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Abstract. The hypothesis that gravity at very high energies and, hence, around the Planck epoch in the early 
universe is described by an action quadratic in the curvature, asymptotically free in the coupling is explored. 
It is shown that the flatness and horizon problems can be resolved in this framework without invoking 
inflation. 

1. Introduction 

It is well known that despite several successes of the standard Big-Bang model such as 
the presence of the microwave background and the prediction of the observed helium 
abundance there are severe theoretical problems at the earliest epochs. 

For example, we have so-called flatness and horizon problems. The flatness problem 
arises from the extrapolation that for the Universe to be within an order of magnitude 
to the closure density (Pc) at the present epoch as implied observationally it ought to 
have been fine tuned to the closure density to one part in 1060 at the Planck epoch, i.e., 

(P - Pc)/P the relative density difference is a function of the epoch, scaling as T - 2  (T 
is the temperature), i.e., proportional to the time t, implying that for T ~ 10 ~9 GeV (i.e., 
at the Planck epoch) this ratio is < 10 - 60. Or in other words, the kinetic energy term 
(R/R) 2 and the potential energy term 8~Gp/3 in the equation (R/R) 2 = 8rcGp/3 for the 
expanding scale factor R in the early universe must have been equal and opposite to one 
part in 106o at the earliest Planck phase, i.e., they must have balanced to an accuracy 
of some 60 or more decimal places at that epoch. 

At T ~ 1 s (when helium was being formed) the two terms should have been equal 
and opposite to about one part in 1018; i.e., to have a spontaneous Big Bang of this very 

precise magnitude the Universe should have started out with a total energy of exactly 
zero (!) which also implies a density equal to closure density at all epochs. 

Another problem is the horizon problem. As is evident from the microwave 
background the Universe on the largest scales is extremely homogeneous and isotropic 
(to better than one part in 104). However, as is known, standard cosmology has particle 
horizons. When matter and radiation last interacted vigorously (at t ~  1013 S, 

T ,,~ 0.3 eV), what was to become the presently observable universe was comprised of 
106 causally distinct regions. The particle horizon at decoupling only subtends an 

angle of about 0.5 deg on the sky today, so why such uniformity on angular scales 
>> 0.5 deg. 
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The problem arises because the Universe expanded at earliest epochs as R ~ t 1/2, 

whereas the horizon expands with light velocity as ~ tl/2/ct ~ o~ as t ~ 0. 
For, e.g., at t ~ 1 s after the Big Bang there would be ~ 10 a7 causally distinct regions. 

Still the present universe is isotropic all over. The so-called inflationary universe 
paradigm was invented (Guth, 1981) to take care of the above problems confronting 
Big-Bang cosmology at its earliest epochs. This invokes a vacuum-dominated exponen- 
tial expansion of the Universe at an early phase with a Hubble constant 

Hpx ,,~ (8~V(O)/3M~I) I/2 ~M~/Mt ,1 .  ( V ( 0 ) ~ M  4, M c is mass scale of scalar field) 
driving expansion. 

A single causally connected region can expand exponentially to give rise to the 
observed universe thus taking care of the horizon problem. As the curvature term 
becomes vanishingly small after inflation, we have an explanation of f~ = 1, i.e., the 

flatness problem. 
Of course one could have alternatives to the conventional inflationary scenarios 

requiring massive scalar fields with very flat potential wells. One such alternative would 
be the modification of general relativity at Planck scales. We shall consider this in the 

next section. 

2. Gravity at High Energies 

One such possibility of modification is to consider the Weyl-type Lagrangian 
(Equation (1)) for high-energy gravity, i.e., quadratic in curvatures with dimensionless 
coupling constant, appropriate for a renormalizable theory of gravity in contrast to 
Einstein's non-renormalizabte gravity with dimensional Newtonian constant. The 
appropriate Lagrangian was considered by Sivaram (1985, 1986a, b, 1990) as 

f d4x(C;Z + fiR2)' (1) IQ O~ G 

("c,/~ are dimensionless constants. This was treated as the gravity analogue of the QCD 
action quadratic in the Yang-Mills field. At the appropriate high-energy scale they 
describe gravity and strong interactions. At the very earliest phases of the Universe one 
would expect gravity to be described by such an action which is also scale-invariant. 
Once the scale invariance is broken at around the Planck mass, the Hilbert term is 
induced (as discussed in the above works) with a dimensional constant 1/GN and linear 
in curvature. Note that this is analogous to the emergence of an effective low-energy 
strong interaction theory ofpions from the underlying high-energy gauge theory of QCD, 
the strong interactions having a global chiral SU(2) x SU(2) symmetry analogous to 
general coordinates transformations for gravity. The low-energy effective action retains 
this symmetry, 0nly the scale invariance being broken. In QCD we have analogously 
the scale AQcD ~ 1 ~ GeV and an action quadratic in the Yang-Mills field. They possess 
some remarkable properties in common. In QCD, the strong colour interactions 
between quarks are linear, i.e., the potential V oc r, only systems with zero total colour 
have finite energy, i.e., leading to confinement of quarks. For the scale-invariant 
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quadratic action, i.e., Equation (1), the potential also grows linearly with distance as the 

corresponding Poisson equation is 

~V4~ = k m  ~ 3 ( r ) ,  (2)  

with the solution 

V - 4 m b 3 ( r )  ~ m r  (3) 

(for a point mass m, k being a constant and for the usual general relativistic case 
V2~b ~ m~3(r)giving q5 - re~r). Here the field equations are of fourth order. This implies 
that for scale invariant quadratic gravity only systems with zero total energy have finite 
energy, i.e., energy is confined analogous to colour in QCD. In fact, it can be shown 
rigorously that all exact classical solutions of the field equations following from the 
above action have zero total energy for c~6fl > 0 (Sivaram, 1986a, and references given 
therein). 

3. Some Consequences for the Early Universe 

This aspect of the total energy being zero for actions such as Equation (1) would have 
interesting consequences for the earliest phases of the Universe when gravity would have 
been described by such equations. Thus the initial state of the Universe would in this 
picture be a zero-energy configuration thus naturally accounting for the flatness problem 
(i.e., the equality between kinetic and potential energy terms to O(10-  6o) at the Planck 
epoch). Thus a flat universe (~ = 1) is in this picture dictated as initial condition arising 
from gravity at energies ~ E~, 1 being described by an action like Equation (1). Con- 
figurations with K # 0 would not be energetically favoured. 

As far as the horizon problem is concerned, we note that if during an early epoch (say 
at t ~ fi,1 ~ 1 0 - 4 3  s), the scale factor R increased as rapidly or more rapidly than the 
time t (for, e.g., as t ~/2 or faster) then the horizon distance d H ---, 0% thus eliminating the 
horizon problem. The horizon problem thus arises if one persists with the usual GR 
Lagrangian with a potential ~ r -  1 at very earliest epochs. 

This would imply for the scale factor, a relation R = a t  1/2 (a constant), giving rise to 
the horizon problem as the horizon expands as R = ct. 

For the case of the quadratic theory given by Equation (1) with the solution suggested 
by Equation (3), the equation for the scale factor is modified as 

k 2 = b R  (4) 

(b a constant) giving the corresponding solution for the scale factor of the form 

R = b t  2 (5)  

rather than the usual R oc t 1/2 solution. 

As Equation (5) indicates, R now increases much faster than t so that the horizon 
problem is eliminated. Thus both the horizon and flatness problems are naturally 
resolved if one accepts the hypothesis that gravity around the Planck epoch is described 
by the action (1) rather than the usual Hilbert one of GR. 
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It may be pointed out that many authors starting from Starobinsky (1980) have 
discussed inflation in the context of actions of the type 

I = R + f i r  2 , (6) 

i.e., a combination of Hilbert and quadratic terms. In general, these models are equiva- 
lent to those invoking GR plus massive scalar fields, there being a general transfor- 
mation due to Whitt (1984), linking these theories. In the present case, we did not 

consider the R term, but solely the quadratic term, not in the a d  hoc sense, but as the 
appropriate action for gravity at energies ~Ep1 at the very earliest phases. 

As elaborated above this has the consequence that the flatness and horizon problems 
are taken care of automatically without invoking inflation. Once the Hilbert term is 
induced as a result of breaking of the scale invariance the Universe expands in the usual 
Robertson-Walker manner. It is possible to picture an intermediate stage in which both 
the terms are present (as in Equation (6)) giving rise to a phase giving rise to density 
perturbations ~/3,,~ 10 - 4 .  This would be explored in a subsequent work. 

Also we can note that actions of the form ~ R  n, with n integer have power-law 
solutions with scale factor increasing faster than t ( ~  tn), thus resolving the horizon 
problem. But only for the quadratic case, as in Equation (1) we have uniquely the 

zero-energy solution also accounting for the flatness problem. 
For arguments of domination of quadratic over higher-order terms, see Sivaram 

(1985, 1986a, 1991). 
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