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R e c e i v e d  A u g u s t  2 7 ,  1 9 7 6 )  

The relevant coefficient of second viscosity ~3 is calculated exactly near the 
transition in terms of the quasiparticle scattering amplitude in the normal state. 
~3 is shown to dominate the attenuation of fourth and second sound. Second 
sound should be well defined only at frequencies below about 1 Hz. 

1. INTRODUCTION 

A complete hydrodynamic description o f  the anisotropic superfluid 
phases o f  3He requires the introduction of several a priori unknown trans- 
port coefficients. 1"2 Among these the coefficients of second viscosity, ~1' ~2, 
and ~3 are of particular interest since they govern the attenuation of 
soundlike collective modes involving oscillations of v~ - vn. Second viscosity 
coefficients appear in the momentum conservation law (j is the momentum 
density) 

(o/ot)j = vn r + v n  d (]a) 

where the dissipative part of the stress tensor is given by 

H~ = n n 2 Tlijkl(VkV 1 + VlVk--~8kl  div v.) 

+ (~'l)/j div (j - pv.)  + ((2)ij div v.  + ~ikjVl~bkl (lb) 

with ~bkl defined in Ref. 1, and in the acceleration equation of the superfluid, 

(O/cgt)mVs +V[/~ - m~'3 div (j - p v n ) -  m(~l)qVivT] = 0 (2) 

Here vs and v.  are the velocities of the superfluid and normal components, 
respectively,/~ is the chemical potential, and p is the mass density. It is 
known that the bulk viscosity in the normal state ~2 is smaller than the shear 
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viscosity by a factor of (T/TF) 2 and may safely be neglected. It turns out that 
all the second viscosity coefficients in the momentum conservation law (1) 
are small, of order (T/TF) 2. Only the scalar coefficient ~3 in Eq. (2) is of 
magnitude comparable to 7lip 2. This has been shown by Shumeiko 4 for a 
weak coupling model isotropic Fermi superfluid. Since there is already one 
experiment in which (3 possibly has been measured 5 and since the observa- 
bility of second sound depends crucially on the magnitude of ~3, it seems 
worthwhile to perform a realistic calculation of this quantity for superfluid 
3He. In this paper the leading term in ~3 in the vicinity of the transition is 
calculated exactly in terms of the normal-state quasiparticle lifetime on the 
Fermi surface. This parallels the exact calculation of the intrinsic spin 
relaxation time and orbital relaxation time in the A phase by Pethick and 
co-workers. In all these cases the transport coefficient diverges like T/A near 
the transition because of the conservation of quasiparticle number or spin in 
the normal state as opposed to the superfluid state. This divergence makes 
the solution of the Boltzmann integral equation trivial. 

2 .  SECOND VISCOSITY 

In the hydrodynamic regime, the motion of the superfluid condensate is 
approximately decoupled from the gas of thermal excitations, i.e., the 
Bogoliubov quasiparticles in the case of a Fermi system. The coefficients ~i 
are a measure of the dissipation brought about by collisions among the 
quasiparticles in the superfluid if the superfluid density deviates locally from 
equilibrium. Quantitatively this effect is described by the change in the 
quasipartic!e distribution function 6uk(r, t), which obeys the kinetic equa- 
tion 8 

(O/Ot)8~k " t -~kEk  " ~rS1]k --~kl-.'k ° ~ r 8 E k  : I (3) 

with the quasiparticle energies in the superfluid state 

Ek = (¢~+ IA,12) 1/2 

and in the normal state 

Ck = (k 2/2m*) : I~ 

and the deviations from equilibrium of these quantities 

8Ek : (1/Ek)(¢£ 8¢k +½ 81Akt z) + k .  vs 

and 

3¢, = (1/ NFm )[Fo 8 p + (1/ kF2)Flk . j] - 3# 

Here Fo and Fa are Fermi liquid parameters and NF = m*kF/Tr 2 is the 
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density of states at the Fermi level. The equilibrium distribution is given by 

Vk = -- ½ tanh (Ek/2 T) 

The change in the particle density is expressed as 

8n = ~ [(S~k/Ek) ~Vk + Vk (]Ak la/E 3) 8~k] (4) 
k 

The collision integral I conserves energy and momentum but not the 
number of quasiparticles. The collision integral vanishes if applied to the 
local equilibrium distribution function 

&'~k = (OVk/ OEk )[ 3Ek - k  " v,, - ( E k / T )  3T] (5) 

The local values of the chemical potential, velocity of the normal compo- 
nent, and temperature are fixed by the requirement that Eq. (5) give the 
correct local densities and currents. Therefore the deviation from local 
equilibrium of the expression (4) for the density has to vanish: 

~n '=0  On t~tz'+~ ~k ,, , (6) 

The primed quantities denote deviations from local equilibrium. In Eq. (6) a 
term (On/OA)l,~ ,~A', describing the deviation of the off-diagonal energy from 
local equilibrium, has been omitted, since (On/OA)l,~ is of order T/TF and 
small. This term contains the component of Bye, even in Ck- 

The terms involving ~'i in Eq. (2) may be interpreted as a change/~lZ' in 
the chemical potential from its local equilibrium value caused by dissipative 
processes. Equation (6) relates ~/z' to the quasiparticle distribution function. 
The problem of calculating ¢3 is reduced to finding the component of 8v~, odd 
in ~:k and even in k. 

In order to solve the kinetic equation, ag a first step the local equilibrium 
solution (5) is inserted into the left-hand side of Eq. (3), taking into account 
Oiz/On = (1 + Fo)/Nv and making use of the continuity equation to eliminate 
(O/Ot)p in favor of -d iv  j. Also, the negligible quantity (O/Ot)(vn - vs) may be 
dropped. Then the explicit expression for the collision integral near To, 
obtained by a Bogoliubov transformation from the matrix collision integral 
in Ref. 9, is derived. Collecting terms odd in ~:k and even in k, one obtains 

0/Jk ~ ~k N~F 1 div ( j -pvn)  

1 1 ~ /E  
- 8 @ +  - -  

r(~) rN(0) cosh (£/2T) 

x -T --z~x, 2T / 2 T J  4rr ~-;t$v~: (7) --00 
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where 

and 

l / r ( O  = [l/rN(0)] [1 + (~/~rT) 2] 

1 X 
B(x) = 2 ~r sinh (x/2) 

rN(0) is the quasiparticle lifetime at the Fermi surface in the normal state. 
The angle dependence of the integral equation (7) is trivially eliminated by 
defining the isotropic function 6 as 

ark = _ 1 ( ~  ~klEk rN(O)N-vF 1 div ( j - pv . )  (8) 
4 T  \ T ]  cosh(~k/2T) 

~(x) satisfies the integral equation 

, [ ( x ; ]  io I cosh (x/2) 1+ ¢ ( x ) -  dx, B(x_x,)O(x,  ) dnk  X '2 = -oo 47  x '2+O 2 (9) 

where D 2 = Ak[2/T 2. 
In the limit D ~ 0, the homogeneous equation is solved by 

lim O(x) = 1/cosh (x/2) 
D ~ 0  

taking into account 

B(x - x') 1 + (x/~r) 2 
d x '  = 

cosh (x'/2) cosh (x/2) 

One therefore seeks the solution in the form 

~ / ( X )  = /~" I- ~ ( 1 ) ( X )  
cosh (x/2) 

with the supplementary condition 

I 1 + (x/rr) 2 
dx {/t(1)(X) cosh (x/2) = 0 

Multiplying Eq. (9) by 1/cosh (x/2) and integrating, one finds 

-1= 1 [  . l+(x/rr) 2/  D 2 \ 
- -  J aXcosh2 ( x / 2 ) \ ~ / =  -~(D>+ O(D 2) 

a 
4 z4 

with 

(lO) 

(11) 

(12) 

df~ 
(D> = I -~-~Dk 
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O°)(x) satisfies the integral equation 

l 4 X -[lq-[x~2]~bO)(x)-f L g}] J dx' B(x  - x')~b(1)(x ') 
cosh (x/2) ~.2 sinh (x/2) 

(13) 

and therefore is regular in the limit D -~ 0. 
Inserting Eqs. (12), (10), and (8) into Eq. (6), one finds by comparison 

with Eq. (2) 

m o p  \~" ~ - ) + / '  
T~< Tc (14) 

where a rough estimate gives a = 0.6 + 0.1. 
A similar analysis of the part of the kinetic equation even in ~k yields an 

inhomogeneity proportional to div j, with a coefficient smaller by a factor of 
T/TF than the one multiplying div(j-pvn) in Eq. (7). The second viscosity 
coefficient 61 therefore is of order (T/TF)2P63 . 

The result, Eq. (14), for 63 is not valid arbitrarily close to To, because in 
the derivation one had to assume A >> 1/~-N. For A~'N ~ ! the energy gap in the 
quasiparticle spectrum is smeared out by collision effects and the quasiparti- 
cle concept is no longer valid in this simple form. The corresponding 
corrections to the shear viscosity in this gapless regime have been calculated 
in the framework of a more general theory in Ref. 10. By carrying over the 
argumentation of  Ref. 10 to the present case, it is seen that in the integral 
expression for A -1, Eq. (12), A a has to be replaced by A2+ (1/2r) a in the 
denominator, and A -1 is obtained as 

A_I= ~'// A~/T \ 
- 4 \ [ A ~ +  1/4z2]~/~/ (15) 

Hence, the second viscosity in the gapless regime is obtained as 

1 0/~2 T 
63 , / n  Op '7'/" (A2) ' Ar << 1 (16) 

independent of the quasiparticle scattering properties. 

3.  A T r E N U A T I O N  O F  F O U R T H  A N D  S E C O N D  S O U N D  

Fourth sound is an oscillation of the density of the superfluid compo- 
nent at fixed normal component, i.e., vn = 0. Solving Eq. (2)simultaneously 
with the continuity equation 

(O/Ot)p + div Ps" Vs = 0 
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we find the dispersion law of fourth sound as 

60 2 ~--- u]q2(l - -  i r 0 7 - 4 )  

where 

and 

u ]  = ( 1 / o ) ( 4  ' " q ) u  

(17) 

7"4 = p~3 /b l  2 : ( 4 / ~ ) ( T / ( A ) ) 7 " N ( O ) ,  T <- Tc ( 1 8 )  

Here ul = [(p/m)(Olz/Op)] 1/2 is the velocity of first sound. 
In the A •phase an additional damping term appears in Eq. (18) due to 

the coupling of vs to the I vector. This gives rise to a contribution of order 
pT1/u~ in Eq. (18), where 7/ is a transport coefficient in the equation of 
motion for i, introduced by Graham. 1 rt may be estimated by comparison 
with the Cross-Anderson theory of orbital relaxation in terms of their 
viscosity coefficient/z as 

n ~ (h/2m)2/! z -- 3 x 10-4(1 - T/Tc)'I(3 

Thus ~7 is negligible except very close to T~. 
The damping of fourth sound in an ideal geometry is thus determined by 

the quasiparticle lifetime at the Fermi surface in the normal state ~-N(0) and 
the angular average of the anisotropic gap parameter. While the relative 
width of the mode ao)4/O.) 4 diverges as T ~ T ~  like A-l, the absolute 
attenuation tends to zero --A. 

Fourth sound has been observed by Yanof and Reppy 5 and by Kojima 
et al. 11 Yanof and Reppy quote results for the quality factor of their 
resonance cavity Q4, which is directly related to 7-4 by Q4 = (wr4) -1. At a 
pressure of 22.8 bar, reduced temperature 1 - T/Tc = 0.05, and frequency 
of 728 Hz, they found Q4 = 64. From Eq. (18), using 

A 7"/" A 1/2 / T \  1/2 

AC/CN = 1.6, and T2~-N(0)= 0.3/xsecmK 2, one obtains Q4=2380. The 
quasiparticle lifetime rn(0) has been determined by the relaxation of the 
wall-pinned spin mode in the B phase, 13 by the relaxation of the k' vector in 
the A phase, 14 and by the broadening of the collective mode peak in the 
sound absorption 1° in 3He-B at - 2 0  bar. In order to bring down the Q factor 
to the observed value, some additional damping mechanism, probably 
normal fluid slippage at the pore surfaces, has to be invoked. The intrinsic Q 
factor as given by Eq. (18) is inversely proportional to the frequency and 
temperature independent for a given q (i.e., mode), as found experimen- 
tally. 



Second Viscosity and the Attenuation of Fourth and Second Sound 6 6 5  

The dispersion law of second sound is found by solving Eqs. (1) and (2) 
and the entropy conservation law 

(O/Ot)S + S div v.  = ( 1 / T ) V .  K .  V T  (19) 

where K is the thermal conductivity tensor, imposing the constraint 

j=p. .  v.+p~ .v~=0 

The result is 

where 

and 

2 u~q2(l_ioJr2) (20) (.0 = 

U 2 = ( T S 2 1 f f C v ) ( p s / p n )  

C~ 4 _ +  p _ -1 2 

Here  we have defined 

and 

e = ( 4 - ~ .  4) 

# = Z 4,4j4~4,n,j~, 
i,j,k,l 

(21) 

(m /p . ) -  4" m " p ~ "  4 

In Eq. (21) terms involving the coupling to the I vector in the A phase have 
been neglected, taking into account that the relaxation of the 1 vector is 
much faster 14 (r  t ~ 10 -3 sec) than the typical time % of the second-sound 
mode (see below) in the temperature regime of interest. 

In Ref. 8 a more complicated expression for the velocity of second 
sound was given, involving the tensor entropy o-q. It was not realized then 
that ~ij is proportional to the unit tensor if correctly evaluated. 15 

In fact, from Ref. 8 

_l~. 8Vk kj 

mj : T k K~&0-~. m* 

a 
= ~k ki'~j[Vk In Vk + (1 -- V.) In (1 -- Vk)] 

= ~ j S  
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(correcting for a factor of 3 in the definition 8 of o'ij). In Eq. (13) of Ref. 8 a 
factor of (pco) -1 is missing. 

The various contributions to ~'2 in Eq. (21) behave differently in the 
limit T o  To. The te rm involving the thermal conductivity diverges as 1/A 2, 
and, multiplied by u~oq 2 in Eq. (20), goes over  into the thermal  diffusion 
mode  of the normal  state. 

t o p =  - i (K/C~)q 2 

The contribution involving the shear viscosity behaves regularly as T ~  To, 
while the second-viscosity te rm diverges as A-1. In the tempera ture  regime 
10 -3 < 1 - T~ T~ < 0.2, where this theory is thought to be valid, the second- 
sound attenuation is dominated by the contribution f rom the second viscos- 
ity. At  the melting pressure one estimates ~-2- ( 1 / 1 0 ) ( 1 -  T/Tc)=I /2sec .  In 
order to observe second sound one would have to work at frequencies as low 
as 

f <  1 / 2 ~ - 2 - 1 . 5 ( 1  - T/T~)  1/2 sec -1 

In conclusion, further measurement  of the at tenuation of fourth sound 
and possibly second sound would provide information on the quasipart ide 
scattering rate in the normal  state and could be compared  to similar 
information obtained f rom the spin relaxation and orbital relaxation experi- 
ments. 
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