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Effect of a Barrier at the 
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A superconducting-normal metal sandwich, in which there is a potential 
barrier at the interface, is considered. The Tomasch effect amplitude is shown 
to be reduced by a factor related to the barrier transmission coefficient. We then 
derive from first principles the boundary conditions obeyed by the kernel in the 
Gor'kov gap equation at the interface, within the diffusion approximation. 
This represents the first ab initio calculation of the "second" de Gennes 
boundary condition. 

1. I N T R O D U C T I O N  

In two recent articles, 1"2 we have examined the effect of a potential 
barrier between the superconducting (S) and normal (N) metal layers of a 
proximity effect sandwich on the transition temperature.  The treatment was 
based on certain boundary conditions (BC) at the interface, discussed by de 
Gennes, 3 using the diffusion approximation. In this approximation, the BCs 
at the barrier are not determined completely; there remains an unknown 
parameter  related to the barrier strength. The purpose of this paper is to find 
these BCs from elementary quantum mechanical considerations. We use a 
simple model: identical metals, except for the interaction that leads to 
superconductivity in S. It is assumed that the pair potential A changes 
abruptly at the interface, i.e., has the form of a step function. With this 
model, the Green 's  functions can be constructed exactly, taking into account 
the potential barrier. 

The assumption of a step-function variation of A restricts the validity of 
the model. At  zero temperature,  the length scale of A is the coherence length 
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60. Therefore, our calculations of the local electronic density of states will be 
meaningful only at points x far from the interface, x >> ~:o- We find the local 
density of states in the S side and show that the amplitude of the Tomasch 
oscillations is reduced compared to that found for a transparent barrier. 4 
The  reduction factor, for energies E >> A, is the barrier transmission coeffi- 
cient in the normal state, s 

In the vicinity of To, a step function form for A is not a good starting 
function for a self-consistent calculation of A. However, in this region we can 
use the Gor 'kov gap equation for A, in which there enter the normal state 
Green's functions. 3 As these are calculated exactly in our model, we find the 
kernel of the gap equation. We then examine the BC obeyed at the interface 
and obtain explicitly the parameter related to the barrier strength. This is a 
new result and verifies the BC ansatz of de Gennes. The BC is then used to 
reexamine some previous expressions for the transition temperature. 

2. T H E  P O T E N T I A L  B A R R I E R  EFFECT A T  A 
S U P E R C O N D U C T I N G - N O R M A L  I N T E R F A C E  

We consider a S - N  geometry in which the S side occupies the region 
x > 0, the N side occupies x < 0, and a potential barrier u 8(x) is at the 
interface x = 0. In order to find the BC obeyed by the kernal in the Gor 'kov 
gap equation at the interface, we need the Green's functions of the system. 
These obey the following equation of motion: 

h2 • d 2 , 
Eo'3 +-~m (-'~x 2 + k ~ -  k ~) - i AO(x)o-l- u 3(x)]G(xx 'E)  = 6(x)o'3 

(1) 

Here o-i are the Pauli spin matrices, k± is the momentum component parallel 
to the interface, and kv is the Fermi momentum. The pair potential A has a 
step-function variation, where 

1, x > 0  
0(x)= 0, x < 0  (2) 

The Green's functions of (1) are found by the following procedure4: The 
solutions of the homogeneous equation 

+ _ _ [ _ _ +  ,.2_ v2\ ~(x)] 4,(x) = 0 lEo. h2 • d 2 
2m \dx 2 '~F '~±]--i AO'10(X)-- U (3) 

that satisfy the appropriate BC at the interface are found. The Green's 
functions are given by the product O*in(X)~Oo,t(X') (for x > x'), where 4'i, (4tout) 
denotes incoming (outgoing) waves. A detailed analysis of the solutions of 
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(3) is given in Ref. 5. We briefly repeat it and construct the Green's  
functions in the appendix. 

The local electronic density of states in the S side is given by 

N(E, x) = (1/~r) Im a11(xxE) (4) 

where G11 is the 11 matrix element. From (A16) we obtain 

1 Rel[(E+f~)[12_~ [ te+ix/-~ 2 . 2ik+x ~ N(E,x)  - - -  + a--~I__B2)-(1-B )e ] 
- ¢rhv~ 1 

+ ( E - f ~ ) [ 1  1 a - i ~  2. e-2ik-x] ) 

1 ei(k+_k_)x } 
- 2 ( E  - n )  1 + o~ (1 - B 2) (5)  

where 

B2 = ( E -  f~)/(E + f~), 0 2 = E 2 -  A 2 (6) 

(k±) 2 = k~ -  k ~ :t: (2m/h2)f~ (7) 

and a is related to the barrier strength* 

o~ = (2m/h2)u 2/ 4k 2 (8) 

In the normal state, the transmission coefficient of the barrier is 5 1/(1 + a).  
There are two types of oscillations in (5). The first one is exp (+2ik±x) 
exp (+2ikFxX), from (7). These terms arise from reflections of excitations 
from the potential barrier and are similar to Friedel oscillations in the 
normal state. The second type of oscillations is exp[ i (k÷-k- )x]  ~ 
exp [i(21q/hvF)x] and appears only in the superconducting state. These are 
the Tomasch oscillations. 4 We find that their amplitude is modified by the 
potential barrier, through the factor [1 + o~ (1 - B2)] -1. In the limit A << E, this 
factor tends to the transmission coefficient of the barrier. 

The transition temperature of a proximity effect sandwich can be 
calculated from the Gor 'kov gap equation, valid in the vicinity of Tc (see, for 
example, Ref. 3) 

A ( x )  = V(x) f dx' A(x')kBTE H(xx'ton) (9) 
J 

*For a barrier of width a and height Uo, it can be verified that c~ = {[(K 2 + k2)/2Kk]} 2 sinh 2 ra, 
where K2~k2+(2m/h2)Uo (see Ref. 5). We treat the case Uo~OO, a -+0  such that Uoa 
remains finite, and neglect over-the-barrier transmission. 
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where V(x) is the BCS attractive potential. The kernel of (9) is a product of 
two Green's functions of the normal state 3 

H(xx' ¢o,,) = ~ G*(x' xto,~)G,,(x' xton) (10) 
ka. 

where 

h~o,~ = ~kBT(2n + 1) (11) 

and the sum in (9) runs over all integers. In (10), G,  is the 11 matrix element 
of G, in the normal state, 3 and the product is summed over k±, on which Gn 
depends [from (1)]. 

The usual procedure to proceed from (9) is to write down a diffusion 
equation for the kernel. 3 This diffusion equation is valid for each metal, in 
the dirty limit, when it is in a homogeneous bulk form. The kernel is found 
from the diffusion equation, with two BCs satisfied by it and its derivative at 
the interface. When there is a potential barrier at the interface, it affects the 
BCs. l"e However, within the diffusion approximation, the BCs cannot be 
determined completely, and the barrier strength enters through an unknown 
parameter. 1,z In the model presented here, we can calculate the kernel of (9) 
exactly and then construct the BCs it obeys at the interface. 

We shall first calculate (10) at zero temperature and then transform to 
the finite-temperature expression. In the normal state A = 0, hence B = 0 
[from (6)], and f~ = E. From (A16) we find that the 11 matrix element in the 
normal state is 

G'~(xx'E)=~vF{exp[ik+(x-x')]-1 i+v~Tx/-aaexp[ik+(x+x')]}'" 

x > x ' > 0  (12) 

and similarly 

, i . ix/-~ " +x')]}, 
G,,(xx E)=--h--~VF{exp[Ik+(x--x')] l +iv/~ exp[-tk+(x 

x ' < x < 0  (13) 

i 1 
Gn (xx'E) = x - -  exp [ik+(x - x')], 

hvF 1 + ix/-a~ 
x ' < O <  x 

where 

(14) 

k2+ = k~ -  k 2, - (2m/h2)E (15) 
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The Green 's  functions for x < x '  are obtained by interchanging x and x '  in 
(12)-(14). 

To find the kernel of (9), we have to transform (12)-(14) into the 
finite-temperature form. This is simply done by changing E ~ icon, since the 
kernel is a sum over all frequencies. Then, constructing the products 
G*(x'x, ko,,)G,,(x'x, ko,,), we encounter  two types of terms: oscillatory 
terms, of the form exp[+i(k++k*+)x]~exp(+2ikFxX), and exponential 
terms exp [±i(k+-k*+)]~exp(2ro,,x/hvF). The oscillatory terms are neg- 
lected, since in the gap equation we are interested in the variation of A, 
which is described by only the exponential terms. 3 Thus, inserting (12)-(14) 
into (10), we obtain 

exp [i(k+ *)(x' x)] k 

x < x ' < 0  

+ l-~aexp[-i(k+-k*)(x'+x)]}, 

H(xx'~o,,)=N(O)~v F {1-~aexp[i(k+-k*)(x'-x)],} x < 0 < x '  (16) 

exp [ i ( k + -  k*)(x'-x)] 
0 < x < x '  

+ l-~aexpti(k+-k*)(x'+x)]}, 

where N(O) is the density of states at the Fermi level. It can be easily checked 
that the kernel obeys the sum rule 3 

~? N(O) hVF dx' H(xx'oJn) = ~r - 2  = ~rN(0) (17) 
o~ i(k+-k*) IrOn] 

The BCs at the interface obeyed by our construct for H(xx'a~n) are 

dd I x'=o÷ ,H(xx'rOn) = 0 (18) 
X ' ~ 0 - -  

X l = 0  ÷ 

o I i(k+-k*) x'=o 

hvF d;H(xx, n)l (19) 
= 2°t 2 - ~  ~ ~'=o 

The first BC, Eq. (18), describes the fact that the particle current through the 
interface in one direction is equal to the current in the reverse direction. This 
BC was derived by de Gennes 3 from the sum rule (17). [When comparing 
(17) and (18) with the BCs of the diffusion approximation, it must be 
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remembered that in our model the two metals are identical, except for the 
interaction leading to superconductivity in S.] The second BC, Eq. (19), was 
postulated by de Gennes. Within the diffusion approximation, one cannot 
determine the factor of the derivative in (19), although it can be argued that 
it is inversely proportional to the barrier penetration probability. 1"2 Here, 
however, we are able to evaluate this factor explicitly. Denoting it by L, we 
obtain 

L = 2a(hvF/(21w,,I)) = 2a~:(w,) (20) 

where ~:(w,) is the energy-dependent coherence length. It is interesting to 
note that by the neglect of the oscillating terms exp (+2ikr~xx) in the kernel, it 
acquires BCs of the diffusion type. If those terms are kept, the kernel being a 
product of two Green's functions, would obey the BCs of the solutions, i.e., 
it would be continuous at x = 0, but its first derivative would jump according 
to (A5). 

3. D I S C U S S I O N  

A superconducting-normal geometry with a potential barrier at the 
interface has been considered. Assuming that A varies abruptly at the 
interface, we have found that the amplitude of the Tomasch oscillations is 
reduced by a factor related to the barrier transmission coefficient. 

The interesting result is expression (20) for L, which yields the effect of 
the barrier on the BCs at x = 0 obeyed by the kernel of the Gor'kov gap 
equation. We found that diffusion-type BCs are obtained when the oscillat- 
ory terms exp (+ikFxx), caused by the barrier, are neglected. The parameter 
L has not been determined previously within the diffusion approximation, 
but expressions for Tc including it have been derived. 1'2 We now review 
them, in view of the result (20). In Eq. (37) of Ref. 1, we found that the 
extrapolation length 3 b is given by 

As (x) NsDs 
b - d A s - ~ d x  x =0 = NNDN (q-1 coth qdN + L )  (21) 

Here Ns andDs are the density of states and the diffusion coefficient of the S 
side, respectively, and similarly for the N side. The thickness of the N side is 
tiN, and q-1 is the depth of penetration of Cooper pairs into N. (Note that in  
Ref. 1, L is denoted Lo/o'.) As b becomes larger, Tc is increased. We see that 
the effect of the barrier on Tc is negligible for 

/ 4  << 1 (22) 

This means that when o~ is smaller than the ratio of the depth of penetration 
to ~(~.), Tc is almost unchanged by the barrier. When the thickness of the 



Effect of a Barrier at the Superconducting-Normal Metal Interface 783 

two metals is much smaller than the respective coherence lengths, the 
sandwich is in the Cooper limit. In that case the equation for the transition 
temperature turns out to be of the same functional form as the one obtained 
from McMillan's tunneling model for the proximity effect. 2 Comparing t h e  
two results (see Ref. 2), we find (o" is the penetration probability) 

L = 2lB(l/dN)/o" = 2a~:(ton) (23) 

Here I is the mean free path in N, of the order of the thickness dN in the 
Cooper limit, and B is of order unity. McMillan 6 introduced the penetration 
probability tr to describe the barrier. This causes some trouble, since 
0 - o" -< 1 and therefore for o- = 1 should get the same result as in the absence 
of a potential barrier. This is not the case, as can be seen from Refs. 2 and 3. 
However, with the result for L, (20), the expression for Tc is appropriately 
normalized. For small a (for which the penetration probability is ~1),  the 
effect of the barrier is negligible, whereas for a ~ oo (small o'), we get an 
appreciable effect. This is in accordance with the remark by de Gennes 3 
about the importance of the L term. From Ref. 2, Eq. (11), we find that the 
effect of the barrier is negligible for 

LdN/~2(tOn) << 1, i.e., 2a << ~(oJ,,)/dN (24) 

i.e., when the strength of the barrier (inversely proportional to its transmis- 
sion coefficient) is much smaller than the ratio of the coherence length to t he  
thickness (of the order of the mean free path in the Cooper limit). 

A P P E N D I X .  T H E  G R E E N ' S  F U N C T I O N S  I N  T H E  
S U P E R C O N D U C T I N G  S I D E  

Here we give the solutions to the homogeneous equation (3) and the 
construction of the Green's functions. Consider first a solution describing an 
electron incoming from the left 

[bl(nlexp(ik+x)+b2(n) exp(- ik+x)  1 . 1 +b3(O)  exp(ik-x), x < 0  
g, i e (x )  = ~ " "  . , , .  

I 

[al~bl exp (ik +x) + ff4¢2 exp (- ik-x) ,  x < 0  
(A1) 

The various terms are as follows: In the N side (x < 0), we have an electron 
(the bl term) incident on the surface. There it is partly reflected as an 
electron going in the reverse direction (the/72 term) and partly as a hole (the 
b3 term). The b3 term is due to Andereev reflection, 7 caused by the change in 
A at the interface, and the/72 term is due to the usual reflection from a 
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4k2B 
b3=bl -~ ", 

where we have defined 

potential barrier. The wave vectors in the N side are 

kZ_V2 ve ±2mlz: 
~:-~-v  ~-± h 2 ~  (A2)  

Here E is the excitation energy. The transmitted wave into the S side is 
partly an electronlike excitation (the al  term), and partly a holelike excita- 
tion (the a4 term), with 

(k ±)z = k ~ -  k~ ± (2m/hZ)l), 02 = E 2 - AZ (A3) 

The two component vectors in S are 

= (E -~ ~-~ 1/2( 1 ) = (E-~ ~ 1/2(B) ,  B2 E - 1 2  (A4) 
61 \ ~ 1  \ - i B ] '  d~2 \ 2E ] =E+----~ 
We now have to determine the constants in (A1). This is done as follows: 
The wave functions are continuous at x = 0, but because of the potential 
barrier, there is a jump in the first derivative 5 

dO + dO 2m 
~XXx=o d--xx x=o - =  q0(0)' q=-~-u  

(AS) 

as can be seen from (3). Thus we obtain 

( ) a4 = ~)12E\x/z2ikqBD 2E 1/2 -2ik(q + 2ik ) b l " f f - ~ -  
al = bl f f - ~  D ' 

bz = bl -q(2ik  +q)(1 - B  2) (A6) 
D 

D = 4k2 +qZ(1 - B  2) (A7) 

Here we have approximated 5 ks - k s - k. The incoming hole solution is 

Ib4(_Oi) exp(-ik_x)+ff3(_.Oi) exp(ik_x) 

Oi".(x ) = 1 
I +b2(0)  exp(-ik+x), 

La4~bz exp (-ik-x)+~1d~1 exp (ik+x), 

x < 0 (A8) 

x > 0  

From the continuity of the wave functions at x = 0 and (A5) we find 

=b ( 2E ~l/Z2ik(-2ik+q) b ( 2E ] l /2-2 ikqB 
al = 4 \~-- '~]  D 

_ 4kZB 
b2=b4 -~- ', b3=b4 

q(2ik - q)(1 - B z) 
D 

(A9) 
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The outgoing electronlike solution is 

~ho~.t(x) = Ibm(10)exp(-ik+x)+b~3(_Oi)exp(ik_x), x < 0  

[a ~¢1 exp ( - i k  + x ) + d i ¢ l  exp (ik +x ) + alq~2 exp ( - i k - x  ), 

x > 0  
(A10) 

with 

_ _ _  - q ( q  + 2 i k ) ( 1  - B  z)  ' ' - 4 k E B  5'1 = a~ 
a g - a 2  D ' D 

b'z = ' ( E  + l ~  1/2 -2 i k (q  + 2ik)(1 - B )  2) 
a2\ 2E ] D ' 

E + ~ q  1/2 
- a  t _ _  b~-  2( 2E ) -2ikqB(1-B2)D (Al l )  

The outgoing holelike solution is 

I b m ( ~ ) e x p ( i k _ x ) + b ~ ( ~ ) e x p ( - i k + x ) ,  
h 

~ o u t ( X )  = 

[a~b2 exp ( i k -x  ) + d'4ck2 exp ( - i k - x  ) 

+a~bl exp (ik+x), 

with 

- 4 k 2 B  - q  (q - 2ik)(1 - B 2) 
ai = a~3 , " _ , a , - a 3  D D 

[ E  -~-~~ 1/2 2ik(q - 2ik)(1 - B  2) 
b~= a ' 3 ~ )  D ' 

. , [ E + l ~ \ l / 2 2 i k q B ( 1 - B 2 )  
b ' z = a 3 k ~ )  D 

x < 0  

x > 0  

(A12) 

(A13) 

The Green's functions are constructed according to the procedure 
described in Ref. 4, with 

_ _  e h 
~ i n  = ~en  "~- ~//ihn, ~ou t  - -  ~/out "~- I//out ( A 1 4 )  
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In the product ~_/in(X)~/out(X') four constants appear: blab,  blab,  b4a~, and 
b4a~. These are determined from 

G(xx'E)lx=x,+ = G(xx'E)lx=x,- 

:, I j d G(xx'E) - hTO'3 (A15) G(xx'E) --~x 
X ~ x  F+ X = X  t -  

which should hold in order for (1) to be obeyed. For x > x ' >  0 we find 

i E + 
- - -  -~( dpadpl { exp [ik +(x- x ' ) ] - ~ q ( q  + 2ik ) G(xx'E) - hvv 

x (1 - B  2) exp [ik'~(x +x')]} 

- ~ 2 ~ {  exp t - i~- (x  - x ' ) l -  ~ q  (q - 2 ;~  

× (1 - B 2) exp [- ik  -(x + x ')]} 

4kZBr , ,+ ) 
/¢,1¢~z exp (ik +x - ik-x') + C~zd:~ exp ( - i k - x  + ik +x')] 

(A16) 

Here we used k = mvv/h, and ~b~- and ~b~- are the row vectors 

( E + n )  1/2 ( E + n )  1/2(Bi) (A17) 
~ b ~ - = \ ~ ]  ( l iB),  dp~=\ 2E / 
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