 using 
the new treatment than those using the old treatment. However, the old 
treatment gives a rather better fit than the new over the long, fiat, negative 
region at both high and low fields. At  the lower field there is little to choose 
between the two trial values of G1, though on the new treatment 0.42 gives 
the values of x closest to 0.17. At the higher field none of the calculated 

*Because the computation of the M-B curve was made at equal intervals of B, the intervals of 
He are unequal and the Fourier analysis was done by the laborious (and not too precise) 
process of digitizing the dM/dHe vs. He computer plot at equal intervals of He and then using 
the standard program for Fourier analysis. 
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curves reproduces the subsidiary peak quite faithfully, but it is best repro- 
duced for G1 = 0.38 on the new treatment. It should also be pointed out that 
values of G1 outside the range from 0.38 to 0.42 give worse fits than those 
illustrated, particularly as regards the position of the subsidiary peak. 

The lack of perfect fit between calculated and observed curves may be 
partly due to relatively trivial experimental causes (e.g., noise, such as at N 
in Fig. 7, errors of up to a few percent in absolute scale, and errors in 
allowances made for time constant and finite modulation current). 
Moreover, the data used in computing the synthetic curves are all subject to 
appreciable errors (say 1% in m andF, 3% in T, and 2% in 1 - n). However, 
probably the main cause for the discrepancies is inadequate reliability of the 
theory used in the calculations. 

First of all both the new and old versions of MI theory are in a sense 
limiting approximations, and though the new treatment is probably the 
better approximation, it may well be appreciably imperfect. An obvious 
suggestion is to try an intermediate version in which one damping factor ~/1 is 
introduced before MI and a second, ~/2, after MI, with the product 3q3~2 
corresponding to the overall Dingle factor. After some trial and error a very 
good fit at the high field was found for the particular combination ~/1 = 0.825 
and ~/2 = 0.78 (this corresponds to x = 0.20 K) for G1 = 0.38 (the difference 
between the calculated and observed curves would not show on the scale of 
Fig. 7). No doubt equally good fits could be obtained for somewhat different 
combinations of 3,i~/2 and G1 (though it did not seem possible to get the 
subsidiary peak right with G~ = 0.42), but there is probably little point in 
getting a perfect fit in this way, because of the arbitrariness of introducing an 
extra parameter and also because the theory may be unreliable in a second 
respect. 

The second point is that phase smearing by multiplication with 3/maY 
not be quite right and indeed is justified only if the phase distribution is 
strictly Lorentzian, for which there does not appear to be any sound basis, 
except the linearity of the Dingle plot, which may not be quite exact. The 
difficulty of getting a good fit around the subsidiary peak could probably be 
remedied if there was freedom to introduce less severe damping for the 
higher harmonics, but once again there is little point in improving the fit by 
ad hoc assumptions without any theoretical basis. 

4. D I S C U S S I O N  

4.1. Summary of Experimental  Conclusions 

Analysis of the observed harmonic amplitudes and phases at 1.2 K 
suggests that G1 is closer to 0.42 than to 0.38 and lies between them. The 
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experiment at 0.6 K is consistent with this conclusion, though it does not 
help to narrow the range of uncertainty in G1, partly because the uncertain- 
ties of how to deal with MI and phase smearing are more sensitively involved 
in the interpretation than they are at 1,2 K. A conservative conclusion 
consistent with both experiments and with the uncertainties of the theory is 
that* 

G1 = 0.41 ± 0.02 (15) 

The experiments also demonstrate that the LK theory, corrected for MI, 
with phase smearing as 3 / a f t e r  MI, gives a very good account of the detailed 
line shape, amplitude, and phase of the oscillations over a wide range of 
fields at both 0.6 and 1.2 K. In principle Ga might of course vary with crystal 
orientation, but no large anisotropy is to be expected on theoretical grounds 
and the present experiments are too insensitive to demonstra te  any anis- 
tropy smaller than a few percent. 

4.2. Interpretation of G1 

From the definition of G1 [see (2)], we find that possible values of X/Xo 
consistent with Ga = 0.41 are 

X/Xo = 0.365, 0.633, 1.364, 1.632, 2.362, etc. (16) 

i.e., 0.9984(1±0.366),  where l is an integer (in principle l could also be 
negative). 

In the absence of any information on the absolute phase of the 
oscillations (which could exclude either odd or even values of l), the only 
guide to a choice among the various possibilities is comparison with other  
determinations. Other  experimental determinations are of Dunifer et al. 7 
(DPS) by the spin-wave method, giving X/Xo = 1.58 ± 0.09; of Schumacher 
and Vehse 8 based on CESR, giving 1 .72±0.08;  and of Dupree and 
Seymour 9 based on direct susceptibility measurements (with theoretical 
allowance for diamagnetic and ionic contributions), giving 1.62 (no error  is 
stated, but the uncertainties in the allowances are probably considerable). 
All these dear ly  point to the underlined value in (16) and putting in the ± of 
(15), our result becomes 

X/Xo = 1.632 ± 0.007 (17) 

which is consistent with all the earlier experimental determinations. The 
good precision of our determination is partly due to the fact that the 

*The quoted ± is a rather subjective estimate of the uncertainty but it is intended in the sense of 
a standard deviation. Thus for the two best experiments none of the various ways of estimating 
G1 indicates a value outside the range 0.37-0.45. 
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experimental contribution to X/Xo is only the 0.366 part, i.e., less than 
one-fourth of the total, while the contribution 0.9984 × 2 is of course almost 
exact, and partly because GI has a value for which the relative error in 
cos -1 G1 is only about 0.4 that of G1; thus the +5% uncertainty in G1 is 
reduced to less than +½% in X/Xo. Our estimate of X/Xo agrees remarkably 
well with recent theoretical estimates, particularly with one by Vosko et 
al., 13 who find 1.62 using a spherical cell approximation (references to 
earlier calculations are given in their paper and in that of Knecht2). A more 
recent calculation using the bcc cell gives 1.64.17 

Our result can also be expressed in terms of g [see (2)] and if we put 
m / m o -  1.24+ 0.01, we find 

g = 2.636 + 0.024 (18) 

According to Fermi liquid theory, 

g = gs/(1 +Bo) (19) 

where B0 is the zeroth-order parameter of the theory and gs is the CESR 
value, which is 2.0015 for Na. Thus we find 

Bo = -0.241-4- 0.007 (20) 

Since it is B0 which is directly determined by the spin-wave method, it is 
useful to compare our value of B0 with that of DPS, who find -0.215 + 0.03. 
Although the two values are consistent within the experimental errors, the 
possibility should not be excluded that the difference between them is 
significant and arises from oversimplifications in the applications of Fermi 
liquid theory to two quite different phenomena. 

A P P E N D I X  

The problem of magnetic interaction is intimately linked with the 
question of the origin of the Dingle factor y [see (7)]. If this factor is due to 
broadening of the Landau levels, such as caused by impurity scattering, y 
appears directly in the LK relation between M and B [see (A1) and (A3) 
below] and the conventional treatment of translating the implicit relation 
between M and He into an explicit one is correct. Often, however, and 
probably in the present Na samples, the origin of y is quite different; it is due 
to some kind of phase variation in the sample--for instance, caused by 
variations of strain--rather than to a uniform broadening of the Landau 
levels. It is then more appropriate to think of the sample as a mosaic of 
regions, within each of which the phase is nearly constant, but with a 
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variation of phase from one region to another. This presents a very compli- 
cated interaction problem since the local M of each region affects the field in 
its neighbors and the usual assumption of a uniform M is no longer valid. 

It turns out, however, that a very simple approximate treatment 14 
agrees remarkably well with some recent experiments 15 on strong interac- 
tion in gold and some theoretical justification can indeed be found for this 
approximation under certain simplifying assumptions. The approximation is 
to suppose that each region can be treated as if it were perfect ( i .e . , , /=  1) 
and of the same shape as the whole sample. The interaction problem is then 
solved for this region as if it were isolated to give the local M as a function of 
He. The phase variation between one region and another is then put in by 
applying the factor yrjto the r th harmonic of the M-He relation for the 
perfect region, We shall not discuss the merits of this new approach further 
here, but now present the  MI theory in a form such that both the conven- 
tional (3' introduced before MI) and the new (3' after MI) treatment are 
included in the same treatment. 

In the conventional treatment, the LK formula* for a convex Fermi 
surface can be conveniently expressed as 

41rM= ~ a~ sin (2~__rF ~ 
~=1 kr \ B -4 (A1) 

where 

k = 27rF/H 2 (A2) 

ar = a,03' r (A3) 

- 2 . 0 5 4  x lO-4F2Zrl/2ar 
aro = H5/2 sinh [1.469 x 105(m/mo)rT/H ] (A4) 

3' = exp [ -1 .469  x lOS(m/mo)x/H] (A5) 

and Gr is as defined in (2), i.e., 

Gr = cos [(rTr/2)gm/mo] (A6) 

The problem of MI is that (A1) is an implicit equation for M since 

B = He + 4~-(1 - n)M (A7) 

and this has to be solved to give an explicit relation between M and He. 

*The difference between B and He (and between He and H) is significant only in the argument 
of the sine (because of its very high phase), and can be ignored in all the modulating factors; it is 
therefore entirely justified to use H rather than B in (A2), (A4), and (A5). The notation here is 
slightly different from that of PG; thus their Ar and x are related to our ar and k by a, = mAr 
and x = 4~'k. The numerical coefficient in the numerator of (A4) assumes a spherical Fermi 
surface. 
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If MI is not too strong, the solution can conveniently be obtained by an 
iterative method due to Phillips and Gold. 12 Their result, generalized to 
allow for the sample shape, and given in terms of dM/dHe rather than M, 
can be expressed to the Ith approximation as 

4 dM Z[Prcos(rkh+4)+ (rkh+4)] (18) ~r dHe = -r~l Or sin 

where the P~ and Or are the rather complicated functions of the ar set out 
below, and h is the field difference from an appropriate reference field in the 
range of interest. Equation (A8) is of course equivalent to (6) if we put 

r 2 2 1/2 crlall = I(er + Or) [ (A9) 

and* 

G = (~/4) +tan -1 (Pr/Or) (A10) 

The Pr and Or are related to the Pr and qr of PG by 

Pr = Krptr and Or = Krq'r (Al l )  

where the p'r and q'r are obtained from the Pr and qr of PG by changing their r 
to r ( 1 -  n) wherever K appears in their Table II. 

For our purposes it was necessary to carry out the iteration process to 
higher order than given by PG (their Table II stops at the fourth order) and 
this proved to be relatively simple using the CAMAL algebra system 16 
developed in the Cambridge University Computer Laboratory. 

It is convehient to express the resulting expressions for Pr and Qr in 
terms of a ~ and quantities 0/. which are defined by 

0/~ = a~o(1 - n) (A12) 

We then have for r = 1-4, but up to eighth-order approximation, 

[ ( 4 ~ 2  8 2 ) )  4 [0 /4  2 2 0/20/3 ~ 0 / 1 0 / 2  012 .[. 
Pl=a~ 1+3~2 + 3 ~ - ~  4842 16 1~-0/1 ] 

2 4 
+ T6(  ~1~20/3 0/10/4 0/10/__2 0/30/4 

9642 192ff-2 ~ 1536ff2 ÷ ~ 1  
2 

0/2 0/20/3 0/3 } 0/10/2 0/ 

1 2 8 ~  960/~ 36 128 9~-6 / j  
(A13) 

*If the tan -1 is taken in the range -qr/2 to ~-/2, then it is easily shown that an additional ~r 
should be added if Qr is positive, but nothing if Qr is negative. 
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(~1~- a l L - ~  -i" ~/ ~ 24"4f2 2 4  12"4/2 ai ] 
2 4 

. 0/10/4 . 0/10C2 . + 6  oqo,2o~ ~ -19 - -47 -~+~  -~ ~o,4 
32v~ 192 2 512 2 24V2cq 

3 2 2  ] ]  
~ 2  0/20/4 ~ 1 ~ 2  0/30/3 

128v~ t -  32 768 384 /J  

a21(l_-n)[[_ 42az\ 2[2a3 2 
P2= ~f2 [ \  1+-~-12 ) + T k 3 a l  3 

( 8 2  4 3 %/'2 0,20~3 2 3 )  ..{._,y4 Of 1 0l 2 . O~10~ 2 , 0~20/4 O/ 3. 

24 4q~ai  3aa t---~-t 4a~ 
2 2 2 2 6 

, 6 [  0/20/3 , 2a3a5 , a3 a l a s  OLla2 0/1 

±Y k-1-~1± 1 - ~  ~ 9 15 2--4- F36--0 
OglO/3 0/30l 4 

4 9a~ 20 3",/2 ~3~ 1 

12£3 " 0L10t'20~3 + 1l 
+ 18, J] 

a~(1--n)[ +y2(2a3 ot~] 
Q 2 = 7 ~  L 1 

"3al  3 ] 
• ,'1 2 4 2 ) 

, 4 1  OO~2 , 0~1 , 0~'4 , 0 / 1 0 / 2  , 0 /20~4 0 ~ 3 3  
"5-']/ ~k-- - t - - - - l - - - - t - - - - I -  2 

8 24 2 ~  12,,/2 4Otl 
2 2 2 2 6 

4- 6(--0~2093-1 2a3°e5 °t3 -I-°/1°/5-{ °/1°/2 °~1 
"Y \ 4al 15a 2 9 15 8 360 

3 %//2 0~20~ 5 a20¢4 0~0~2 ~1 O~20t 4 q_ O110~3 _.[ 

4 20 5aq 6v~ 60x/21 ] 

P3 9 3"" ' 2 [ - / 8 a 3  ~2-~2") ' 2[9a2 3a~ 2 0 1 3 F ~ )  
=8 a l t I ' n )  [~,9,~ ~ .my k44, ~ 4al~ cq 

, 4[ 9oe~ . 2ot2~ 5 9or 4 297a~ot2 
* r  2 8v5 320,  

°~22°t3 3aza4 27°t~ 9 )] 
2a 3 4a~ t - - -~+ 8 a3 

(A14) 

(A15) 

(A16) 

(A17) 
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Q3=9a~(l_n)2[[1+"v/-20/2\+ 2[ 90/2, 90/2 , 0 / 4 \  

+y4(  90/~ 30/20/3 420/z0/5 90/4 
16,,/-20/~ 2",,/20/, ~ 50/-----~ 8,,/2 

243a~0/2 30/5 90/~ 81a~'~] 
-t 3 2 0 ~  +50/-----~ -~ 16 64013 
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(A18) 

p 4 = & a 4 ( l _ n ) 3 [ ( 1  30/2 20/3..]___30/4, 
342. 40/7 0/3 2,/-~0/4) 

+,y2(30/~ +40/3.+ 60/5 40/2 2"/2 0/20/3 3w/20/4) 
"0/1 0/1 50/3 5 0/3 712 / 

t 4 2 2 20/2 12a5 40/~ 41 0/2 , 0/20/3 , 0/20/6 
+Y /T-~*- - - -~- t  20/7 30/2 50/1 \q'0/1 0/1 

80/10/3 40/7 42 0/20/2 30/~0/4 6v/-2 0/20/5 
3 15 30/4 2",/20/7 50/3 

3 
0/2 0/20/3 + ~ - ~  

x/2 0/1 0/1 

2x/2 0/20/2/] 
b 3"¢t-2 0/4 q" i S  .,'3 (A19) 

O4=3_~a4(l_n)3[( 1 3a2 . 20/3 3"f20/2) 
+40/  -g{ " 

ql_.y2 ( 30/22 40/3 60/s 40/12 ) 
- -  2 "l [- 4 ~  O/2 

0/1 0/1 50/3 5 

4 2 20/3 z 30/20/4 ..1._ ,. 4 ( _ n~24 __ 2~2~3.1. 0/20/6 
\ '+0/1 0/, 20/7 30/12 0/~ 

12a5 ,,., 2 8ala3 40/7 ~ql20/6 
~Z'0/2-1- 3 +-7-;-~+"---ff- 5cq 13 0/l 

3a 3 442aza3 2,¢c~a~a2)J + ~ - +  
4~0/, 3al 

(A20) 
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This is the solution using the conventional or "old"  treatment.  The 
result of the new treatment  is very simply obtained from it. The solution of 
the MI problem for the perfect region of the same shape as the sample is 
given by first putting 3, = 1 and replacing a l  by al0 in (A13)-(A20) and then 
phase smearing this result by introducing the factor 3" into P, and Or so that 
(alo)" returns to its original value a~ in (A13)-(A20).  Thus the "new"  
treatment amounts simply to putting 3, = 1 in (A13)-(A20) and we notice 
that the c, and ~, of (6) are in that case independent  of the Dingle 
temperature x. 

The working of the scheme is illustrated by the examples below, which 
indicate the orders of magnitude involved and show that with the new 
treatment it is indeed necessary to go to high-order terms in order  not to 
introduce appreciable errors  in the Cr and if,, especially at the lower 
temperature and for high r. The convergence is, however, much more rapid 
with the old treatment.  Note, too, that the approximation used by Knecht is 
equivalent to retaining P1, Q1, P2, and Q2 and ignoring all terms multiplied 
by a power of 32 in (A13)-(A16);  to this approximation the old and the new 
treatments are of course identical. 

Examples of the Application of Equations (A13)-(A20) 

The values of the o~'s a re  calculated assuming F = 2.77 × 108 G and 
m/mo = 1.24. 

1. T = l . 2 0 3 K ,  H = 8 4 . 9 k G ,  G1=0 .42 ,  n = 0 . 1 ,  o q = - 0 . 5 2 0 ,  a2 = 
0.085, or3 = 0.012, ct4, etc.~ negligible. We find 

P1 = al(1 - 0.0193, 2) 

P2 = [a2(1 - n)/x/2](-0.554- 0.0463, z + 0.0093, 4) 

P3 = (9/8)a3(1 - n)2( -0 .521  + 0.1623, 2 -  0.015 3,4) 

P4 = (4/342)a4(1 -n)3(1 ,096  - 0.1893, 2 + 0.00134) 

Qa = a1(0.0153, 2 - 0.0013, 4) 

02  = [a2(1 - n)/v/2](1 - 0.1053, 2 + 0.0033,  4) 

03 = (9/8)a3(1 - na) ( -0 .554 + 0.0173, 2 + 0.0093 ,4) 

: 04 = (4/3x/2)a ~(1 - n ) 3 ( -  0.431 + 0.2773, 2 - 0 .0453,  4) 

For the new treatment 3, 2 = 1, for the old 32 = 0,373 if x = 0.23 K. 
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2. T =  0.6 K ,  H =  84.0  k G ,  G1 = 0.4, n = 0.08,  O~ 1 = - - 1 . 0 0 0 ,  a 2 = 

0.609,  a3 = 0.281,  a4 = 0.007.  W e  f ind 
t 

P1 = a 1(1 - 0 . 0 1 7 y  - 0 . 0 3 7 y  4 + 0 . 0 0 2 y  6) 

Q1 --- a 1 ( 0 . 1 0 8 T  2 -- 0 . 0 4 6 y  4 + 0.005T 6) 

F o r  the  o ld  t r e a t m e n t ,  3,2 = 0 .439 if x = 0 .19 K. 

3. T =  0.6 K,  H =  40 k G ,  G1 = 0.4, n = 0.08,  a l  = 1.420,  a2 = 0 .221,  
a3 = 0 .024.  W e  f ind 

P1 = a l (1  - 0.2133, 2 + 0 . 0 1 1 3 4 _  0 .00136)  

Q1 = a1(0-0393, 2 -  0-0143, 4 -t- 0.0013, 6) 

F o r  the  o ld  t r e a t m e n t  32 = 0 .177 if x = 0.19 K. 
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