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Abstract. An exact similarity solution is presented for developing mixed convection flows of electrically 
conducting fluids over a semi-infinite horizontal plate with vectored mass transfer at the wall which are 
subjected to an applied transverse magnetic field. This solution is given for the case of a wall temperature 
that is inversely proportional to the square root of the distance from the leading edge. By application of 
appropriate coordinate transformations, the governing momentum and energy boundary-layer equations are 
expressed as a set of coupled ordinary differential equations that depend on a magnetic parameter, the 
buoyancy parameter, and the Prandtl number. The shear stress, the total heat transfer, and the displacement 
thickness are calculated for different values of both buoyancy and magnetic parameters. 

1. Introduction 

The field of magnetohydrodynamic (MHD) heat transfer can be divided arbitrarily into 
two sections: one contains problems in which the heating is an incidental by product 
of the electromagnetic fields (as in such MHD divices as generators, pumps, etc.), and 
the second consists of problems in which the primary use of electromagnetic fields to 
control the heat transfer (as in the natural convection flows and aerodynamic heating). 
This study is devoted to the second class of problems, viz., the influence of magnetic 
field on combined or 'mixed' natural and forced convection heat transfer to electrically 
conducting fluids. 

Extensive studies have been made on the combined forced and free convection MHD 
flows as by Georgantopoulos et aL (1979), Raptis et al. (1981), Mazumder et aL (1976), 
Tan and Wang (1968). The flow of an incompressible viscous fluid past an impulsively 
started, infinite, horizontal plate, in its own plane, was first studied by Stokes (1851). 
Recently, Georgantopoulos etal. (1979) studied the hydromagnetic free convection 
effects on the Stokes problem for an infinite vertical plate. Raptis et aL (1981) studied 
the effect of suction/injection on the hydromagnetic free convection flow of a viscous, 
incompressible, and electrically conducting fluid, past an infinite accelerated non- 
conducting, vertical plate with variable suction and heat flux. Mazumder et al. (1976) 
studied the flow of an electrically conducting liquid past an infinite porous plate in the 
presence of a uniform transverse magnetic field and in a rotating frame of reference, and 
deduced the flow and heat-transfer characteristics of the Ekman layer over the plate. 
Tan and Wang (1968) studied the steady state heat-transfer phenomena in an aligned 
flow past a semi-infinite flat plate in which the velocity and magnetic field vectors far 
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from the plate are parallel. They used a viscous, electrically conducting, incompressible 
fluid, as the working medium. 

Earlier investigations (Schneider, 1979; Dey, 1982; Afzal and Hussain, 1984) on the 
OHD (ordinary hydrodynamic) mixed convection flow over a horizontal plate were 
confined to the nonmagnetic case. Schneider (1979) studied the effect of buoyancy 
forces and has shown the existence of similarity provided the wall temperature is 
prescribed as the inverse square root of the distance from the leading edge. Likewise, 
the work of Dey (1982), dealing with an extension of Schneider (1979) to mass transfer. 
The solutions (see Schneider, 1979; Dey, 1982) cover a limited range of buoyancy to 
forced convection parameter that do not include the strongly buoyant flows in aiding 
situations and nearly separating flows in opposing situations. Afzal and Hussain (1984) 
developed the solutions of Schneider (1979) to include the entire domain, beginning form 
purely free convection dominated to separated flows. 

The aim of this work is to extend the previous works of Schneider (1979) and Dey 
(1982) to the MHD mixed convection flows over a horizontal plate. An exact 
similarity solution is presented for the case of both a wall temperature and the magnetic 
strength which are inversely proportional to the square root of the distance from the 
leading edge. Numerical results are obtained for the shear stress, the total heat transfer 
and the displacement thickness with vectored suction and injection for different values 
of the magnetic and buoyancy parameters. The velocity and temperature profiles are 
graphically represented and the previous results are discussed in the last section. 

2. Formulation of  the Problem 

Consider a horizontal flate plate aligned parallel to an uniform free stream with velocity 
u~, density p~.~, and temperature T~. The flow over the plate is considered to be plane, 
laminar, and steady. We use a Cartesian coordinate system x, y with the origin at the 
leading edge of the plate. The applied magnetic field is primarily in the y-direction and 
varies in strength as a function of x. No externally generated electrical field is imposed. 
Ohm's law is assumed and the magnetic Reynolds' number of the flow is taken to be 
small so that the flow induced distortion of the applied magnetic field can be neglected. 
Constant transport coefficients (including electrical conductivity) are assumed, the 
Boussinesq approximation is applied, and the boundary-layer approximation is assumed 
to hold. Under these conditions, the equations of continuity, momentum, and energy 
are 
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?T OT OCT 
u - - + v - - = ~ - -  ; (4) 

Ox Oy O v 2 

u and v are the velocities in the horizontal and vertical directions, p, v, fl, e, and o- are 
the density, kinematic viscosity, the thermal expansion coefficient, thermal ditthsivity, 
and the electrical conductivity of the fluid, T, p, and B are the temperature, pressure, 
and the applied magnetic field. 

If we introduce the dimensionless variables in the form 

x = x / L ,  r = , f ~ y / L ,  U = u / u ~ ,  
(5) 

v = , / R e . / ~ ,  0 - T - To~ P = (e - P ~ ) / p ~ u %  

T *  

where Re = u o o L / v  is the Reynolds number and the pressure is referred to p~ ,  T* 
represents a characteristic temperature difference between plate and free stream. 

The boundary conditions in dimensionless forms as in the nonmagnetic case (cf. 
Schneider, 1979), for which the similarity solution is possible, are 

U = uw , V -- - 2 v w X - 1 / 2 ,  |  on Y = 0 ,  

U=  1, 0 = P - - 0  as Y ~ o o .  

X > 0 ;  

(6) 

Also for the similarity solution to be possible we choose the strength of the magnetic 
field in the form 

B = B o X -  1/2 (7) 

The solution of these coupled nonlinear equations is facilitated by introducing a number 
of transformations. Introduce a stream function ~ such that U -- D ~ / ~ Y ,  V = - OO/~X. 

The following similarity transformation (originally used by Schneider (1979) in the 
non-magnetic case) reduces the problem to the solution of ordinary differential 
equations 

rl = Y X -  1/2,  t) = X ' / 2  f ( r l )  ; 0 = X -  l /z  ~b(t/). (8) 

These relations transform (1) through (8) into the following set of coupled ordinary 
differential equations 

2 f "  + i f "  + K q ~  - M n f '  = 0 ; (9) 

2 
- -  q~" +fqY + f ' ~  = 0;  (10) 
Pr 

with the boundary conditions 

f(0) = f~ = const. (given), 

f ' (oo)  = qS(~)= O; 

i f (0)  = f,; = const. (given), ,~(o) = 

(11) 
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where primes denote differentiation with respect to the similar variable t/, Pr stands for 
the Prandtl number, Mn = aB~L/pu~ = HZ/Re is a magnetic parameter, H is the 
Hartmann number, and K is related to the Archimedes number Ar according to 

K = A r / , , / ~ ,  Ar = gLfl~T*tu~. (12) 

In technological applications, the total heat transfer Qw, the wall shear stress i f (0)  
(in dimensionless form), and the displacement thickness 6* are often of great interest. 
In order to circumvent the difficulties linked to the singularity at the leading edge the 
total heat transfer Qw is determined with the help of the heat flux equation in the form 

Qw -- PooCp i ~ [(T - To~)]x=,dy. (13) 
o /  

0 

where l is the length of the plate (not to be confused with the characteristic length L) 
and Cp is the specific heat capacity at constant pressure. Introducing the dimensionless 
variables of Equation (5) and applying the similarity transformation (8), we obtain 

St* = x/-Re St = ~ Of' d , ,  (14) 
o /  

0 

where the Stanton number is 

St = Q~/p~u~ CuT*L. (15) 

The displacement thickness 6* can be calculated from the relations 

6* = 1 - u dy = vx [1 -if(O] dn 
0 0 

= v vf~- lira [ ~ - f(r/)].  (16) 
,q uo+ v/--~ oO 

3. Numerical, Results, and Discussion 

The system of ordinary differential equations (9) and (10) subject to the boundary 
conditions (11) has been solved numerically by means of the fourth-order Runge-Kutta 
method with a systematic estimates of f"(O) and q~'(0) by the shooting technique. 
Numerical computations were carried out on a VME-2955 computer for Pr = 0.7, 
fw =fw = 0; +0.1; + 0.2, 0 < k -  1 and0 < Mn < 1. It is interesting to note that the 
wall heat transfer mode ((p' (0) = - Pr fw/2) depends on fw, which causes the boundary- 
layer fluid either to received heat from the wall (f~ > 0) or to transfer heat to the wall 
(fw < 0). Also, the numerical values of (p'(0) can be verified with the exact values and 
were found to be in good agreement. 
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Velocity and temperature profiles with no mass transfer (f~ =f~  = 0) for various values of 
buoyancy parameter K and magnetic parameter Mn. 
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Velocity and temperature profiles with vectored downstream suction (f~ = fw = 0.2) for various 
values of buoyancy parameter K and magnetic parameter Mn. 
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Fig. 3. 
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Velocity and temperature profiles with vectored downstream injection (f~ = 0.2, fw = - 0.2) for 
various values of buoyancy parameter  K and magnetic parameter  Mn. 

Figures 1-3 illustrate the velocity and temperature profiles for different values o f f s  

fw, k, and Mn, without mass transfer (fw = fw = 0), with downstream vectored suction 
( f '  = fw -- 0.2) and with downstream vectored injection (fw = 0.2, fw = - 0.2), respec- 
tively. It can be seen from Figures 1-3 that the velocity profile f '  increases as the 
magnetic parameter Mn increases and it decreases as the buoyancy parameter increases. 
In the adverse case for the temperature profile ~b. It is interesting to note that for large 
values of K and small values of Mn there are obviously overshoots in the velocity 
profiles, i.e., the local velocities are larger than the free-stream velocity. From Figure 3, 
it can be seen that both cases of (K = 1.0, Mn = 0.2) and (K = 0.5, Mn = 0.0) coincide. 
The same thing happens for the two cases (K = 1.0, Mn = 0.5) and (K = 0.5, 

Mn = 0.2). 
Numerical results for the wall shear stress values f" (0), the Stanton number St and 

the displacement thickness 3*, which are not represented in Figures 4-6,  are presented 
in Table I. 

Figure 4 shows f" (0), which is proportional to the wall shear stress, as a function of 
the buoyancy parameter K for different values o f f ' ,  fw, and Mn. Figure 4 and Table I 
show that the buoyancy force (K > 0) enhances the wall shear values (f'(O)) as in the 
case of mixed convection without mass transfer (f,~ = fw = 0). This is a consequence 
of there being a favorable pressure gradient above the plate due to buoyancy effects and 
the wall shear stress is larger than in the non-buoyant case (Schneider, 1979). On the 
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Fig,  6. 
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Effect of buoyancy parameter K and magnetic parameter Mn on the displacement thickness 8" with 
vector mass transfer. 

other hand the magnetic force (Mn > 0) reduces the wall shear values. It is showed that 
the wall shear values are higher with downstream-vectored suction (f~ = fw = 0.2, 0.1) 
than those with downstream-vectored injection (f,;. = 0.2, 0.1; f~, = - 0.2, - 0.1). It is 
interesting to note that for Mn > 0 and K > 0.15 the wall shear values are higher with 
upstream-vectored injection (f~ =fw = -0 .1 ,  - 0 . 2 )  than those with downstream- 
vectored suction (f~ = fw = 0.1, 0.2). Figure 4 and Table I show that, for Mn = 0.0 and 
K < 0.15, the wall shear values are higher with downstream-vectored suction than those 
with upstream-vectored injection which agree with Dey (1982) and Inger and Swean 

(1975). 
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Numerical results for the Stanton number St are shown in Figure 5. It is seen that 
as Mn increases the heat transfer rate decreases. On the other hand, as the buoyancy 
parameter increases the heat transfer rate increases. This happens because, for K > 0, 
the buoyancy accelerates the flow in the boundary layer. 

The effect of the magnetic parameter Mn and the buoyancy parameter K on the 
displacement thickness 3" with f" = 0.2 and fw = + 0.2 is shown in Figure 6. It is 
interesting to note that the displacement thickness is negative for relatively large K, but 
it is positive for all nonzero magnetic parameter Mn. This is a consequence of  local 
velocities that are larger than the mean velocity, cf. Figures 1-3. 
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