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Abstract. An exact similarity solution is presented for developing mixed convection flows of electrically
conducting fluids over a semi-infinite horizontal plate with vectored mass transfer at the wall which are
subjected to an applied transverse magnetic field. This solution is given for the case of a wall temperature
that is inversely proportional to the square root of the distance from the leading edge. By application of
appropriate coordinate transformations, the governing momentum and energy boundary-layer equations are
expressed as a set of coupled ordinary differential equations that depend on a magnetic parameter, the
buoyancy parameter, and the Prandtl number. The shear stress, the total heat transfer, and the displacement
thickness are calculated for different values of both buoyancy and magnetic parameters.

1. Introduction

The field of magnetohydrodynamic (MHD) heat transfer can be divided arbitrarily into
two sections: one contains problems in which the heating is an incidental by product
of the electromagnetic fields (as in such MHD divices as generators, pumps, etc.), and
the second consists of problems in which the primary use of electromagnetic fields to
control the heat transfer (as in the natural convection flows and aerodynamic heating).
This study is devoted to the second class of problems, viz., the influence of magnetic
field on combined or ‘mixed’ natural and forced convection heat transfer to electrically
conducting fluids.

Extensive studies have been made on the combined forced and free convection MHD
flows as by Georgantopoulos et al. (1979), Raptis et al. (1981), Mazumder et al. (1976),
Tan and Wang (1968). The flow of an incompressible viscous fluid past an impulsively
started, infinite, horizontal plate, in its own plane, was first studied by Stokes (1851).
Recently, Georgantopoulos et al. (1979) studied the hydromagnetic free convection
effects on the Stokes problem for an infinite vertical plate. Raptis ez al. (1981) studied
the effect of suction/injection on the hydromagnetic free convection flow of a viscous,
incompressible, and electrically conducting fluid, past an infinite accelerated non-
conducting, vertical plate with variable suction and heat flux. Mazumder ez al. (1976)
studied the flow of an electrically conducting liquid past an infinite porous plate in the
presence of a uniform transverse magnetic field and in a rotating frame of reference, and
deduced the flow and heat-transfer characteristics of the Ekman layer over the plate.
Tan and Wang (1968) studied the steady state heat-transfer phenomena in an aligned
flow past a semi-infinite flat plate in which the velocity and magnetic field vectors far
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from the plate are parallel. They used a viscous, electrically conducting, incompressible
fluid, as the working medium.

Earlier investigations (Schneider, 1979; Dey, 1982; Afzal and Hussain, 1984) on the
OHD (ordinary hydrodynamic) mixed convection flow over a horizontal plate were
confined to the nonmagnetic case. Schneider (1979) studied the effect of buoyancy
forces and has shown the existence of similarity provided the wall temperature is
prescribed as the inverse square root of the distance from the leading edge. Likewise,
the work of Dey (1982), dealing with an extension of Schneider (1979) to mass transfer.
The solutions (see Schneider, 1979; Dey, 1982) cover a limited range of buoyancy to
forced convection parameter that do not include the strongly buoyant flows in aiding
situations and nearly separating flows in opposing situations. Afzal and Hussain (1984)
developed the solutions of Schneider (1979) to include the entire domain, beginning form
purely free convection dominated to separated flows.

The aim of this work is to extend the previous works of Schneider (1979) and Dey
(1982) to the MHD mixed convection flows over a horizontal plate. An exact
similarity solution is presented for the case of both a wall temperature and the magnetic
strength which are inversely proportional to the square root of the distance from the
leading edge. Numerical results are obtained for the shear stress, the total heat transfer
and the displacement thickness with vectored suction and injection for different values
of the magnetic and buoyancy parameters. The velocity and temperature profiles are
graphically represented and the previous results are discussed in the last section.

2. Formulation of the Problem

Consider a horizontal flate plate aligned paralle] to an uniform free stream with velocity
u_,, density p_. , and temperature T, . The flow over the plate is considered to be plane,
laminar, and steady. We use a Cartesian coordinate system x, y with the origin at the
leading edge of the plate. The applied magnetic field is primarily in the y-direction and
varies in strength as a function of x. No externally generated electrical field is imposed.
Ohm’s law is assumed and the magnetic Reynolds’ number of the flow is taken to be
small so that the flow induced distortion of the applied magnetic field can be neglected.
Constant transport coefficients (including electrical conductivity) are assumed, the
Boussinesq approximation is applied, and the boundary-layer approximation is assumed
to hold. Under these conditions, the equations of continuity, momentum, and energy
are
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u and v are the velocities in the horizontal and vertical directions. p, v, f, &, and ¢ are
the density, kinematic viscosity, the thermal expansion coefficient, thermal diffusivity,
and the electrical conductivity of the fluid. T, p, and B are the temperature, pressure,
and the applied magnetic field.
If we introduce the dimensionless variables in the form
X =x/L, Y=./Rey/L, U=ufu,,, )
_T-T,

_ — . 2
V=Reuu,, 0 e P=(P-P,)potz,

where Re = u, L/v is the Reynolds number and the pressure is referred to p_, T*
represents a characteristic temperature difference between plate and free stream.

The boundary conditions in dimensionless forms as in the nonmagnetic case (cf.
Schneider, 1979), for which the similarity solution is possible, are

U=u,, V= -2v0,X"12, ®=X"1" on Y=0, X>0;
U=1, 0=P=0 as Y- . (6)
Also for the similarity solution to be possible we choose the strength of the magnetic
field in the form
B=B,X 12, 0]
The solution of these coupled nonlinear equations is facilitated by introducing a number
of transformations. Introduce a stream function v such that U = oy/3Y, V = - djaxX.
The following similarity transformation (originally used by Schneider (1979) in the

non-magnetic case) reduces the problem to the solution of ordinary differential
equations

=YX =X 6=X g0 ®

These relations transform (1) through (8) into the following set of coupled ordinary
differential equations

U 4 7+ Knd - Maf =0 ©)
2y v fp=0; (10)
Pr

with the boundary conditions
f(0) = f, = const. (given), f'(0) = f/ = const. (given), o) =1,
f'(00) = ¢(o0) = 0; (11
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where primes denote differentiation with respect to the similar variable #, Pr stands for
the Prandtl number, Mn = ¢B3L/pu_, = H*/Re is a magnetic parameter, H is the
Hartmann number, and K is related to the Archimedes number At according to

K=Ar//Re, Ar=gLB T*u% . (12)

In technological applications, the total heat transfer Q,,, the wall shear stress f”(0)
(in dimensionless form), and the displacement thickness * are often of great interest.
In order to circumvent the difficulties linked to the singularity at the leading edge the
total heat transfer Q,, is determined with the help of the heat flux equation in the form

o0

Qw = poon J [(T - Too)]x=ldy . (13)

[¢)

where [ is the length of the plate (not to be confused with the characteristic length L)
and c, is the specific heat capacity at constant pressure. Introducing the dimensionless
variables of Equation (5) and applying the similarity transformation (8), we obtain

St* = ./Re St = J ¢f' dn, (14
0

where the Stanton number is
St=Q,/p ., C,T*L . (15)

The displacement thickness 0¥ can be calculated from the relations

(o2
= o Jim Tn = 7000 16)

3. Numerical, Results, and Discussion

|5 |

§

J [1-s"(m]dy

The system of ordinary differential equations (9) and (10) subject to the boundary
conditions (11) has been solved numerically by means of the fourth-order Runge-Kutta
method with a systematic estimates of f”(0) and ¢'(0) by the shooting technique.
Numerical computations were carried out on a VME-2955 computer for Pr = 0.7,
fi=f,=0; +0.1; +0.2,0<k <1 and 0 < Mn < 1. It is interesting to note that the
wall heat transfer mode (¢ (0) = — Pr f,,/2) depends on £, , which causes the boundary-
layer fluid either to received heat from the wall (f,, > 0) or to transfer heat to the wall
(f., < 0). Also, the numerical values of ¢’'(0) can be verified with the exact values and
were found to be in good agreement.
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Fig. [. Velocity and temperature profiles with no mass transfer (f, = f, = 0) for various values of

buoyancy parameter X and magnetic parameter Mn.

Fig. 2. Velocity and temperature profiles with vectored downstream suction (f), = £, = 0.2) for various
values of buoyancy parameter X and magnetic parameter Mn.
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Fig. 3. Velocity and temperature profiles with vectored downstream injection (f, = 0.2, f,, = —0.2) for
various values of buoyancy parameter K and magnetic parameter Mn.

Figures 1-3 illustrate the velocity and temperature profiles for different values of 1),
J.o» k, and Mn, without mass transfer (f), = f,, = 0), with downstream vectored suction
(fs = f» = 0.2) and with downstream vectored injection (), = 0.2, f,, = —0.2), respec-
tively. It can be seen from Figures 1-3 that the velocity profile f’ increases as the
magnetic parameter Mn increases and it decreases as the buoyancy parameter increases.
In the adverse case for the temperature profile ¢. It is interesting to note that for large
values of K and small values of Mn there are obviously overshoots in the velocity
profiles, i.e., the local velocities are larger than the free-stream velocity. From Figure 3,
it can be seen that both cases of (K = 1.0, Mn = 0.2) and (K = 0.5, Mn = 0.0) coincide.
The same thing happens for the two cases (K =1.0, Mn =0.5) and (K = 0.5,
Mn = 0.2).

Numerical results for the wall shear stress values f”(0), the Stanton number St and
the displacement thickness &*, which are not represented in Figures 4—6, are presented
in Table I.

Figure 4 shows f”(0), which is proportional to the wall shear stress, as a function of
the buoyancy parameter K for different values of f,, f,,, and Mn. Figure 4 and Table I
show that the buoyancy force (K > 0) enhances the wall shear values (f”(0)) as in the
case of mixed convection without mass transfer (), = f,, = 0). This is a consequence
of there being a favorable pressure gradient above the plate due to buoyancy effects and
the wall shear stress is larger than in the non-buoyant case (Schneider, 1979). On the
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Fig. 6. Effect of buoyancy parameter K and magnetic parameter Mn on the displacement thickness 8* with
vector mass transfer.

other hand the magnetic force (Mn > 0) reduces the wall shear values. It is showed that
the wall shear values are higher with downstream-vectored suction (£}, = f,, = 0.2, 0.1)
than those with downstream-vectored injection (f,, = 0.2,0.1; f,, = —0.2, —0.1). Itis
interesting to note that for Mn > 0 and K > 0.15 the wall shear values are higher with
upstream-vectored injection (f,, = f,, = —0.1, —0.2) than those with downstream-
vectored suction (f,, = f, = 0.1, 0.2). Figure 4 and Table I show that, for Mn = 0.0 and
K < 0.15, the wall shear values are higher with downstream-vectored suction than those
with upstream-vectored injection which agree with Dey (1982) and Inger and Swean
(1975).
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Numerical results for the Stanton number St are shown in Figure 5. It is seen that
as Mn increases the heat transfer rate decreases. On the other hand, as the buoyancy
parameter increases the heat transfer rate increases. This happens because, for K > 0,
the buoyancy accelerates the flow in the boundary layer.

The effect of the magnetic parameter Mn and the buoyancy parameter X on the
displacement thickness o* with f;, = 0.2 and f,, = + 0.2 is shown in Figure 6. It is
interesting to note that the displacement thickness is negative for relatively large K, but
it is positive for all nonzero magnetic parameter Mn. This is a consequence of focal
velocities that are larger than the mean velocity, cf. Figures 1-3.
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