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Abstract: Certain water soluble polymers may have a repulsive two-body inter- 
action, but an attractive n-body interaction induced by certain "clustering" 
effects, In the bulk this may lead to a "~point" in the phase diagram. Here, with 
polymer brushes, we construct the theoretical density profiles, using a local 
mean-field approximation. The brush often shows two layers (one dense near the 
wall, and one dilute), but the concentrations in both layers depend on the distance 
to the wall. The location of the interlayer boundary can be derived from 
a Maxwell construction. 
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I. Introduction 

In the standard Flory-Huggins [1] picture of 
polymer solutions the interactions are two-body 
interactions, described by a single parameter, the 
Flory X parameter. When Z is small (Z < �89 mono- 
mers repel each other, the solvent is good, and the 
chains are swollen. At one particular point (the 
~) point) X is equal to one-half and the chains are 
(nearly) ideal. At higher/~ values phase separation 
occurs between a very dilute solution and a dense 
one.  

Recently, a different scheme has been proposed, 
with special regard to water-soluble polymers [2]. 
Here, we may have solutions where two monomers 
repel each other, but a larger group of n monomers 
can build up a certain form of "cluster". The 
thermodynamic phase diagrams are then greatly 
modified. In one regime, "~", two dense phases 
coexist. In another regime, "~" ,  one dense phase is 
in equilibrium with a dilute phase. The limit be- 
tween these two regimes is called the "theta bar" 
(~) point. 

Our aim here is to extend this discussion to 
polymer brushes. The more standard case of 
brushes near a classical theta point has been al- 
ready considered by Halperin [3] and Zhulina [4]: 

what was found here was a brush made of a single 
layer of the dense phase, with an abrupt drop in 
concentration at the outer end (Fig. la). In our 
case, for regime ~, we expect two layers in the 
brush; one, close to the wall, is related to the denser 
bulk phase; the other (outer) layer is related to the 
more dilute bulk phase (Fig. lb). The existence of 
these two layer structures may lead to some inter- 
esting interfacial structures. 

Of course, the whole picture depends on very 
crucial assumptions: a) the whole approach of ref. 
[2], leading to a theta bar behavior, assumes that 
the "clusters" do not form ordered arrays (e.g., 
liquid crystalline phases): a certain chemical, or 
stereochemical disorder on the polymer backbone 
is probably required; b) we shall use a continuum 
description which assumes that the size of a cluster 
is very small when compared to the brush thick- 
ness. Thus, our discussion would not be relevant 
for short grafted chains; c) we allow the brush to 
show inhomogeneities only in the form of success- 
ive layers, i.e., the concentration profile ~b(z) de- 
pends only on the distance z to the wall. In reality, 
things may be more complicated: the wall may be 
covered by patches of the dense phase (in some 
regular array), for the moment, we ignore these 
patchy structures. 
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Fig. 1. Concentration profiles for a collapsed polymer brush 
a) in a usual "0" solvent (n = 2, Z>�89 b) in a "8" solvent for 
regime a (n = 10, Rc<P<P)- 

Starting with all these assumptions, we rederive 
the general theoretical background in section II: the 
main ideas follow Milner et al. [5], but we empha- 
size certain particular features of the discontinu- 
ities in 4)(z). 

In section III we present our results; section IV 
describes the main conclusions and some open 
questions. 

II. Self-consistent field approach 

A) General  s cheme  

Our scheme follows the basic ideas of Edwards 
[6]. The successive monomers  along one chain 

(starting from the graft point) are labelled 
1, 2, . .  n . . N. Their positions are z l ,  z2, ...z?4. 
The mean-field free energy (divided by the thermal 
energy) 

N 

F = ~ ~ dn[F~l + Fint (4))], (1) 
chains  1 

where the elastic term has the (reduced) form (*) 

Eel = 2 \dnJ ' (2) 

while the interaction term depends on the local 
concentrat ion 4). For the one parameter cluster 
model of ref. [2]: 

Fi., = P(T)(4) -- 4)") + (1 -- 4)) In (1 -- 4)). (3) 

Plots of Fint(4)) for various p values are given in 
Fig. (2). When p > Pc = n - l ( (  n - 1)/(n - -  2 ) )  n - 2 ,  

two bulk phases are dense (regime ~). If p > ~** 
one phase is dense and the other is dilute (regime 
/3). 

The effective potential acting on each monomer  
is the derivative of F i n  t (4) )  

dFint 
#i.t- d4) ' (4) 

and the equation of local equilibrium (obtained by 
minimization of F) is 

d2 z 8#int 
- + -  (5) 

dn 2 8z " 

Milner et al. [5] show that  the potential must be 
parabolic 

7~ 2 

#i,t = A - -  B ~  2 B - -  8 N  2 . (6) 

Equations (3) (4) and (6) lead to an implicit form of 
4)(z): 

- n p 4 )  " -1  - l n ( 1  --4)) = B(h2 -- z2), (7) 

where hm is formally defined via 4)(hm) = 0. 
The constant  A of Eq. (6) is the chemical potential 
#i,t at the wall, and is related to hm by 

A = Bh 2 + p - 1. (8) 

*) In our reduced units, random walk step-length is unity, 
**) ~ = 1 - exp( - n) for large n. 
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Fig. 2. Plot of the free energy Fire ((~) for n = 3 and various 
p values: p = 0.5 (<Pc), P~<P = 0.85<~, p = 1>~. 
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We eliminate the length N of the chains by intro- 
ducing 

Z -  
N 

h m  
U m - -  

N 

(9) 

Physically, what is imposed is the total number of 
chains per unit area, which we call 4~s (in reduced 
units). 

~)s ~- N - 1  y ~)(Z) dZ.  (30) 

Computationally, rather than fixing ~s, we choose 
a value of Hm, construct r  from Eq. (7), and 
determine the resulting Cs. 

B) Position of the interlayer boundary 

In most cases of interest the profile r (Z) derived 
from Eq. (7) is not single valued (Fig. lb). This then 
shows the existence of a discontinuity: at a certain 
unknown location (Z = H1) ~ jumps from ~_ to 
r  

Near Z = H1 the chemical potential of the sol- 
vent, or equivalently the pressure 7~ (~) of the poly- 
mer, is continuous: rt(q51)= rc(~2). The pressure 
rt has two components: osmotic and elastic, 

~-- ~os "1- ~ e l "  (10) 
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Fig. 3. Schematic representation a) of a copolymer brush, 
b) of the concentration profile versus Z 2 in the ~ regime. 
Points, E, D, W1, W2 refer to the location of the end of the 
profile, of the discontinuity and two positions of the wall, 
respectively. All profiles for different grafting densities are 
superimposed, but W depends on r For ~ = Cs~, W = D. 
For q5 < 4,~ the concentration profile is continuous (W e inter- 
val DE). For ~ > ~ o ,  W is to the left of D and two phases 
coexist. 

We can divide the chains in two groups (Fig. 3a). 
The chains in group 1 cross the boundary, but their 
elastic deformation dz/dn is continuous [since 
dliint/dz is continuous in Eq. (5)]. Thus, for these 
chains ~e1(r  r~el(r The chains in group 
2 have their ends on the plane z = hi .  For these 
chains, as explained by Milner et al., the elastic 
deformation vanishes rc~l (~+) = 0 and ~el ((/) -) ~ 0 
by definition. 
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Fig. 4. Case n = 3: concen t r a t ion  profile ~b versus Z 2 for 
different  graf t ing  densi ty  q~ a) in the  a regime (p = 0.7), b) in 
the fl regime (p = 1), c) in the swollen regime (p = 0 . 6 4 < p c ) .  

Thus, the elastic tensions are continuous. Since 
the overall pressure rc is continuous, the osmotic 
part rco~ is also continuous: 

rCos(gb+) = ~ros(gS_). (11) 
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Fig. 5. Case n = 4: concen t r a t ion  profiles q5 versus Z 2 for 
different  graf t ing densi ty  ~b s for  three  typical p values 
a) p = 0.85; b) p = 1; c) p = 0.54. 

On the free energy plot of the bulk solutions 
Fint (q~) ,  this corresponds to the usual double 
tangent construction (Fig. 2). For our purposes, 
another construction is useful: if we plot the con- 
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Fig. 6. Case n = 10: concentration profiles qb versus Z 2 for 
different grafting density ~bs for three typical p values 
a) p=0.4 ;b)  p = l ; c )  p=0.24. 

centration 05, not as a function of Z, but as a func- 
tion of #i,t [or equivalently of Z 2, via Eq. (7)] we 
have a Maxwell construction of equal areas as 
shown in Fig. 4a. This construction simply ex- 
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Fig. 7. Critical grafting density q~, versus p for n = 10, n = 4, 
n ~ 3 .  

presses the fact that ~int and q5 are conjugate vari- 
ables for the bulk system. This is the construction 
which we use to locate the discontinuity. 

III. Concentration profiles ~b (Z) 
n,V,~s 

As an example let us discuss the case n = 3 
shown schematically in Fig. 3b and start with one 
particular p value p = 0.7. This is in the a-regime 

pc<P<f i .  
From Eq. (7) we can construct a plot of 05 versus 

Z 2 (Fig. 4a). In this plot, three points are impor- 
tant: 

- the end of the profile defined by 05 = 0 (point E): 
- the location of the discontinuity point D derived 

from the equal area construction; 
- the location of the wall (point W). 

The whole plot is translationally invariant. It is 
convenient to fix point E, and to determine point 
W by Eq. (10), the conservation of the total number 
of monomers. All profiles for different grafting 
density in the representation 05(Z 2) are superim- 
posed, but the origin (point W) depends on 05s. For 
a critical grafting density 05sc(05sc = 0.06), points 
W and D coincide i) if 05 < 05sc, W is located in the 
interval DE: the brush is in a one-phase regime (the 
less dense phase) and the profile is continuous; ii) if 
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gb>qS~, W is to the left of D: the two phases 
coexist and the concentration profile is discontinu- 
ous. When ~ increases towards unity, the concen- 
tration at the wall also approaches unity. 

Let us now discuss another case p = 1 cor- 
responding to the fl-regime (Fig. 4b). The main 
difference is that now point E and D are in reverse 
order: the profiles now end at point with a discon- 
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Fig. 8. C o n c e n t r a t i o n  prof i les  q5 (Z) at fixed g ra f t ing  dens i ty  as a func t ion  o f  p (i.e., t empe ra tu r e )  for  three  n values: a) n = 3, 
q5 S = 0.25; b) n = 3, ~b, = 0.6; c) n = 4, q5 s = 0.25, d) n = 4, ~bs = 0.6; e) n = 10, ~b~ = 0.25; f) n = 10, qS~ = 0.6. 
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, Hm- -  H 2 as a function of Table 1. Values of 05~o, 05_, 05. 2 
p for n = 3 , 4 ,  10. 

n p 05+ 05_ H ~ - H ?  05,~ 

3 0.6667 = pc 0.48 0.48 0.156 0.085 
0.68 0.63 0.36 0.148 0.075 
0.7 0.68 0.29 0.136 0.060 
0,85 0.85 0.06 0.043 0.010 
0.9502 = ~ 0.90 0 0 0 
1 0.91 0 -- 0.054 0 

4 0.5625 = Pc 0.66 0.66 0.350 0.196 
0.6 0.82 0.48 0.315 0.160 
0.85 0.95 0.12 0.098 0.030 
0.9817 = ~ 0.97 0 0 0 
1 0.97 0 - 0.017 0 

10 0.2566 = Pc 0.89 0.89 1.060 0.600 
0.4 0.98 0.61 0.730 0.375 
0.6 0.98 0.40 0.412 0.175 
0.85 0.98 0.15 0.132 0.05 
0.99995 = ~ 0.98 0 0 0 
1 0.98 0 -- 0.0005 0 

tinuity: the dense phase now coexists with pure 
solvent: this case is very similar to polymer brushes 
below the usual {)-point (Fig. la) as discussed in 
refs. [4] and [5]. The profiles ~ (Z 2) are still super- 
imposed and the origin (point W) is specified by ~s 
as before. 

Finally, for p < p c  (Fig. 4c), the profile ~(Z 2) is 
continuous. 

We show similar profiles for larger values of n, 
namely, n = 4 (Fig, 5) and n = 10 (Pc-----0.256) 

(Fig. 6). Values of ~b~c, 0 - ,  0+ ,  H e - H f f  as 
a function o fp  for n = 3, 4,  10 are given in Table 1. 
Notice that ~b~c is a decreasing function of p (Fig. 7) 
and that q~sc is much larger for n = 10. 

All our concentration plots up to now gave ~ as 
a function of Z 2. In Fig. 8, we give the physical 
profile ~b(Z) for different values of p (i.e., varying 
temperature), at fixed grafting density (fixed qSs) 
for n = 3,  4,  and 10. 

IV. Concluding remarks 

1) The novel feature brought in by cluster asso- 
ciations (n > 2) is the possibility of finding grafted 
layers with two distinct sublayers (in the 0~-regime): 
one dense, and one less dense. This segregation 
occurs although our chains are all chemically ident- 
ical, and all of the same length. 

2) For brushes in good solvents, the detailed 
"Edwards-Milner"  picture of Eqs. (5, 6) is not 

always necessary: all the scaling laws can be ob- 
tained from a simpler "Alexander-de Gennes" pic- 
ture, where all chains are uniformly stretched, and 
a very compact argument of the Flory type is 
enough to find the layer thickness. One may won- 
der whether this Flory approach can be used for the 
present n-cluster problem, by allowing for two 
sublayers with different densities and different 
stretching levels. This turns out not to work; at the 
boundary plane between the two sublayers, the 
elastic pressure is then discontinuous, and this is 
not what we found in section II. 

3) On the technical side, we should emphasize 
that the Edwards equations assume a stretching 
which is not too strong d z / d n < a  (the monomer 
size). At large surface coverings ( ~  ~ 1) this may 
be violated. 

4) On the practical side, we do have polymer- 
solvent systems which seem to show n-cluster 
effects a) Acrylates and polyacrylates have 
hydrophilic groups which tend to cluster: for 
example, n-butyl methacrylate (PBMA) forms gels 
in n-decane [7]. The estimated Tc is 84.2 ~ C, while 

is slightly smaller [8, 9]. b) Polik and Burchard 
[10] showed (via light scattering) that the system 
PEO/water  separates into a very dilute phase and 
a concentrated phase. Here, we might have 
G ~ 70~ and Tc slightly higher. 

An important case of PEO is colloid protection 
[11]. If, at the temperacure of interest, the bulk 
system shows coexistence between the two dense 
phases, we expect stabilization to be more secure 
when the grafting density is low (~b~<~b~c). In the 
opposite case, with a dense sublayer near the wall, 
the danger of establishing gel phases between two 
adjacent grains is increased: this might result in 
bridging and flocculation. 

5) An interesting extension of the present 
thoughts would concern the behavior of adsorbed 
polymer layers in conditions where n-clusters can 
be relevant. Technically, this is a more difficult 
problem, because fluctuations are much larger in 
an adsorbed layer: in a grafted system, fluctuations 
are weak and mean-field is a good starting point. In 
adsorbed systems, mean-field is a poor starting 
point. 
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