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Complex polarizability as used to analyze dielectric 
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Abstract: The effect of representing dielectric properties in terms of the complex 
polarizability v.* = ~' - i~" is examined. Loss curves (d' and tan 8~) are shifted 
towards higher frequencies, revealing the existence of new relaxations and 
allowing the clarifications of ones already known. We have calculated the shift 
ratios co (at maximum cd' or ~an 6$~)/60 (at maximum d' or tan6~) from the more 
conventional empirical equations representing the dielectric behavior. Some 
examples are given. 
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Introduction 

Several years ago, Scaife [1] proposed a method 
for analyzing the dielectric response in which the 
dielectric permittivity e* could be replaced by po- 
larizability c~* defined as 

e* - -  1 
~ * + 2  

(1) 
~* = ~' - i&' . 

This is justified if the long-range dipole-dipole 
coupling vanishes in a spherical cavity containing 
dielectric material. The arguments of Scaife are 
essentially macroscopic and are therefore free of 
any molecular details. Scaife pointed out that the 
reaction field responsible for Kirkwood's theory [2] 
will be out of phase in a dynamic sinusoidal alter- 
nating field and, because of this, the special effects 
concerning this reaction field observed at equilib- 
rium will not be observed. Polarizability ~*, as 
given by Eq. (1), is also related to a macroscopic 
(although intrinsic) relaxation time. 

On the other hand, complex polarizability is not 
a new concept. It has been, for example, introduced 
by Bgttcher et al. [3] in a similar context as the best 
way for characterizing the pulse-response function 
of a spherical dielectric specimen. 

Moreover, in a classical paper by Havriliak and 
Negami [4] the polarizability 0r is introduced via 
the approach of R. H. Cote [5], who consider the 
time-dependent correlation of electric moment of 
the sample including all the moments (permanent 
and induced) giving 

g* 1 
g* + 2  e~+2 

4rtN<~t(0). M (0)f0> + 
9 k T V  

xL(--~(t)) , (2) 

where 

<#(0). M(t) f o )  
~ (t) = (77g) - M (O) fo> 

is the decay correlation function, /l(0) the micro- 
scopic dipolar moment, and M (t) the sum of the 
permanent moments in the macroscopic sphere. L 
is the Laplace transform, and the dot (-) indicates 
rime derivation. 

Formula (2) is in fact, a generalization of the 
classical Debye formula [6], in which ( ~ -  1)M/ 
(~ + 2) 0 is the molar polarizability. The term 

K 963 
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Go -- 1 4r~N 
. . . .  ex (3) 
Go + 2  3V 

Formal background and empirical e q u a t i o n s  

is the instantaneous polarization of the sphere ac- 
cording to Clausius-Mossotti [7], including the 
atomic and electronic, i.e., elastic polarization. ~ , =  
(e* - 1)/(~* + 2) is the polarization of the macro- 
scopic sphere under consideration, and 0c* the 
macroscopic polarizability, c(' = 

Polarizability has been successfully applied to 
powdered donor-acceptor complexes (chalcoge- 
nides/TCNQ) by one of us (Shnchez Martinez) [8], 
revealing clearly the relaxation mechanism in the 
substances. It has also been used for a zeolite [9]. 

Interest in using the polarizability c~* as defined 
by Eq. (1) as opposed to permittivity in analyzing 
dielectric properties in materials is founded upon 
the following considerations: 

1) As pointed out by Havriliak and Negami [4], for 
the purpose of comparison between dielectric 
and mechanical dispersions, it is more conveni- 
ent to use the polarizability ~* than the permit- 
tivity e* as the dielectric property in connection 
with the displacement 3" (defined from J*, the 
dynamic compliance, in a similar manner as ~* 
is from e*). 

2) Polarizability more clearly accentuates the high 
frequency zones of a relaxation, revealing in 
some cas.es new relaxation mechanisms. 

3) The use of polarizability reveals relaxation 
peaks and allows subsequent calculation of 
apparent activation energies. 

4) Finally, it provides a means for comparing 
dielectric behavior of substances with widely 
differing values of g0 since ~' lies in the range and 
between 0 and 1, whereas ~' (and %) can differ 
significantly from unity. 

The purpose of this paper is to examine in detail 
the transformation given by (1) and to test its 
validity for analyzing characteristic relaxation time 
shifts (or corresponding frequencies) of ~* with 
respect to e*. Using customary semiempirical equa- 
tions, we have obtained quantitative estimates of 
the shifts in the frequency axis from the d' to the ~" 
loss peaks.. To obtain reliable conclusions, it is 
necessary to discuss the shape of the ~" vs e' 
Cole-Cole plots in comparison to similar ~" vs a' 
plots with reference to the parameters appearing in 
the semi-empirical adjusted equations. Some appli- 
cations are discussed. 

From (1), we can easily obtain the real and 
imaginary parts of ~*: 

(d - -  1 ) (e '  + 2) + gn2 
(8' + 2) 2 + g,,2 

3~" 
(8, + 2)2 + g,,2 " 

(4) 

(5) 

By analogy to the loss permittivity, we can define a 
"loss tangent polarizability" as 

3~" 
tan c~ = (g, _ 1)(e + 2) + 8-2 " (6) 

This loss tangent polarizability can be understood 
as an intrinsic loss in the material. 

Now, we will examine several empirical or semi- 
empirical equations representing the dielectric 
behavior of materials. 

a) Debye semicircular arc: [10] 
If we use the Debye equation 

e * = e ~ +  g o - e ~  (7) 
1 + imz~ 

in connection with (2), we obtain 

e0 - 1 coo - 1 

0 ( _ 8 o o - 1 +  G o + 2  G o + 2  

@ (D2T2 
, (8a) 

3(~o - ~ )  
0(' = (g~ + 2)2 r 

_~_ (-0 2 Z'2 

(go + 2)(e~ + 2)" + c~ 
- (8b) 

gin + 2 ~  2 2 2 
1 +  CTT.) 

From these equations we define: 

- relaxed polarizability: 

g0 -- 1 
0% = -  ; (9a) 

g 0 + 2  
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- unrelaxed polarizability: 

go0 - 1 
coo = - - "  (9b) 

G o + 2 '  

- "intrinsic relaxation time": 

Go + 2  
G = r ~ - -  (9c) 

g0 + 2  

We also obtain: 

2~ 0 + 1 2coo + 1 
- - - - ,  goo  ~ - -  , 

% 1 - -  ~ 0  1 - -  c{oo 

a o + 2 1 -- ~o~ r~ = % z~ . . . .  �9 (10) 
&o + 2 '  1 -- 0% 

Equations (Sa, b) become: 

0~o - 0G0 ~,, ( ~ o  - ~ o o )  
, - -  CO1-{ , r = Cr + 1 + 0)2"s 2 1 + c02z 2 

(11) 

It is well known [3] that g" (and a fo r t i o r i  ~") 
attains a maximum at co~ = r~-1 (co= = r~-i for 
c('). This fact implies that a maximum in an d' 
plot for a Debye material at co~ corresponds to a 
maximum in ~" at a frequency 

% + 2  
(12) CO~ = CO~ 

e ~ + 2  

Obviously, co= > me, implying that  the max- 
imum shifts to higher frequencies as the separa- 
tion between g0 and Go increases. This result 
can also be obtained by derivation of ~" with 
respect to co in (8b) and by subsequent substitu- 
tion of the real and imaginary parts of e*. By an 
identical procedure, we obtain from tan a a 
maximum at 

{ ( 8 0 - 1 ) ( 8 o + 2 )  } 1/2 
co; = co, (e~ 1) (8o0 + 2) " (13) 

Since co~ refers to the frequency at the max imum 
of g", we can relate this value to co'~ (the fre- 
quency at which tan 8 e attains a maximum) as 
follows: 

/ g \ i /2  
co: = co~{ ~o } . (14) 

\ ~ |  

3 (% 

By combining (13) and (14), we obtain: 

~o0 (eo - 1) (go + 2) 1"2  
c4  = co; (~o~eT - 1)(goo + 2) 

) 

Figure 1 gives an account of each of these four 
values in a generic example. 

However,  few substances follow a Debye behavior. 
b) Cole-Cole equation: [11] 

Many  substances have a distribution of relaxa- 
tion times that  can be expressed in some cases as 
a modified Debye equation in the form of a 
Cole-Cole equation: 

gO - -  g m  
g * = d - - i s " = s o o  + 1 + (ico,,) 1-h 

with 0 < 1 - h < 1 . (15) 

This is a realistic model for the relaxations of 
many organic substances and small molecular 
groups in polymers. Substitution of the real and 
imaginary parts of (15) into (5) gives, after 
equating the derivative of e" with respect to co 
to zero and following some tedious algebra: 

1 

% + 2 t - h  ( 1 6 )  
co~ = co~ + 2 

In the same manner,  we obtain for co'= (max- 
imum for tan8=) 

1 

f eoo (80 - 1) (go + 2) )2(1 -h) 
co; = co; --  iT(7  + 2) 

where 

(17) 

1 ( o 2,1h, 
co'~ = co~ - -  ( 1 8 )  

k g o /  

In the derivation of (16) and (17) we have used 
the equality of r parameter h in the g and 
representations of the dielectric data. In fact, it 
is easy to prove that  by the g * ~ *  trans- 
formation h does not  very. 

Substitution o f d  and d' from (15) in (5) yields 
after rearrangement: 

-- &o) (core) 1 -hsin 2 (1 - h) 
(19) 

(8 0 -t- 2) 2 q- 2(e 0 + 2) (80o + 2) (coz~)l-hcos2(1 -- h) + (8o0 + 2)2(co~'e) 2( l -h)  
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Here h refers to ~* and assumes for each mo- 
ment that h~ = he. 

Using (9) and (10), we obtain: 

h 7~ 
(0% - ego) (co%) 1 sin~-(1 - h) 

1 --  ~ 1 rc 1 -- % 

(20) 

_ _  _ . c ( a l  h) l - - 0 r  

1 -- ~o 

However ,  

1 - h  

G o + 2  

implies 

, g ~ l - h )  ~-  T ( 1 - h )  ~30 q -  2 

Go + 2  
(21) 

and 

1 - 0r 

By multiplying both numerator  and denomin-  
ator of  (20) by 

1 - ~o 

1 - ~ o  

we arrive at the fol lowing expression for 0~': 

(~o--0~oo) (~G)  1 hs in~ ( l - h )  
2 

1 + 2 (ooze) * -ncos  2 (1 - h )  + (coza) 2~ -h) 

(22) 

which is formally identical with d', assuming 
h~ = h~. 

Up to this point,  we have only considered the 
very simple equat ions of Debye and Cole-Cole .  
These equations are fol lowed only by certain 
dielectric materials. To  study the more compli- 
cated behavior  of polymers  and more  complex 
molecules we must  refer to the more sophisti- 
cated, so-called skewed arcs. 

c) Cole -Davidson  equations: [12] 
Many  dielectric relaxations are not  symmetri-  

cal, and this can be represented in terms of  the 
equat ion proposed  by Davidson and Cole: 

tO  - -  '~m 
~ * = e o o + ( l + i c o z ~ )  & w i t h 0 < f i e < l .  

(23) 

In this case, it is not  possible to construct  an 
equat ion similar to (23) for the polarizability in 
which the paramaters  0~o, 0~co, G,  and fi~ are 
closely related to the ones appearing in (23), as 
for example in (21). More  specifically, we can 
only assume that if the permittivity g* follows 
(23), the polarizability seems to fol low an equa- 
tion such as: 

0~ O - -  0{co 
cr = ~oo + (1 + icor~)~o ' (24) 

but we cannot  insure that fie = fla in general. 
In summary,  the shape of both curves seems 

to be empirically the same, but  the parameters  
characterizing both equations are not  simply 
related. Thus,  we can only t ransform the empir- 
ical results of the real permittivity e' and loss e" 
into the polarizability ~' and loss polarizability 
~" by means of  (1), and draw information from 
it about  all the parameters  appearing in (24), 
i.e., 0%, 0Go , G,  and fla. 

However ,  we have improved a method to 
estimate the frequency at which ~" and tanc5 e 
attain a maximum.  

From (1), we have 

1 + 20r 
~* - -  - -  (25)  

1 - - 0 r  ' 

and thus 

(1 + 2&) (1 - 0() - -  2 0 r  ' ' 2  

g' = (26a) (1 - 0~') 2 + 0{ n2  

3o(' 
(26b) e II 

and 

(1 - ~ , ) 2  + 0r , 

3 ~ "  

tan 6 e = (1 + 2e') (1 - 0~') - 2~ "2 ' (26c) 

where 0r and 0~" are given by: 

~' = :~oo + (:% - :~oo)(cos G ) P ~ c o s / 3 ~ G ,  
(27a) 

~" = (~0 -- 0r qSa)&sin fl~b~ , (27b) 

with 

r = arc tan co~ . 

From (26) we can calculate the frequency at 
which the max imum in d' and tan b~ appears. 
After normalizing the first derivatives of  e" and 
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t a n ~ ,  given by (26b) and (26c), to zero, we 
have: 

2(1 - c%)(% - 0%)(cos qS~) l+G 

- -  (1 - -  O{oo)2 COS ((~a(1 - -  fi~)) 

- -  (~0 - -  O~oo) 2 (COS (/~a)2fl= 

xcos{r  - fi~)} = 0 (28a) 

and 

(1  - -  0%0 ) (1 + 2~o0)cos {r - fl~)} 

+ (1 -- 4o~oo)(o% -- Izoo)(COS r l+fl~ 

-- 2(o% -- 0%0) 2 (cos (b) 2G 

x cos{~b~(1 - -  f i ~ ) }  - 0 . (28b3 

From these equations we obtain by trial ~ and, 
consequently,  c0~ and "c~ at the max imum of 8" 
and tan c~. 

Conversely, f rom (4), (5), and (6) giving ~', ~" 
and tan 6~ in terms of e' and 8 '~, we can, by an 
identical procedure,  obtain the frequencies at 
which a" and tan 6~ attain a maxinmm.  

The corresponding equations are: 

2)~cos{qS~(1 +/3~)} 
(8~ + (cos r +e~ 

+ 2(e o - eoo)(e~ + 2) 

cos{~b~(1 - fi~)} = 0 (29a) 
+ (80 - -  goo) 2 (COS q b e ) l - G  

and 

(800 
cos {qb~(1 + ,8~)} 

- 1)(Boo + 2) 
(COS r  l+fl~ 

+ (80 - 8oo) (28~ + 1) 

+ (80 - ~oo) 2 c~162 - fl~)} = o 
(COS Ce) 1 -fl= 

(29b) 

The validity of both sets of Eqs. (28) and (29) is 
only restricted by the validity of (23) in re- 
presenting dielectric and polarizability proper- 
ties of the material. 

d) Havriliak and Negami equation: [13] 
Finally, we consider the widely used empirical 
equation of  Havriliak and Negami to represent 
many relaxations in polymers and complex sys- 
tems. The equation proposed by these authors 
is a generalization of the model proposed by 

+ 

where 

Cole-Cole  and Davidson-Cole ,  i.e.: 

80 - -  8oo 
~* = e00 + (30) 

(1 + (i60~)l-h~) ~ "  

As assumed previously, 8" fits to an H - N  
skewed arc; ~* fits also, but with different para- 
meters not  easily related to the e representation. 
According to this, we have: 

~ o  - ~oo (31a) 
~* = ~oo + (1 + (icoG)l-h~) ~ ' 

0~' = ~oo + (0r 0 - -  o~oo)r-fld2 c o s  flar , (31b) 

f '  = (% - o:oo)r -G/2 sinfi~cp~ , (31c) 

r = ( l +  (6o%) 1 h~sinrCh~) 2 2  

(( cor~) 1 -h~cos (31d) 

((OT~) 1 h= C O S E h  ~ 

q~  z a r c  t a n  

1 + (60"c~)l-h~sin~-h~ 

By a procedure  identical to that in the last 
section, we have, after equalizing the first deriv- 
atives of 8" and tan b~ expressed in terms of 0( 
and f '  to zero, the following two expressions: 

- 2(1 -- ~00)(~o -- ~oo) r-G/2 c o s ~ h ~  

+ (~o - ~ 0 0 7 r - ~ c o s  /Lr - 7 h ~  

_ (o)r~)l-h~{(1 _ aoo)2 

- r - ~ ( ~ o  - a o o )  2 }  s i n f i ~ r  = 0 , 

(1 - ~ )  ( 1 +  2 ~ ) c o s  /3~r + ~ 

+ (1 -- 4eGo)(c% -- o:oo)r-&/2cos2h ~ 

~ h  

- (co~) ~ h~{(1 - ~ ) ( 1  + 2~oo) 

+ 2(c% -- 0qo);r -&} sin fl~O~ = 0 . (32b) 

(32a) 
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c 

; 

u~ ~/ Log co 

i G" *" //~IE ~'~'s n ~a 

LOa 0& 
Log c~ 

Fig. 1. Generic representations of the di- 
electric loss permittivity and loss tangent 
(r tan 5~), and of the dielectric loss polariz- 
ability and the corresponding tangent (~", 
ran 5=) as a function of the frequency. The 
frequencies at the respective four maxima 
corresponding to a Debye semicircle are: 

O3 t ~ "C~-1 

\s / 

g o + 2  

e o o + 2  

goo(% - 1)(g.0 + 2) ~,/a 
. . . . .  (0 '  e 

o0~ \%(e,o~ 1) (coo + 2) ; 

To solve these equations for qS~, we must first 
calculate ~0, aoo, fl~,, h~ and % (the last para- 
meter is the relaxation time at which cgz~ = 1, 
and not that corresponding to the maximum). 
This can be carried out by the standard proced- 
ure from ~" as a function of ~'. 

After solution by trial and error we obtain the 
frequencies at which d' and tan c~ attain 
a maximum. These can be compared to the 
frequencies at which ~" and tan 5~ reach a 
maximum. 

Examples 

In this section, we apply our results to some 
experimental data in the literature. 

a) First we consider dielectric data of 
Vn2S2/TCN Q from [8]. 

The dielectric loss permittivity and loss tangent 
permittivity are given in Fig. 2 at 7 ~ and - 10 ~ 
in a range of frequencies between 20 and 105 Hz. 
We have selected from the experimental data only 
these two curves for our purposes. The correspond- 
ing loss polarizability and loss tangent polariz- 
ability are shown in Fig. 3. In Fig. 2 we observe 
only a shoulder in the ~" curve, but c~" in Fig. 3 
shows a well separated relaxation. The ~" vs ~' 
curve exhibits (Fig. 4) behavior corresponding to a 
Cole-Cole equation; however, at lower frequencies 
we observe a new relaxation (which is observed at 
higher temperatures, separated from the main re- 
laxation). The characteristic parameters are given 
in the first row of Table 1. 

E" 
F16 

I 
+ 14 

10 12 

10 

B 

P 

1.0 
Vn2S2/TCNQ 

0.5 

o.1 
10 10 2 I0  3 10 4 10 5 

f ( H z )  

Fig. 2. Dielectric loss at 7~ (�9 and dielectric permittivity 
and tan8~ (Q) at - 10~ for Vn2S2/TCN Q complex 
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Tan 6 o 

0.20 -0.6 

-0.4 

0.15 

0.10 - 

Tan 

0.20 

0.15 

~ 0.10 

0.05 / 

VnzS2/TCNQ 
0.05 

0 J i __ i 
10 10 z 10 ~ 104 105 

f ( H z )  

Fig. 3. Dielectric polarizability c~' and loss polarizability c~" 
( �9 at 7~  and dielectric polarizability cz' and tanS~ (@) at 
- 10 ~ for Vn2S2/TCN Q complex 

0,16 - -  

(5~" 
0,14 

0,12 

030 

0,08 

0 ,06  

0,04 

0,02 

0 
0,3{) 

Vn2S2/TCNQ 

g./-, 0 0.50 050 0,70 O,gO 0.s 1,s 5 '  

Fig. 4. Cole-Cole plot for a" vs c~' for Vn2S2/TCN Q at 7 ~ A 
new relaxation peak can be seen at low {requency 

Table 1 

(a) (a) (b) (b) (b} 

T (~ % a~o f~ , ,  f~m,, e0 e~, I - h 

7 0,90 0.36 - 1.5 x 104 28 2,69 0,564 
- 1 0  0.84 0.34 1.0 x 10 a 5 ,0x 103 16,75 2,$5 0,612 

(a) f ( H z )  = co/27r 
(b) calculated from Eqs, (7a) and (Tb) 

W e  have  used  the  e q u a t i o n  

1 re 
0~ma x = ~(0~ o --  0Go ) t a n ~ ( 1  -- h) (33) 

to ca lcu la te  1 - h in the  last  c o l u m n ,  and  a s imi lar  
e q u a t i o n  to ca lcu la te  g"ax (see [ i0] ,  p. 116). 

F r o m  (16) we  ob t a in  f~ = s  - 560 Hz ,  wh ich  
is a very  r e a s o n a b l e  value.  

0'5 

0'2 

1" - 5 3 . 7 " C  

POLYDIPROPYLENE GLYCOL 
TEREPHTHALATE 

0'1 

012 i lO 

r163 
0"05 0'5 

0'04 0'4 

~o 
0'03 0'3 

No 0'02 0'2 

\ 

0'01 0'1 

[O0 f (KHz) 

Fig, 5, Real and imaginary parts of the complex dielectric 
permittivity and polarizability for polydipropylene glycol tere- 
phthalate  at 53'7~ (�9 and ~ for g' and ~", respectively, C> 
and [] for c~' and =", respectively) 



Martinez et al., Complex polarizability as used to analyze dielectric relaxation measurements 153 

Loss tangent data can be useful for testing our 
calculations. In this case it is easier to estimate the 
parameters of the relaxation. Moreover, from Fig. 
2 we may estimate the frequency at which tan c~ 
attains a maximum value ( f ~ 10 3 Hz). According 
to the values of Table 1 and by (17), we obtain 
f = 1.1 • 103 Hz for the t a n  ~emax, very close to the 
experimental value. 

b) Now- we consider a relaxation related to the 
glass-rubber transition of an amorphous polymer, 
poly-dipropylene glycol terephthalate [14]. In Fig. 5 
the real and imaginary parts of the complex permit- 
tivity at 53.7 ~ are shown. It is obvious that there 
is no question concerning f at ~max or at t a n  ~emax 
Here we intend only to improve the proposed 
method for the Havriliak-Negami equation, and to 
compare the calculated values with the experi- 
mental ones. Thus, the calculated components of 
the complex polarizability, 0( and ~" are also 
shown in Fig. 5. Characteristic values for the 
skewed arc ~" vs ~' are ~o = 0.550, aoo = 0.380, 1- 
h~ = 0.890, fie = 0.400 and ,~ = 1.324.10 -4  s. 

By trial and error, from Eq. (32a) we obtain a 
value of 1980 Hz for the frequency at the maximum 
of ~", very close to the observed value (see Fig. 5). 
The ratio of the characteristic relation time is 2.09, 
this value being the relative shift of 0r with reference 
to the ~ spectra along the frequency axis. 
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