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Abstract. With an orbit of the three-dimensional circular problem as a starting point, we have calculated 
families of symmetric-periodic orbits in the three-dimensional elliptic problem with a variation of the mass 
ratio/~ and the eccentricity e. Afterwards, we have studied their evolution and stability. 

1. Introduction 

It is well known that, in the circular problem of three bodies, we can have periodic orbits 
with any value of the semi-period T. Thus, we can have the meaning of the family, in 
the space of the initial conditions, as a function of the period. This, however, cannot 
take place in the elliptic problem because the period can only be a multiple integer of 
2re. In the case of the elliptic problem we can have the meaning of the family by taking 
as a parameter the eccentricity e, or the mass ratio # of the primaries, in the space of 
the initial conditions. 

Furthermore, it is also known that the elliptic periodic orbits approach the real 
motions of the celestial bodies more closely than the circular ones. For this reason, and 
also because the circular orbits have been extensively studied, we decided to study the 
evolution and behaviour of a circular orbit with a period 2re, in the phase space 
(x, y, z, 2, 9, 2), introducing the eccentricity of the primaries, changing it, as well as 
changing the mass ratio. Thus, with the previous members of the family we decided to 
create families of periodic orbits, and at the same time study their stability. 

The present study deals with the numerical investigation of the periodic orbits of the 
three-dimensional elliptic problem. This is achieved by extending the known periodic 
orbits of the circular problem. 

Of previous investigators of this and similar subjects, Hunter (1967) investigated the 
motions of the satellites of Jupiter and of the asteroids in the Sun-Jupiter system. The 
orbits of the satellites are taken to be examples of the elliptical restricted, three- 
dimensional, three-body problem. Broucke (1969) has worked systematically on the 
plane-elliptic restricted three-body problem and he has found many families of periodic 
orbits and their stability. Finally, Katsiaris (1972) and Macris et  aL (i975) have given 
some periodic-symmetric solutions of the three-dimensional elliptic orbits and their 
stability. 

We use the equations of motion in the vibrating and rotating coordinate system 
(Kopal and Lyttleton, 1963), and we take the true anomaly v as an independent variable. 

Astrophysics and Space Science 162: 107-122, 1989. 
�9 1989 Kluwer Academic Publishers. Printed in Belgium. 



108 E. SARRIS 

Hence, we set 

d x  I d x 2  d x  3 
- -  X 4  = f l ,  - -  xs = f2,  - x 6  = f 3 ,  

dv dv dv 

r 0U dx 5 r OU 
dx4 - 2xs + - f4 ,  - - 2x4 + - f s ,  (1) 
dv p ~3xl do p ~x 2 

d x  6 a U  
- - =  - X 3  + - - = f 6  , 
dv •x3 

where x~, x 2, x 3 are the coordinates and x 4, x 5, x 6 the corresponding momenta,  Also 

the potential function is defined as 

- + + #  + , (2) 

where 

2 X 2 r,  ~ = (Xl  + ~ y  + x2  + 3 ,  rz 2 = ( x , + # -  1) 2 + x ~ + x 3  2, p : l - e  2,  

m 2 1 - e 2 
/ ~ -  , r -  

m 1 + m  2 1 + e c o s o  

and m t, m2 the masses of  the primaries. 

2. The Symmetric-Periodic Orbits 

By use of  Equations (1) and the potential function (2), we can see immediately that if 

there are any symmetrical-periodic orbits then the coordinates of  two symmetrical 

points from these orbits will be equal to or opposite, according to the symmetry. 

The function U is of  the form U = U(x  I , x22, x~) .  Therefore, it will be symmetric with 

respect to the Ox~-axis and to the Ox~xz -p lane  and Oxax3-plane.  
By starting with the circular problem at the times t and - t it follows that 

xi( t )  = x i ( - t ) ,  i = 1, 5, 6 ,  (3) 
xi ( t  ) = - x i ( -  t) , i = 2 , 3 , 4 . }  

I 

As we can observe from Equations (1) (where v = t), the differentials o f x l . . . x  6 are 

symmetric. Therefore, the relations (3) are maintained throughout the whole orbit. This 

means that the orbit is symmetric with respect to the Oxl-axis. 
The relations (4) and (5) present symmetry with respect to the Oxa x3-plane (T = half- 

period): namely, 

xi([; ) xi(Z t), 
i =  1 , 3 , 5 ,  j = 2 , 4 , 6 ,  (4) 

xj( t )  - x j ( T  - t ) , 1  
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x,(t) = x,( - t), } 
xj(t) - x j ( - t ) ,  j = 2 , 4 , 6 ,  i =  1 , 3 , 5 ,  (5) 

In the same way, the relations (6) are symmetric with respect to the OXlX2-plane: 
namely, 

x,(t) = x i(T + t) ,  i = 1, 2, 4, 5 ,  

xj(t) = - x j ( T +  t), j =  3 ,6 .  J 
(6) 

If now the third body start with initial conditions Xoj r 0 (j = 1, 5, 6) and xoj = 0 
(j = 2, 3, 4) (that is perpendicularly to the OXl-axis ) and intersects the same axis 
perpendicularly again at time T, then, because of the symmetry, the orbit will pass from 
the same starting point at time 2T and with the same initial conditions. Therefore, the 
orbit will be periodic. 

The same it will be happen if we have symmetry with respect to OXlX3 or OXlX 2 
planes. For example, if the third body starts with initial conditions Xoj = 0 (j = 2, 4, 6) 
(i.e., perpendicularly to the Oxlx3-plane), and intersects the same plane again 
perpendicularly in time T, then, because of the symmetry, the orbit will pass from the 
same starting point at time 2T and with the same initial conditions. 

Equations (3) mean that the solutions are symmetric with respect to the OXl-axis, 
whereas Equations (4), (5), and (6) are symmetric with respect to the OXlX 3 and Oxlx 2 
planes, respectively. 

We note that Equations (3) and (4) may both be valid at the same time. Therefore, 
the solution is symmetric with respect to the Oxl-axis and the OXlX3-plane , simultane- 
ously. The same it happens at the relations (3) and (6). Therefore, the solution is 
simultaneously symmetric with respect to he OXl-axis and the Ox~x2-plane. Similarly 
to the previous, the relations (3), (4), and (6) can all be valid at the same time. This means 
that the solution is symmetrical simultaneousIy with respect to the OXl-axis, the Ox~ x 3- 
and Ox~x2-planes. 

Now, we are able to examine what can happen in the elliptic problem. 
In this case we can see from Equation (1) that instead of the time t we have the true 

anomaly v, as well as the factor r = (1 - e2)/(1 + e cos v). Furthermore, the period 2T 
can only take the values 2kr~ (k = integer). Thus, in order to have symmetry, the factor 
r must take the same value for two different values of v. This can happen only when 
the independent variable v takes the values n - v and rc + v or v and - v. 

Hence, the only requirement is to satisfy Equations (3) and (5). If the condition 
xoi = 0 (j = 2, 3, 4) is valid, then we shall have symmetry with respect to the Oxl-axis; 
whereas if the condition xoi = 0 (j = 2, 4, 6) is valid, we shall have symmetry with 
respect to the OXlX3-plane. 

As it is easy to see, Equations (3) and (5) cannot be simultaneously satisfied. 
Therefore, in the elliptic problem we cannot have axial and bilateral symmetry at the 
same time. 
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3 .  S t a b i l i t y  

The study of the stability of the solution was made through the eigenvalues of the 

Jacobian. 

A=(~o, Oo, 2 T ) = (  iy2~) i,j= 1,2 . . . . .  6 ,  (7) 
\ 8Xoff 

where 2 o is the initial position vector, T the half-period v o = 0 or % = n, and ~ the 

position vector of the third body. 
The characteristic equation of A is of the form 

IA(Xo, %, 2T) - 2II = 0,  

where I is the identity matrix of the sixth order. 
Equation (8) takes the form 

26 + 0~1,~ 5 + 0{2/] 4 + ~3 23 + 0{2 22 + 0{12 + 1 = 0,  

and its roots are 2 l, 22, 23 and 2 i- l, 22 1, 23 1. If we set 

1 1 
- k  I = 21 + - -  , - k  2 = 2 2 + -  , 

21 22 

we find that 

and if so, 

k3 - ~1 ka + ( ~ 2  - 3) + (% - 20{1) = 0 ; 

Z 3 - 3 q Z -  2r = O, 

where we have put 

1 
- k  3 = 23  + - -  , 

23 

Z =  k ~1 1 ~f  1 - - -  q gCX 2 , a n d  r = 2 ( ~ x  3 ~ 1 ) - 1  0{3 , . . . .  g ~ 1 ~ 2  + - -  , 
3 9 27 

(8) 

(9) 

(10) 

+ 27e~ - 18e1~20{3 - 540{1~ 3 + 0{13~X3 = 0. (12) 

In view of Equation (10) it follows that: 
(1) If q 3  + r 2 > 0 ,  then the solutions will be always unstable. 
(2) I fq  3 + r 2 < 0 and ]Kil < 2 (i = 1, 2, 3), then will have stable solutions only. 

The stability coefficients el, ~2, ~3 of the characteristic Equation (8) define a three- 
dimensional space, which it can be divided into twelve regions by the surface: i.e., 

q3 + r 3 = 0 ; ( l la )  

k 2 - 4 ,  i =  1 ,2 ,3 .  (lXb) 

The analytic form of Equation (11 a) is 

4 ~ - c q ~  2 2 2 _ 9 ~ + 4 2 0 { 2 ~ 2 _ 8 0 {  4 +  108~ 2 -  1 0 8 -  360{ 2 +  
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Equation (12) describes a surface which is symmetric with respect to the ~2-axis; the 

e3-axis has no common point. The origin of the axes belongs at the stability region. 
The relations (1 lb) are given analytically by 

c~ 3 + 2e 1 = + (2c~ 2 + 2). (13) 

Equations (13) describe two planes symmetric with respects to the e2-axis. 
Figure 13 shows the intersections of the surface (12) and the planes (13) by the plane 

OXY. Thus, the curves c and d represent the intersections of the surface (12) by the plane 
OXY and are symmetric with respect to the origin of  the axes. The straight line a 
represents intersection of the surface c~ 3 + 2 ~  1 = 2~ 2 + 2 and the straight line b the 
intersection of the surface c~ 3 + 2cq = - (2e 2 + 2) by the plane OXY. 

In Figure 13 we can see some of the twelve stability-instability regions. The regions 
2, 6, 10, 11, 12 are not visible as these are totally out of the plane OXY, towards the 
negative half-space. Figure 14 shows the intersection of the surface (12) and of planes 
(13) by the plane OXZ. In Figure 14 only the regions 5 and 9 are not visible. The whole 
region 5 is out of the OYZ-plane and towards the negative half-space. The whole 
region 9 is out of the OYZ-plane and towards the positive half-space. 

From the 12 regions only the No. 1 is stable. 

4. Numerical Results 

As a starting point for the calculation we have taken the orbit with initial conditions 

(Bray and Goudas, 1966): namely, x o = X(Xol, . . . ,  Xo6) is the initial vector, with 

X01 = 1.12560589, Xo2 = X03 = Xo4  = 0 ,  X05 ----- -- 1.58086, 

X06 = 0.894431, # = 0.4,  e = 0.0 and 2T = 6.37092, 

where T is the half-period of the orbit. From this orbit we have found the orbit with 
the elements 

xol = 1.1256, Xo2 = Xo3 -- Xo4 = 0,  x o = - 1.5229, 

xo6 = 0.9179, # = 0.4, e = 0.0, 2T = 2re. 

This orbit is the starting point of the calculation of all the families. The precise conditions 
of all the calculations was 

x 2 < 1 0  -7 and x / ~ + x 2 < 1 0  - 6 .  

The calculated families in the present study were classified in two groups. The first 
of them, in includes eleven families of periodic orbits, which they were found by changing 
the mass ratio/~. They called Mi, Mi' (i = 2, 4, 6, 8, 9), M o (e = 0) with eccentricities 0.2, 
0.4, 0.6, 0.8, and 0.9, respectively; and they started with v o = O(Mi) and v o = rc(Mi'). 

The numerical results of these families for the first member of each one, are shown 
in Table I. 

The second group includes 20 families of periodic orbits, which they found by 
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Fig. 1. Characteristic curves of the M'  families. 
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Fig. 2. Characteristic curves of the M families. 
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Fig. 3 
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Change of x05 (projection of the velocity on the Oxl-axis ) as a function of the mass rate /1 
(M' families). 
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Change of Xos (projection of the velocity on the Ox~-axis) as a function of the mass rate /1 
(M families). 
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Fig. 7. Change of Xo6 (projection of the velocity on the Ox3-axis ) as a function of the eccentricity e. 
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Change of Xo5 (projection of the velocity on the Oxz-axis ) as a function of the eccentricity e. 
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Change of the x m (X-coordinate) as a function of the eccentricity e. 
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Fig. 10. Projections of 10 orbits of the M o family on the Ox~x3, Oxlx2, and Ox2x 3 planes. 



PERIODIC ORBITS IN THE RESTRICTED THREE-BODY PROBLEM 119 

Fig. 11. 

-5 

:~' ~X~ - 
Project ions of 10 orbi ts  of the M 9 family on the Oxlx3, Oxlxz, and OX2X 3 planes.  

changing the eccentricity e and are called E i and El-', i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Of  

each one of  these families beginning for values of  #, 0.1, 0.2, 0.3 . . . .  ,0.9,  0.98, respec- 
tively, and e = 0. 

The numerical results of  the E families for the member  of  each family, which has 
e = 0.2 are shown in Table II. 

Each one of  these tables contains. 

(1) The initial conditions Xol , Xo5 , Xo6 of  each calculated orbit. 
(2) The values xl ,  xs, x 6 at the end of the half-period. 

(3) The quantity S = q3 + r 2 defines in which half-space of  stability or instability the 
orbit is located. I f S  > 0 the orbit is unstable, i f S  < 0 and [ki[ < 2, i = 1, 2, 3 the orbit 
is stable, and if the Ikil > 2, is unstable. 

(4) The quantities kl ,  k2, k 3 (stability indices). 

(5) The quantities E or M, which define the eccentricity e and the mass  ratio #, 
respectively. 
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Fig. 12. Projections of 10 orbits of the E 4 family on the Oxlx3, Oxlx2, and Ox2x 3 planes. 

5. Concluding Remarks 

As it appears in the figures of the orbits Mi and Mi ' ,  we have symmetry of the orbits 

of these families for i = 2, 4, 6, 8, 9, with respect to the plane o x l x  3. Actually, we observe 
that for the same/~ and e the orbits M and M' have the following relations Xol = x'l, 

t t Xo5 = xs', Xo6 = x~ (where Xol, xos, Xo6 the initial conditions of the orbits M and x 1 , xs, 
x; the conditions of the orbits M'  at the end of the half-period). 

The families E 4 and E;  have been studied more than the others. Figure 6 shows the 

changes of Xo~ in function of e. 
We observe that for small values ofe the changes Of Xoa are small, whereas for values 

ofe > 0.91 the changes ofx  m are greater than in the first case. For that reason in order 

to find the next orbit of the family we should give to e very small variations. 
If we compare the numerical of the E and E '  orbits, for the same # and e, the time 
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~lCx) 

Fig. 13. Intersection of stability-instability regions by the OXY-plane. 

v and 2re - v, respectively, we shall observe that x 1 = x'}, x 2 ---- - -  X2, and x 3 = x3, which 

means that the two orbits are symmetrical with respect to the plane Ox~x 3. 

Figm'es 2, 3, 4, and 5 show the characteristic curves o f  the families 3//. 

Figures 6, 7, 8, and 9 show the characteristic curves o f  the families E. 

Figures 10, 11, and 12 show the morphological evolution of  the orbits of  the various 
families. 

3 c 
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dO I -  
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Fig. 14. Intersection of stability-instability regions by the OYZ-plane. 
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The families of the periodic orbits have two parameters (the eccentricity e of the 

primaries and the mass ratio/~). For this reason the new families of periodic orbits have 

been found, through variation of either the mass ratio # of the eccentricity e. Eleven 
families of the first kind and twenty of the second were studied. 

Orbits of the circular problem were considered to be the starting points. These orbits 

are found on the surface of a cylinder. The intersection of the cylinder with the plane 
O x l  x2 is a circle or an ellipse. These orbits are also symmetric with respect to Ox~-axis 

as well as with respect to O x l x z - p l a n e .  

In the elliptical case the orbits are also found on the surface of a cylinder, which is 

perpendicular to the plane O x ~ x  2 and forms a loop. But in no case orbits with double 

symmetry found. These orbits can be distinguished in two kinds: orbits with starting 
point the primaries in the shorter possible distance and orbits with starting point the 

primaries in the longest distance. These two kinds of orbits were found in the present 

study to be symmetric to each other about the plane O x ~ x  3. 
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