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A new model is proposed for liquid water. It is obtained by consideration of  the 
two transitions (melting and boiling) which define the liquid phase. These transi- 
tions are discussed with the aid o f  two analogies to well-known phenomena in 
polymer physical chemistry. In analogy to the helix-coil transition in poly- 
peptides and polynucleotides, the melting of  ice is viewed as a process consisting 
essentially o f  the destruction of  the orderly interconnected small rings of  hydrogen 
bonds characteristic o f  the crystal. The fact that the breakup of  interconnected 
small rings is cooperative, even when unaccompanied by the breaking of  bonds 
which are not parts o f  rings, is clearly seen by inspection of  the theory for the 
putatively analogous helix-coil transition. The condensation of  water vapor is 
viewed in analogy to gelation in reversibly polymerizing systems, an analogy 
which interprets its cooperativity. Taken together, these interpretations o f  the 
phase transitions indicate that the liquid can be viewed as an infinitely and 
randomly branched "gel" of  (rapidly interchanging) hydrogen bonds in which 
closures o f  rings (primarily large rings) are present at random but in which there 
is no significant preference for an ordered array of  small rings. These concepts 
also lead naturally to an interpretation of  the triple point and sublimation. The 
random gel model is seen to be consistent with most of  the known properties of  
liquid water. In particular, the radial distribution function, infrared and Raman 
spectra, dielectric properties, density maximum, and properties o f  the supercooled 
region are discussed briefly here. 
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1. I N T R O D U C T I O N  

"It must be jelly, 'cause jam don't shake like that." 
anon, 

Theories of  liquids fall into two classes: (1) effects, based solely on an assumed 
intermolecular potential and the principles of  statistical mechanics, to predict 
the very existence of  the liquid state as an entity separated f rom gaseous and 
crystalline states by discontinuities (first-order phase transitions) and (2) 
"model"  theories in which at least some aspects of  supramolecular liquid 
"structure" are assumed, on the basis of  which conclusions are drawn and 
compared with experiment. Unquestionably, a convincing theory of type (1) 
is what one ultimately wants. Equally unquestionably, efforts to develop 
such a theory should be focused on substances simpler than water. 

On the other hand, the need for a theory in the case of  liquid water is 
very pressing, particularly for the discussion of many biophysical problems. 
Therefore, many type (2) theories have been presented for liquid water in the 
last half century or so. ~1) 

In the area of  theories of  type (2) it is essential not to forget that agreement 
of calculations based on any model with experimental results does not prove 
the validity of  the model; such agreement may be fortuitous, particularly if 
the number of  arbitrary parameters is large. Furthermore, disagreement of  
the theoretical conclusions with experimental results can disprove the model 
onlyifthe calculations on the model are performed without further assumptions 
or approximations, a circumstance seldom encountered. Therefore, it is 
clearly important  to explore, however qualitatively, every conclusion which 
may be drawn f rom a model and to effect comparison of theoretical con- 
clusions with every relevant experimentally determined property rather than 
merely to achieve precise comparison of such an approximate calculation 
with only one or a few experimentally observed properties. 

Among the experimental observations which model theories of  liquid 
water have tended to ignore are the two phase transitions (melting and 
boiling) which define the liquid, the very properties which the more rigorous 
type (1) theories have been at such great pains to explain. 4 There has also 
been a tendency, though not a universal one, to forget the supercooled region 
of  the liquid. 

4 It is important not to confuse the ability of model theories to predict the locations of these 
phase transitions with the ability to predict their very existence (i.e., the existence of the 
liquid). Once one assumes the existence of the liquid by postulating a specific model for it, 
one can, of course, calculate the partition function corresponding to that model and thereby 
obtain a curve displaying the temperature dependence of the (appropriate) free energy (at 
specified volume or pressure). The points where this curve crosses those for the gas and 
crystal (also calculated from specific models) are the calculated boiling and melting points, 
respectively. Unless, however, one has obtained these three free-energy curves as different 
solutions of the s a m e  general model, one cannot claim to have predicted or interpreted the 
phase transitions. 
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The present considerations represent an attempt to carve a path inter- 
mediate between the two types of theories described above. They approach 
the problem of the two phase transitions via analogies to two phenomena 
which have been widely investigated in polymer physical chemistry. Specifically 
these analogies relate a major feature of the helix-coil transition in polypeptides 
and polynucleotides to a putative corresponding feature in the melting of 
ice and relate the essential physics of reversible gelation in a three-dimensional 
polymerizing system to that of condensation of water vapor. 

We shall consider these two phase transitions in Secs. 2 and 3, respectively, 
and comment on the nature of the triple-point phenomenon in Sec. 4. In Sec. 5 
we show that the picture of liquid water that emerges from these considerations 
of the bounding phase transitions is in qualitative agreement with most of 
the known properties of the liquid itself, e.g., its radial distribution function, 
dielectric properties, infrared and Raman spectra, etc. 

2. M E L T I N G  A N D  THE A N A L O G Y  TO THE H E L I X - C O I L  
T R A N S I T I O N  

Here we approach the problem of the nature of liquid water by asking 
how it may differ from ice. Recognizing that melting is describable as a 
mathematical discontinuity, we resist any temptation to view the liquid as 
some sort of extrapolation of the crystal (however "disordered"). 

A cooperative process such as a phase transition can be described crudely, 
though essentially correctly, as one which, though difficult to start, tends to 
proceed to completion under conditions adequate to start it. Thus, ice melts 
not at all below 0~ (at 1 atm) but melts completely upon only an infinitesimal 
increase of temperature at this pressure. However, a closer look at the situation 
reveals a basic puzzle. The cooperativity is clearly in this case somehow to be 
ascribed to a process of breaking hydrogen bonds (H bonds). This coopera- 
tivity causes the process to proceed catastrophically at 0~ only up to a point-- 
a point which must be far short of the point where all H bonds are broken since 
the evidence for intact H bonds in liquid water is indisputable. Further 
catastrophic (i.e., highly cooperative) H-bond breaking must wait until 100~ 
is reached (at 1 atm). Looking at the problem of the existence of liquid water 
from the vantage point of the ice crystal, we can say that the problem is to 
explain why hydrogen-bond breaking occurs in two separate cooperative 
processes. 

The helix-coil transition displayed by polypeptides (and polynucleotides) 
is a cooperative process involving the breakage of hydrogen bonds which is 
understood. The one-dimensional character of this phenomenon has permitted 
exact evaluation of the partition function for a realistic model for the possible 
states of the whole cooperative polymer molecule. Agreement of the various, 
virtually equivalent, treatments (2, 3, 4) of this problem with experimental 
results has been excellent. It may, therefore, be instructive to take a closer 
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Fig. 1. Schematic diagram of the alpha helix. When, for example, the three hydrogen bonds 
d, e, andfbridging the residue 7 are broken, rotation is possible around the chemical bonds in 
this residue, allowing it to assume nonhelical postures. 

look at the physical interpretation implicit in the mathematical theory of 
this transition (although this "transition" is imperfectly sharp) to see if any 
clue can be obtained concerning our problem of the two-stage breaking of 
H bonds in the three-dimensional case at hand. 

In the case of  the polypeptide helix~coit transition, the basis of the co- 
operativity is easily described. (2, 3, 4) Beginning at one end of the c~-helical 
chain, let us label the sequence of hydrogen bonds, a, b, c, d and the sequence 
of  amino acids 1, 2, 3, 4, etc. (Fig. 1). Then, in this e-helical structure we see 
that H bond e closes a ring involving what would otherwise be rotatable 
C-C bonds of amino acids, 6, 7, and 8; H bondfc loses  7, 8, 9, etc. There is, 
thus, a network of interconnected rings. Focusing attention on amino acid 7, 
we see that the rotations around its C-C bonds are restricted by its involvement 
in three rings, those closed by H bonds d, e, andf. All three of the latter must be 
broken if rotation around the C-C bonds of amino acid 7 are to occur. Terms 
in the partition function involving, for example, the breakage of e alone 
among the set d, e, andfwi l l  tend to carry little weight, for they represent an 
expenditure of energy (small Boltzmann factor) in return for which no rota- 
tional entropy (no degeneracy factor) has been gained. Terms involving the 
breakage of both d and e, but only d and e, among the set c, d, e, andfwi l l  be 
even more suppressed in the partition function, for in these cases two H-bond 
energy units have been paid with no entropic return. Terms involving isolated 
breakage of an adjacent trio, e.g., breakage of d, e, a n d f w i t h  c and g intact, 
will be somewhat less suppressed, in the appropriate temperature range, 
for one amino acid rotational entropy unit (that of  amino acid 7) has been 
gained for the expenditure of the three units of H-bond energy. Once this has 
been accomplished, however, a roughly equal amount of extra entropy can 
be gained by breakage of only one more H bond, either c or g, for the breakage 
of four adjacent H bonds releases two amino acids from the ring constraints. 
Furthermore, the breakage of five adjacent H bonds releases three amino acids 
from ring restraints, six releases f o u r . . . ,  and j releases j -  2. Thus, whereas 
we have difficult "nucleation" of so-called random-coil regions, we have easy 
growth of these regions. At temperatures where any H bonds at all are broken, 
relatively long strings of  broken H bonds will tend to be formed; the mag- 
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ni tudes  (governed by  degeneracies  and Bol tzmann  factors)  of  the var ious  
terms in the pa r t i t i on  func t ion  reflect this s i tua t ion /z '  3, 4) 

W h a t  we can learn f rom this s i tua t ion  tha t  m a y  be appl icab le  in our  
th ree -d imens iona l  p rob l em is clearly tha t  the b r e a kup  o f  o rder ly  in terconnected  
small  r ings o f  in te rac t ion  carries a coopera t ive  en t rop ic  component ,  s In  the 
mel t ing of  ice we m a y  also expect  coopera t ive  en t rop ic  effects associa ted  with  
the  b reak ing  o f  o rder ly  in te rconnec ted  small  rings. I t  is thus  t empt ing  to 
pos tu la te  tha t  the b reak ing  o f  these may  be the pr inc ipa l  process  involved in 

melt ing.  This suggest ion has the vir tue of  p rov id ing  pa r t  o f  an answer  to  the 
puzzle a l luded  to  a b o v e - - t h e  incomple teness  o f  mel t ing as a process o f  b reak-  
ing H bonds  (i.e., the fact  tha t  mel t ing is not  subl imat ion) .  I t  po r t r ays  mel t ing 
as a coopera t ive  process  o f  b reak ing  ordered  small  r ings which, t hough  it 
may  go to comple t ion  as a p rope r  coopera t ive  process  should,  does no t  
require  the b reak ing  of  all the H bonds ;  highly b ranched  s t ructure  (conta in ing 
r ing closures at  r a n d o m  6) persists and  const i tutes  the l iquid phase.  7 

To make  the ana logy  with  the helix-coil  s i tua t ion  more  t rac table ,  we 
out l ine  here ano the r  way o f  represent ing it. A l t h o u g h  we do not  pursue  here 
the  quant i ta t ive  results  a l ready  ob ta ined  by the more  comple te  methods ,  (z' 3, 4) 

we do demons t r a t e  the existence o f  the " t r ans i t i on , "  this being our  cur rent  
p r inc ipa l  concern.  Before p roceed ing  with this, however,  we note  tha t  two 
quest ions  are posed  by the pos tu la te  we are now pursu ing:  (1) W o u l d  hydrogen  
bonds  which are not  par t s  o f  small  r ings indeed persist  above  a t empera tu re  
high enough (0~ at  1 a tm)  to  b reak  o rder ly  in te rconnec ted  small  r ings ? (2) 
I f  they do persis t  at  h igher  tempera tures ,  would  their  u l t imate  b r e a kup  also be 

5 Consideration of the polynucleotide helix-coil transition yields somewhat similar conclu- 
sions. Using the familiar analogy between the DNA double helix and a (twisted) ladder, 
we see that each pair of adjacent (base pair) "rungs" of the ladder forms, in conjunction 
with the two included (ribosephosphate) side rails, a small closed ring, when both adjacent 
potential base pairs are paired through the Watson-Crick H bonds. The breakup of these 
H bonds on heating involves a cooperativity which is partly entropic in origin. Thus, in 
addition to an energetic cooperativity associated with the breaking of "stacking" inter- 
actions, there is an entropic cooperativity associated with the fact that, as originally pointed 
out by Stockmayer and Jacobson, [H. Jacobson and W. H. Stockmayer, J. Chem. Phys. 
18, 1607 (1950)], the rotational entropy of a ring increases much faster than linearly with 
the size of the ring. When a base pair originally at the interface of helical and randomly 
looped regions rotates out of the helical posture, it increases the size of the loop on its 
"random-loop" side by joining the latter. The larger the latter was originally, the more 
entropy it gains by the accretion of the new base pair. Thus, we have another cooperative 
effect associated with the breakup of H bonds in rings. 

6 The random coil "phase" of polypeptides (and polynucleotides) certainly involves con- 
figurations possessing ring closures as well as pure chain configurations. It is only the 
ordered array of small rings characteristic of the a-helix that is lost on the transition from 
helix to random coil. 

7 The fact that the liquid state is characterized in any instant by essentially one cluster, or 
'tnetwork," will be seen below via the gelation analogy to condensation. 
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Fig. 2. The entropy S per site is built up quadratically as the bonds 
holding that site fixed are broken. In ref. 2, the entropy per site 
is zero until q = 3 where it takes its maximum value (step function). 

cooperative (vaporizat ion)? These questions, taken in the inverse order, are 
the subjects o f  the next two sections, The reader whose interest lies primarily 
in our  qualitative considerations may  wish to pass directly to them. 

The main difference between the formulat ion o f  helix "mel t ing"  to be 
presented now and the familiar ones (z, a, 4) outlined above is that, whereas in 
the previous treatments no entropy is assumed to be gained until all three o f  the 
bonds capable o f  fixing an amino acid (site) are broken,  in the t reatment  
considered below the entropy per site is assumed to be built up progressively 
(quadratically) as these bonds  are broken (see Fig. 2). The contribution,  to 
the configurational part i t ion function, of  an amino acid for which q o f  these 
bonds (0 < q < 3) are broken is then 

exp - f lu(q) = Z q2 exp -flqe = exp -flq(e - fl-1 lnZ q) (1) 

where in Z ~2 is the entropy associated with an amino acid when q o f  the bonds 
restricting it are broken,  fl-1 = kT, and e is one-third o f  the energy associated 
with a broken H bond. The configurational part i t ion function for a helix with 
N a m i n o  acid sites is now written as 

' 

where nq is the number  of  sites with q broken bonds and g({n}) is the number  
o f  linear arrangements of  bonds for a given set {n} with the restriction z ~nq=  N. 

In the spirit of  Ising-model calculations we assign a number  a~, i to each 
pair i of  fourth-neighbor amino acids which enclose site e and specify that  
a~, l = 0 for  an intact H bond and a~, i = - 1  for  a broken H bond at c~, i. The 
number  o f  broken H bonds in any configuration is then given by 

R = - ~ =Z a , . ,  (3) 
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where the sum over i goes from 1 to 3, and the sum over c~ from 1 to N. Using 
Eq. (1) we can write 

3 3 3 
u(q)nq = e ~ qn~-~ -1  lnZ ~ qZnq (4) 

q =o q=o q=o 

By defining the new variable s,, i = 2~r,, i + 1, so that s~, i = 1 if there is an 
intact H bond at c~, i and s=. ~ = -1  if there is not, we find 

3 
q n q = -  ~ r { N - � 8 9  ~ s=,, (5) 

q=0 ~, I ~, i 

and 

3 

q=0 at, I :~, i < j  

= 3 N - z ~ Z s = , , + � 8 9  ~ s=,,s,,j (6) 
el, i ~ , l < j  

Equation (6) is obtained by enumeration. Using Eqs. (4-6), we can rewrite 
the configurational partition function Eq. (2) as 

lnZ 
QN = exp -[~flNe -- 3NlnZ] ~ exp (.}fie - 2alnZ) =.~ s=., + 

= , t < j  

S=, l S=, J t  
/ 

(7) 

Equation (7) has the well-known form of the partition function for the 
Ising model. (s) In the one-dimensional case, the "transition" which it displays 
is not'perfectly sharp (except in the limit In Z -+ oo and fe  -+ oo). 

On generalizing Eq. (7), obtained for the one-dimensional problem 
(helix-coil "transition"), to the corresponding three-dimensional problem 
(melting of ice), we would expect a sharp transition temperature, in accordance 
with familiar experience with this equation in its application to other Ising 
problems. Such a generalization is not, however, straightforward. The co- 
operativity that we have suggested above for the ice-melting process is one 
between hydrogen bonds which when intact are responsible for small ring 
closures and when broken provide the system with a configurational entropy 
gain. The form of this proposed cooperativity in the three-dimensional 
case remains an unresolved question. If we assume, for example, that it is 
principally the six-membered ring pattern in ice that is destroyed upon melting, 
then we may assume that the contribution to the partition function due to the 
entropic cooperativity retains the essential features of the aforementioned 
one-dimensional problem. We can then assign a contribution to the partition 
function analogous to Eq. (1) to each molecule for which q of the six-membered 
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rings in which it might be restrained are broken. A formulation similar to the 
one presented above would then lead to a three-dimensional Ising model 
which would exhibit a transition from a state of  many six-membered rings 
to one containing only very few. I t  is important  to note that in this transition 
the (fractional) change in the total number of  H bonds is actually rather small. 
The key point is the distinction between the breaking of ring-closing H bonds, 
with which a large entropy increase is associated, and the breaking of others, 
with which a smaller entropy increase is associated if the pressure is high 
enough (see Sec. 4). We identify this ring-breaking transition with melting. 8 

3. L I Q U I D - V A P O R  E Q U I L I B R I U M  A N D  THE A N A L O G Y  OF 
GELATION 

The next question that we are faced with is whether  the breakup of a 
randomly branched structure can also be cooperative. This question is best 
considered from the viewpoint of  its inverse, that of the formation of such 
structure. Looked at this way, the question immediately elicits an affirmative 
answer, for it is well known that a branching system can display a discon- 
tinuity. Nuclear-fission bombs and explosive gaseous chemical reactions 
are particularly well-known examples of  branching systems which display such 
discontinuities (in time). In the case of  branching processes in space, a par- 
ticularly good example of a discontinuity is the gel point displayed in the 
"three-dimensional" polymerization of polyfunctional monomers.  

The close analogy between the Flory-Stockmayer theory (6, 7) of gelation 
and the Mayer (s~ cluster theory of vapor-l iquid equilibria was pointed out by 
Stockmayer long ago - - and  apparently overlooked by all except Scatchard 
et al. (9) and Gordon et al. (9~ who discussed (respectively) the vapor pressures 
of HzO2-H20 mixtures and the liquid miscibility of H20-benzene mixtures. 
For an H-bonded condensing system, the analogy to gelation should be 
particularly close because the discrete character of  the propensity of  (for 
example) a water molecule to form H bonds (up to four of them) exactly 
parallels the integer-value property of the number of chemical bonds emanating 
from any polyfunctional unit in chemical polymerization. 

We show here that the Flory-Stockmayer (FS) statistical theory of 
gelation can be transcribed into a statistical-mechanical theory of condensa- 
tion for systems with large directional forces such as H-bonding systems. 
The independent variable in the FS theory is the extent of reaction e. In our 
case the analogous quantity is the fraction of OH groups (or lone pairs of 
electrons) in the whole system which are participating in H bonds. In the case 

a It is interesting to note that Perram and Levine [Mol. Phys. 21,701 (1971)], using a tetra- 
hedral lattice model for water and a cooperativity of bond formation of  mathematical 
form similar to that in Eq. (l) but with no distinction between bonds involved in rings and 
bonds which are not, obtained a transition from a state of many bonds to one containing 
very few. They associated their transition with a liquid-vapor transition, but it could 
equally be associated with a solid-vapor transition. 
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o f  reversible condensa t ion ,  we need in effect to relate  this quan t i ty  to  a pa i r  of  
thermodynamic ,  var iables  such as t empera tu re  and volume (or pressure).  

We  cons ider  a system of  N e l e m e n t a r y  units (e.g., water  molecules)  which 
can b o n d  toge ther  to fo rm po lymer ic  complexes  ( including u n b o n d e d  m o n o -  
mers) and  let  m~ be the number  o f  n-mer  complexes  (1 < n -<< N). The  m,, are 
re la ted  to the to ta l  number  o f  molecules  by 

N = ~ n m .  (8) 

and  to the number  of  complexes  by 

M = ~ m,  (9) 

The ma jo r  a s sumpt ion  of  the FS theory  o f  gela t ion is tha t  r ing fo rma t ion  
can be ignored.  We shall  see tha t  this is a p o o r  a p p r o x i m a t i o n  for  discussion 
o f  p roper t ies  of  the l iquid (the gel in FS theory).  I t  does not,  however,  prevent  

the  theory  f rom disp lay ing  the essential  features  of  the so l -ge l  (vapor - l iqu id )  
t rans i t ion .  Since our  pu rpose  is to show tha t  the fo rma t ion  (or  b reakup)  o f  
b ranched  s t ructures  is coopera t ive  by  itself, this a pp rox ima t ion  serves our  
needs. I f  there  are no rings, each n-mer  contains  n - 1  hydrogen  bonds ,  and  
the po ten t ia l  energy a t t r ibu tab le  to  hydrogen  bonds  is then  

VaB({m.}) = --8 ~ (n -- 1)m. = - e ( N -  M ) =  - e ( z N a / 2 )  (10) 

where e is the b ind ing  energy o f  an H bond  and  z is the " func t iona l i ty"  of  

the m o n o m e r  units (4 for  water) .  
F o r  a given value o f  N, the number  of  ways tha t  ml  monomers ,  mz 

d i m e r s , . . . ,  and  m.  n-mers can be fo rmed  is ~) 

f2N({m,}) = N!17  ( w . / n ! ) " . ( l / m . ! )  (11) 

where w. is the number  o f  ways in which n units may  form an n-mer  wi thout  
r ing  format ion .  The quan t i ty  w. is given by (7' 9, ao) 

w .  = z"  (zn - n ) ! / ( zn  - 2n + 2)! (12) 

9 Strictly speaking, this Stockmayer formula for w, requires modification to account for 
the indistinguishability of the two OH groups and of the two lone pairs of electrons in 
each of the water molecules which serve as the units in our case. Appropriate numerical 
modification has been provided by H. Porosoff51~ The modification does not affect the 
qualitative results of this section. 

~o This Stockmayer formula for w, specifies ways of connecting n monomer units to make an 
n-met. Multiplicity associated with the possibility that each such topologically distinct 
species may possess a variety of different conformations is not included in w.. Since our 
use below of the DiMarzio-Gibbs (lz) modification of the Flory-Huggins az) procedure 
for counting configurations of nonintersecting polymers on a lattice also ignores this 
possibility, we are assuming here that each topologically distinct n-mer possesses only one 
conformation around which it may, however;vibrate internally (see footnote 18). Electro- 
static calculations by Porosoff (1~ and Ben-Naim and Stillinger (see footnote 15) suggest 
that the potential governing internal rotation around a hydrogen bond possesses one 
broad minimum at the symmetrical-eclipsed orientation and one broad maximum. 
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I f  we were to consider  only the hyd rogen -bond ing  con t r ibu t ion  to the 
po ten t ia l  energy, then, using (10), (11), and  (12), we would  ob ta in  a pa r t i t ion  
funct ion  o f  the fo rm 

Q/N!  = (v/2a) N ~ (V/v)  M [ON({m,})/U!] exp [--flVHs({m.})] (13) 
(m.} 

where V is the volume o f  the system and 2 = (]3h2/2rnrr) I/2 is the thermal  
wavelength o f  the molecules.  (The inclusion of  ,~ assures tha t  the kinet ic  
energy is always -~ k T p e r  molecule.)  The  quant i ty  v is a measure  o f  the  vo lume 
of  the  a t t rac t ive  pa r t  of  the  potent ia l  energy. Using  Eq. (13), we would  find, 
no t  unsurpr is ingly ,  tha t  the system undergoes  a collapse. The collapse occurs 
when the extent  o f  H bond ing  is precisely the same as the cri t ical  extent  of  
reac t ion  which character izes  the gel po in t  o f  the FS theory.  The source of  this 
col lapse is easily seen. We have to ta l ly  neglected the effects o f  the hard-core  
repuls ion  of  two molecules  which a p p r o a c h  one another  too  closely. I t  is 
well known tha t  a s imilar  col lapse occurs i f  the repulsive te rm in the van der  
Waa l s  equa t ion  is omit ted.  Indeed  the v a p o r - l i q u i d  phase t rans i t ion  (with 
its a ccompany ing  cri t ical  poin t )  is p rope r ly  viewed as a consequence of  the  
in te rp lay  of  a t t rac t ive  and repulsive forces. Therefore ,  we mus t  i nco rpora t e  
the effects o f  repuls ions  in to  our  analysis.  

Lat t ice models  ~11, 12)11 have p roven  to be ext remely  useful in the t reat-  

ment  of  repuls ions in condens ing  systems. In  par t icu lar ,  the  use of  a lat t ice 
mode l  al lows us to  util ize the  F l o r y - H u g g i n s  p rocedure  (12) in calcula t ing the 
number  o f  ways o f  p lac ing  po lymers  on a lat t ice wi thout  a l lowing them to 
intersect.  F o r  each d i s t r ibu t ion  o f  Eq. (11), the number  o f  ways o f  p lac ing  
tha t  d i s t r ibu t ion  on the lat t ice is (12) 

P(Uo, {m,}) = [No ! lUg(No - U)! l  {[No z(z  - 1)lM/z ml (z - 1) "1 +m2} 

= [1/(1 -- N/No)  s~ n [ A ,  No z(z - 1)e-"]"" (14) 

11 Perhaps the best way of introducing lattice models of fluids is through the cell-hole theory 
(CHT) [see T. Hill, Statistical Mechanics (McGraw-Hill Book Co., Inc., New York, 
1956) Chaps. 7 and 8]. In CHT the partition function has the form 

N 
Q/N! - (1/,~ 3N) ~ config, e - I INAAu(a)  ~ I  v i  

/=t 
where Nan is the number of nearest-neighbor pairs and the sum is over all possible con- 
figurations of, N molecules on a lattice of No sites with multiple occupation excluded. 
The term u(a) is the value of the intermolecular potential evaluated at the nearest-neighbor 
distance, and vi is the "free volume" of particle i in the configuration. 

In the usual treatment of CHT a combinatorial factor F(No, {n j}) is introduced, and 
the sum is taken over all possible distributions of molecules {n j} with j nearest-neighbor 
vacant cells. In terms of our polymer variables, with neglect of rings and with identification 
of Nan as the number of hydrogen-bonded neighbors, we write Nan = N - M  and 
u(a) = -e. Thus, setting vi = vc (the volume of the unit cell) we can write Q as 

Q/N] = (vc/23) s ~'  F(No, {m,)) I-I [expfle(n - 1)] m" 
( m,} n 

where the primed sum is taken over all sets of m, which satisfy equation (8). We then 
obtain equation (15) by setting F =  ~P]N! 
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where the second line is obtained with Stirling's approximation and with 
AI = [z(z - 1)] -a, Az = (z - 1) -1, and Aa = 1 for i ~> 3. 

We can thus write the partition function, including effects of  repulsions, 
as 

Q/N!  = (vj23)u(1 - N/No) u-s~ ~ H(1/m.!)  [ I /n0 
{rn.) 

• A ,  Noz ( z  - 1)w, e-"+e"("-~)] "" (15) 

where vc is the volume of the unit cell. The sum in Eq. (15) may be approximated 
by its maximum term, for which m, is given by 

~ ,  = No[A. z(z  - 1)w./n !] e -~"+o~"-l) (16) 

where 7 is a Lagrange multiplier determined bY the restriction that Eq. (8) be 

satisfied. 
Stockmayer was able to evaluate sums of the general form of Z rfi, and 

Z nrfi, in terms of the variable ~. In our case 7 can be expressed in terms of ~, 
and then the second sum essentially gives the density (p = N/No) as a function 
of~  and T. 12 This equation can be inverted to give ~ (and hence 7) as a function 
of p and T. We obtain an equation of state by differentiating the free energy 
A [i.e., - k T l n ( Q / N ! ) ]  with respect to the volume. This straightforward but 

tedious calculation gives 

,SPvc=- ln (1  - P ) - P + P u  (17) 

where PM = (1/No) X r~, is given by a complicated function o f p  and T. 
Equation (17) can also be obtained from a grand canonical ensemble via 

the method of steepest descent. 
Equation (17) possesses a coexistence (i.e., phase transition) curve and 

a critical point; the coexisting phases are a high-density phase (liquid) and 
a low-density phase (vapor) which correspond, respectively, to high (gel) and 
low (sol) number of  hydrogen-bonded pairs. This is the major result of this 
section. 

Several further comments are in order. Equation (17) cannot be very 
accurate. I t  does not yield the correct behavior either at moderately low 
densities or in the weak coupling (small Be) limit. This defect can be remedied 
by replacing 13 e#" by e#" - 1. A more serious defect is that, as a result of  the 
total neglect of  rings, the equation of state (17) cannot represent the high- 
density (i.e., liquid) region. 

12 We have used A, = 1 for all n in our calculations. The correct values of Ax and A2 should 
contribute importantly only at densities much smaller than the critical density. 

13 Recently, we have found that this replacement arises naturally out of careful consideration 
of the role of kinetic (as well as potential) energy in the definition of a cluster bond. 
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These considerations have nevertheless served our purpose of demon- 
strating that the breakup of a branched structure is both cooperative and 
qualitatively consistent with the properties of the liquid-vapor transition. 
It should be particularly noted that, according to this analysis of condensation 
via gelation theory, the liquid, at any instant, is indeed essentially one branched 
structure. 

4. F U R T H E R  C O M M E N T S  ON THE PHASE T R A N S I T I O N S  

The analogies noted to polymer phenomena suggest that our gel picture 
for liquid water is capable of accounting for the existence of the two phase 
transitions (melting and boiling). The arguments presented in Secs. 2 and 3 
suggest that the essence of melting lies in the disruption of small, orderly 
interconnected rings of hydrogen bonds and that the essence of boiling lies 
in the breakup of an extensively branched random network. It has been shown 
that each of these processes, taken by itself, is cooperative. It remains to be 
argued that these processes do indeed occur separately under appropriate 
conditions. 

Now it is only when the total volume into which partially depolymerized 
fragments can escape is large (low-pressure conditions) that the breakup of 
random branching yields as much entropy as does the opening of small 
rings, for it is only in this case (sublimation) that the increase in translational 
entropy associated with the breakage of non-ring-closing bonds is comparable 
to or greater than the increase in internal rotational (and librational) entropy 
associated with the openings of rings. Under higher pressures the first co- 
operative process encountered on heating ice (identified with melting) will 
not include the breaking of bonds which are not parts of rings since the 
translational entropy which might be gained on breaking such bonds would be 
less than that gained on ring opening (whereas the energy changes associated 
with these two types of breakage should be nearly the same). The triple point 
occurs at an intermediate pressure at which the entropy gained on opening 
small rings is comparable to that gained on breaking non-ring-closing bonds. 

The principal process which occurs as the liquid is heated or cooled 
between 0 and 100~ (at 1 atm) must be the alteration of the number and 
nature of closed rings. Looking at the liquid from either the vantage point 
of fusion or that of condensation leads to this conclusion. 

From the viewpoint of condensation we can see that, even if we can 
ignore ring formation in the interpretation of the essence of the vapor-liquid 
transition, we cannot avoid it in the interpretation of what occurs on further 
cooling in the pure-liquid range, for not many more interconnections (H 
bonds) are possible in the gel (liquid) without ring closure. Therefore, unless 
we insist on completing our model of the liquid in a fashion which will yield a 
heat capacity for the liquid that is much too small, we see that we cannot 
ignore ring closure. If, on the other hand, we do not insist on ignoring ring 
closure during condensation, we come to the same conclusion, for it is still 
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true that all the sol (vapor) will not have been converted to gel (liquid) until 
the capacity to form H bonds which do not close rings has been saturated. 
When all the vapor has been condensed, the only types of potential H bonds 
which remain to be formed on further cooling in the pure liquid are ring- 
closing ones, the formation of which must therefore be primarily responsible 
for the large heat capacity of the liquid. 

From the viewpoint of fusion, a similar conclusion can be reached. Even 
if we suppose that fusion involves essentially no net breakage of non-ring- 
closing bonds (as suggested by our discussion of fusion above and demanded 
by our liquid-gel analogy drawn from consideration of condensation), we 
are faced with the conclusion that, unless the liquid at the melting point 
contains ring closures, the maximum average H-bonded coordination number 
cannot exceed 2, ~4 so that at least half of the H bonds would have to have been 
broken on melting. The supposition that such a large fraction of the H bonds 
of ice are broken on melting yields a heat of fusion significantly larger than 
that observed, unless the H-bond energy is chosen as unreasonably less than 
the "spectroscopic value" of about 2.6 kcal-mole -~. Allowance for loops in 
the randomly branched network removes this difficulty and should certainly 
permit good fits to the known heats of fusion and vaporization with a reason- 
able choice for the hydrogen-bond energy. 

5. P R O P E R T I E S  OF L I Q U I D  W A T E R  IN V I E W  OF P R O P O S E D  
M O D E L  

5.1. Radial  D is t r ibut ion  Funct ion 

The radial distribution function indicates that an average oxygen atom 
in liquid water has between four and five nearest-neighboring oxygen atoms 
between 2.8 and 2.9 A away, next-nearest neighbors predominantly between 
4.3 and 5.2 A_ away, and some small excess density of neighbors between 
6.2 and 7.5 A away. Now, an infinitely long linear chain structure composed 
of water molecules H-bonded together with H-bond lengths of 2.85 A and 
angles between adjacent H bonds of cos -~ (-~), i.e., the tetrahedral angle, 
provides each water molecule with two nearest neighbors 2.85 A away and 
two next-nearest neighbors 4.7 A away. If, as calculations of the electrostatic 
interaction between H-bonded water molecules suggest, (1~ the symmetrical 
eclipsed configuration 15 with respect to rotation around H bonds is significantly 

~4 This is true for branched chains lacking ring closures as well as for linear chains. 
is This configuration is defined as follows. Consider the partial plane which is bounded on 

one edge by a line drawn through the O-H---O axis of the hydrogen bond in question and 
within which lies the off-axis OH bond of the water molecule which is the proton donor 
in this H bond. Consider also the partial plane which is bounded by the same hydrogen- 
bond axis and within which lies the bisector of the two off-axis OH bonds of the water 
molecule which is the electron pair donor to the H bond. In the symmetrical-eclipsed 
configuration the dihedral angle between these two partial planes is 180 ~ See A. Ben-Naim 
and F. Stillinger, in Water and Aqueous Solutions, R. A. Home, ed. (Wiley-Interscience, 
New York, 1972), p. 295. 
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preferred, there will also be an excess population density centered about 
6.8 A away. 

The additional two to three nearest neighbors at distance between 2.8 
and 2.9 A cannot be fully accounted for as H-bonded nearest neighbors even 
with allowance for a reasonably large number of closed rings to increase the 
average H-bonded coordination number, for the total number of nearest 
neighbors in the 2.8-2.9 A. range (ca. 4.5) exceeds even that in ice. However, 
the mean separation of  two non-H-bonded near-neighboring oxygen atoms 
is also expected to fall between 2.8 and 2.9 ,~ since the van der Waals radius 
of an oxygen atom is ca. 1.4-1.5 A. (Indeed, in the structure of ice-VIII there 
are eight nearest neighbors at a distance of 2.86 A, only four of which are 
H-bonded to the central molecule.) The fact that this coincidence has been 
ignored has apparently been responsible for the often-made assumption that 
virtually all water molecules must be in ice-like environments. The random 
network or "gel" model to which we have been led in the preceding discussion 
is consistent with the radial distribution function, and there is no need for 
further structural assumptions. 

5.2. Infrared and Raman Spectra  

Possibly the most discussed feature in the infrared and Raman spectra 
of liquid water, studied as a function of temperature, is the appearance of 
isosbestic points in several groups of absorption bands associated with proton 
motions. (13) We accept the point of view that these points provide strong 
evidence that the OH groups in liquid water exist in effectively two discrete 
states in mutual equilibrium and that these states are related to the presence 
of broken and intact hydrogen bonds. 

Several facts have emerged from the spectral investigations of isosbestic 
points in water :(13' 14) 

(a) The fraction of water molecules not involved in hydrogen bonding 
(i.e., monomeric water) is probably less than 1 ~ and can be ignored. 

(b) The fraction of molecules having no more than one OH group involved 
in a hydrogen bond increases with increasing temperature. 

(c) At tow temperature the spectrum of liquid water bears some resem- 
blance to that of ice. 

These facts are not inconsistent with the model proposed here. In con- 
sideration of fact (c), one must recognize that infrared and Raman spectra 
are not particularly sensitive to the finer details of structure. This observation 
is supported by the very close similarity of the spectra of linear and branched 
hydrocarbons and those of polyethylenes with varying degrees of crosslinking. 
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5.3. S ta t ic  D ie lec t r ic  C o n s t a n t  and D ie lec t r ic  Relaxat ion T ime  

The dielectric constant of water is unusual not only in the largeness of 
its static value but also in the narrowness of its dispersion, which behaves 
like that of a single mode of motion. With regard to the former, we limit 
our remarks here to the qualitative observation that the random gel model 
provides the local correlations between angular coordinates of molecules 
which, according to the theory of Kirkwood, (15~ are requisite to a large 
dielectric constant. If  most of the correlations that are lost on melting are 
those associated with small ring s , the dielectric constant would not be expected 
to change dramatically on melting, since dipole-moment vectors in rings tend 
to cancel out. 

With Haggis et  al. (~6~ and in conformity with the accepted mechanism 
for dielectric relaxation in ice, (17~ we attribute the single dielectric relaxation 
time in water to a mode of motion in which doubly hydrogen-bonded mole- 
cules (Bjerrum " D L  fault" pair in the case of  ice) reorient via rotation around 
one hydrogen bond with requisite breakage of the other. In the gel model the 
equilibrium population of doubly hydrogen-bonded molecules cannot be 
negligible. The energy of activation for such a mode of motion should be 
approximately the energy of one hydrogen bond, i.e., ca. 3 kcal-mole -1. 
Curvature in the experimentally observed Arrhenius plot somewhat obscures 
simple analysis, but the value of 3 kcal-mole -1 is cited by Haggis et  al. as 
yielding rough correspondence with the relaxation time and its temperature 
dependence. 

We must now ask why molecules which are singly, triply, or quadruply 
hydrogen-bonded to the rest of the gel network do not give rise to observed 
relaxations. The spinning, around its single H bond, of a singly H-bonded 
molecule should be associated with infrared frequencies. Indeed, the value 
of the dielectric constant (ca. 5) on the high-frequency side of the relaxation at 
10 -t~ sec (which we have attributed to doubly H-bonded molecules) is still 
significantly larger than the square of the refractive index measured at optical 
frequencies, indicating the presence of another dispersion somewhere in the 
infrared region. 

The triply and quadruply H-bonded molecules fail to yield observable 
dispersions for another reason. In these cases the frequencies of relaxation 
would certainly fall in the range of dielectric measurements, but the intensities 
associated with these relaxations would be small. In the case of a triply bonded 
molecule, relaxation by rotation around one H bond requires the breakage 
of the other two and a consequent activation energy of at least 6 kcal-mole -t ,  
which yields a relaxation time about 100 times larger than that required for 
the relaxation of a doubly bonded molecule. Long before an appreciable 
fraction of this longer time has expired, the three branches defining a particular 
molecule as triply H-bonded will have been snipped away by the relaxation of 
doubly H-bonded molecules: A triply H-bonded unit does not remain triply 
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bonded long enough to relax as a triply bonded unit. The same argument 
applies afort ior i  to the relaxation of quadruply H-bonded molecules, which 
would be slower than that of  doubly H-bonded molecules by a factor at least 
104".16 

5.4. The Density Maximum at 4~ 

The conventional interpretation of  the shrinkage of molar volume between 
0 ~ and 4~ at 1 arm attributes this to a decrease in the number of  tetrahedrally 
coordinated water molecules, to each of  which an abnormally large molecular 
volume is attributed. The interpretation of this abnormally large molecular 
volume of 4-coordinated units need not be sought in the peculiarities of  any 
particular tetrahedral lattice as a whole; it can be expressed in the idea that, 
if four molecules are located in four very special positions around a central 
one it may be ditficult for as many others (not H-bonded to the central one) to 
get as close to the central one as they could if all were free to accommodate 
themselves to the best geometry for a coordination number higher than 4. 
Thus if would seem to make little difference for the interpretation of the 
volume-temperature behavior whether these tetrahedrally H-bonded water 
molecules are presumed to exist together in ice-like structures or presumed to 
occur at random in a gel-like structure of  the type we are proposing here. 

One should note that the process which gives rise to this contractile 
component  on heating is not restricted to a narrow range of temperatures 
(such as 0-4~ but rather exists over a wide range extending from tow tempera- 
tures in the supercooled liquid to ca. 30~ That  this is true can be seen by 
subtracting from the total curve of volume vs temperature the monotonically 
increasing curve which one may expect to arise from increasing amplitudes of  
vibration of  molecules in any fixed configuration, i.e., the thermal expansion 
one sees in a glassy or crystalline state. When the latter is subtracted, the 
remainder of  the V - T  behavior, attributable to configurational changes in 
the liquid, exhibits a (broad) minimum not at 4~ but rather at about 30~ 

5.5. The Supercooled Region and the Glassy State 
The speed of  the relaxation mechanism in liquid water, discussed above, 

facilitates nucleation of ice crystals and, in practice, prevents extensive 
supercooling. Nevertheless the properties of  the metastabte supercooled 

16 It might be thought that this argument leads to the conclusion that the dielectric relaxation 
time in ice ought to be only 104 times longer than that in water, as compared with the factor 
106 actually observed. However, the effect of the rotation in ice is to convert a molecule 
which originally participated in four H bonds into one which participates in two H bonds 
and two high-energy faults (Bjerrum D and L faults), which may then be expected to 
travel apart via rotation of the molecules forming the other halves of the faults. This 
situation has been discussed by others [N. Bjerrum ~1~) and L. Onsager and M. Dupuis, 
Electrolytes, B. Pesee, ed. (Pergamon Press, London, 1952)] and need not be pursued 
further here. 
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liquid, even in the range where they are not directly observable in practice, 
need to be confronted by any theory. 

In the cases of liquids which can be extensively supercooled, a transforma- 
tion to a glassy phase is normally observed. If extensive supercooling could be 
achieved in the case of liquid water, a transition to glassy water would pre- 
sumably be observed. Support for this point of view is provided by the success- 
ful production of amorphous water by a vapor-deposition technique. (18) 

In and below the temperature region of the glass transition, not even 
internal metastable equilibrium can be attained in a liquid in reasonable 
times. Nevertheless, even the hypothetical thermodynamic properties, 
estimable by extrapolation below the glass transition of equilibrium data 
obtained above it, are of first importance. 

Such extrapolations (tg) show clearly that the ultimate fate of the meta- 
stable equilibrium liquid on extensive cooling is not continuous conversion 
to the crystal. They show that the liquid, sufficiently supercooled, will have lost 
all its excess (as compared to the crystal) entropy at a temperature (well 
above absolute zero) where its energy is still much larger than that of the crystal. 
That this temperature represents some sort of ground state (which may be 
highly degenerate per mole and still yield a negligible entropy) for the amor- 
phous phase was recognized by Gibbs, (2~ who used this recognition as the 
basis of a theory for equilibrium properties of polymers. His postulate of an 
empirical correlation between this reference temperature, where the configura- 
tional entropy is essentially zero, and the glass temperature, where the relaxa- 
tion time becomes longer than the duration of an experiment (a reasonably 
well-defined temperature in spite of variations in the *durations of experi- 
ments because the relaxation time is a rapidly varying function of temperature 
in this range), was developed by Gibbs and DiMarzio. (~~ This latter correla- 
tion was provided with an interpretation by Adam and Gibbs (21) who 
succeeded in showing a way in which configurational entropy, in a temperature 
region in which it is in short supply, can be the predominant factor in the 
determination of relaxation times. 

The success of this body of theory in accounting for the influence of mol- 
ecular weight, composition (in the case of copolymers), concentration (in the 
case of "plasticized" polymers), crosslinking, etc., on the glass transition and, 
indeed, in accounting for the fact that the glass transition (~/kinetic property) 
always fails below the melting point (a thermodynamic property), as well 
as in accounting for the quantitative nature of the variation in relaxation 
time on the approach to the glass transition (the so-called WLF equation), 
indicates that its implications concerning the nature of glass-forming liquids 
other than polymers should also not be ignored. The theory ascribes the dearth 
of configurational entropy and consequent glassification to the absence of 
spherical molecular symmetry in glass-forming liquids. In cases where this 
asymmetry is particularly marked, as in linear or branched polymers, the 
glass-transition temperature is found, both theoretically and experimentally, 
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to be high (ca. 300 + 100~ for many noncrosslinked polymers). 17 In the case 
of a liquid composed of small molecules with a propensity to form a hydrogen- 
bonded network, it should be moderately high, as is the case for glycerol and 
(putatively) water. 

6. S U M M A R Y  A N D  C O N C L U S I O N S  

The considerations of  Secs. 2-4 have provided an interpretation of the 
phase transitions which distinguish liquid water from ice and water vapor 
and have thereby provided the essence of a physical model for liquid water. 
The possibility that the model thus obtained can account for the "peculiar" 
properties of water within the liquid range has been discussed briefly in 
Sec. 5, where it is seen that, if difficulties are eventually to emerge, they are not 
so obvious as to be recognizable at this time. 

In this article the problems posed by the two phase transitions have been 
neither formulated in totally satisfactory ways nor analyzed completely. The 
effects of  intracluster vibrations, for example, are yet to be considered. 18 
It  would be most surprising, however, if the two-transition feature were to be 
lost upon more careful treatment of  the basic concepts introduced here. 
Inasmuch as the problem of accounting for two transitions (let alone one !) is 
of  long standing, these concepts merit further examination, both with regard 
to the phase transitions and with regard to the nature and properties of  liquid 
water. 

The model for the liquid which our considerations of, the phase transitions 
strongly suggest is that of  a random (constantly rearranging) gel. The term 
"gel" is intended to convey the concept that, at any instant (time interval 
<10 -11 sec for water), the liquid consists essentially o f  a cluster (hydrogen- 
bonded in this case) of macroscopic size, in analogy to this use of the term in 
polymer physical chemistry (where the bonds are chemical and more per- 
sistent). 

This model is Consistent with that indicated by the computer-simulated 
molecular dynamics effected by Rahman and Stillinger. ~2z~ On inspecting 
pictorial representations of their results, one is unable to identify an appreci- 
able number of  small ring closures unIess one adopts absurdly liberal defini- 
tions of "hydrogen bond" and "ring." This conforms with the proposition 
posed here to the effect that it is primarily the ordered small rings of  the 

17 If the polymer chains are stiff, in an appropriately defined sense, ~2~ or if they are cross- 
linked, the configurational entropy is especially small and the glass temperature especially 
high. 

18 An approach to this, somewhat analogous to that of G. N6methy and H. Scheraga [Y. 
Chem. Phys. 36, 3382 (1962); 41,680 (1964)], has been given by H. Porosoff. r176 He found 
that the thermodynamic properties in the liquid phase are particularly sensitive to the 
intramolecular vibrations. For the purposes of this paper, one should view the parameter 
e introduced in Sec. 3 as a free energy associated with a hydrogen bond. 
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crystal that  are lost on fusion. Both the Rahman-S t i l l i nge r  computa t ions  

and our  considerat ions  o f  concepts  which will account  for two phase transi- 

t ions thus indicate that  clusters 19 in the l iquid are more  disordered than has 

somet imes  been supposed. They both  also suggest, on the other  hand, that  

these clusters are far  larger z~ than has often been supposed. 
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zo This feature is an implicit assumption of the model of J. A. Pople [Proc. Roy. Soc. A205, 
163 (1951)]. It can also be obtained from lattice-gas (Ising) models for the condensation of 
simpler liquids ~s' ~" and of water (P. D. Fleming and J. H. Gibbs, to be published). 



296 Gibbs, Cohen, Fleming, and Porosoff 

D I S C U S S I O N  
Professor G. S. Kell (National Research Council, Ottawa). Perhaps you 

could clarify a point for me. There are four bond directions at each vertex, 
giving six pairs of bonds, and in hexagonal ice this means that 12 six-member 
rings pass through the vertex. When the broken rings are counted, it is found 
that breaking a single bond breaks many rings--in this example one broken 
bond breaks 6 six-member rings. Rather than talk about rings, it is going to be 
simpler and more economical to talk about broken bonds as people have all 
along. Yet, Pauling showed 30 years ago that only one quarter of the bonds 
disappear from ice on melting. Perhaps at the end of your paper you backed 
down a little from the extreme position taken at the starting point. Still it 
appears that at high temperatures, at least, your liquid must show essentially 
2-coordination. Are you not, by such emphasis on topological considerations, 
in danger of getting in the position where it is said that liquid water is essentially 
the same thing as solid alcohol, which contains linear, hydrogen-bonded 
chains ? 

Professor Gibbs (Brown University, Providence, Rhode Island). I need to 
make several points clearer to answer this many-faceted question: 

Firstly, the value 2 for the average H-bonded coordination number is 
correct, even at high temperatures, only in the absence of ring closures. With 
allowances for ring closures it is found to be larger. 

Secondly, even an average coordination number as small as 2 doesn't 
imply purely linear chains. They may be highly branched, as only ring closures 
can increase it to values above 2. 

Thirdly, I discussed the hypothetical case of condensation without ring 
closures simply to show that the essence of this transition is not dependent on 
ring closing. In this way, I could demonstrate simply how it happens that, 
under appropriate conditions, we observe two disparate phase transitions-- 
one (condensation) associated essentially with the formation of a randomly 
branched network or "gel" and the other (freezing) associated essentially 
with the formation of an ordered array of small rings. 

Now, my fourth observation is that we know we shouldn't carry this view- 
point to the extreme of failing to recognize that ring closures at random must 
accompany the infinite branching process which nonetheless appears to be the 
essence of the discontinuous, or phase transition, character of condensation. 
On purely intuitive grounds, one expects a highly branched structure to display 
numerous "accidental" ring closures. It would have to pay a heavy entropy 
price to avoid many of them and simply cannot avoid them all. Indeed, a pure 
Cayley tree (no ring-closing bonds) cannot be contained in space. Recent 
developments in the treatment of gelation address these difficulties with 
techniques of "percolation" theory. Although these go beyond our immediate 
purposes here, we still should note that they are related to the difficulties that 
we have found in our approach to condensation via simple gelation theory. 
Mathematically, these difficulties are manifestations of problems associated 
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with an assumed analytic continuation of the sums of infinite series beyond 
their circle of convergence (that is, beyond the zero-density gel point). Physic- 
ally, these difficulties are almost certainly attributable to our neglect of ring 
closures. 

My fifth point is a reminder that, even if ring closures could be totally 
ignored in an approximate discussion of condensation, they could not be 
ignored in even a qualitative discussion of what ensues on further cooling, for, 
once gelation (condensation) has occurred, all water molecules are (at any 
instant) part of the same cluster (the "gel"), and only intragel H bonds remain 
to be formed. Cooling in the liquid range will introduce many ring closures 
and markedly increase the average H-bonded coordination number, although, 
for the reason I have given in discussing the radial distribution function, 
there is no apparent need to assume that it becomes as large as 4. 

For my sixth and last point, I want to confront the part of Kell's question 
which dealt with melting and note that his formulation of this part of the 
question contains the key to the answer. The very fact that breaking one 
hydrogen bond in the ice structure destroys many six-membered rings ensures 
that only rather few hydrogen bonds need to be broken in order to destroy all 
the hexagonal rings. If this were not true, we would indeed be stuck (in our 
theoretical concepts) with an average H-bonded coordination number for the 
liquid which would be too small to be consistent with Pauling's interpretation 
of the observed heat of fusion. 

Professor G. N~methy (Universitd de Paris-Sud). It seems to me that by 
neglecting all interactions between nonbonded molecules, you are throwing 
out completely any analogy with liquid argon. 

Professor Gibbs. We do not totally ignore them. I did not talk about this 
in order to keep the presentation simple. When a Flory-Huggins lattice is 
used, not only can the repulsions be accounted for, but, in a very rough way, 
a nondirectional kind of attraction can also be taken into account. Simply, 
every time a lattice site is left empty, it costs a certain amount of "hole" 
energy. This is a very crude way of introducing another interaction in addition 
to the hydrogen bonds. 

Professor N~methy. Still, if you do not account for directional interaction 
between the molecules, you will not get actual condensation, either in the case 
of argon or of water, especially of the non-hydrogen-bonded molecules. 

Professor Gibbs. You can if you want to. To pursue this kind of treatment 
in cases where hydrogen bonding does not exist, you obviously cannot neglect 
the weaker interactions because you have to have something to serve as the 
basis for "gelation" (or condensation), but you do not have to assume that 
these interactions are directional. 

We obtained condensation just from reversible gelation theory, which 
per se doesn't require directional bonding. 

What gelation theory does require (in addition to saturability of bonding) 
is the approximation contained in the two-state concept for a "bond,"  i.e., 
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an intact state and a broken state as opposed to a continuous potential. It is 
in this sense (and in the neglect of rings) that it differs from its otherwise 
close cousin, the Mayer cluster integral expansion, and represents a quantit- 
atively less reasonable way of describing argon condensation. It is also in this 
sense that it bears a resemblance to an Ising model (of which the lattice gas 
is one version) and appears much more tractable than Mayer cluster theory for 
a case like water. 

Now, in our treatment the specification that H bonding is directional 
actually enters only when the lattice is introduced. Without the lattice we have 
no repulsions in the theory, but we get condensation. In fact, we get too much 
condensation in this case! Without the lattice repulsions the liquid-vapor 
equilibrium curve never terminates at a critical point. 

It is interesting to note that the lattice device is often used not only just 
to account for repulsions (and directionality of bonding), as here, but also (in 
place of cluster or gelation theory) as the means of enumerating attractive 
interactions (by assigning them to nearest-neighboring site occupiers). When 
this is done, one has the so-called "lattice-gas" version of the Ising model, 
which, in spite of its directional character, has most often been applied to 
argon ! 

Professor N~methy. You said tha t  the liquid-vapor equilibrium corres- 
ponds to the condition that the average functionality is 2, leading to gelation. 
Is this a sufficient condition ? 

Professor Gibbs. Only if you make Stockmayer's assumption that, as the 
clusters are growing in the gas phase, ring closures can be ignored. This 
corresponds, in the Mayer cluster theory, to ignoring all irreducible cluster 
integrals fl except ill. This is an enormous simplification, but it still has the 
transition in it. 

Professor N~methy. If  you allow for the absence of ring closures by 
introducing only ill, don' t  you need a critical concentration ? 

Professor Gibbs. There is a particular vapor density associated with each 
temperature on the liquid-vapor equilibrium curve and a "critical" one at 
the critical point, just as with the experimentally observed phenomena. 

Professor H. S. Frank (University of Pittsburgh). If you are giving a new 
proposal for water structure, you should not get away without saying how the 
maximum of density is accounted for, and I am going to do just that for you. 
I am going to propose something that I got some years ago from Morrison up 
at Ottawa, who said that he had been toying with the idea that the shrinkage 
on warming of water is analogous to the shrinkage on warming of rubber. 
The analogy seems sound statistically, and the only thing that kept him from 
believing it was the fact that the hydrogen bond in water breaks too often, and 
this, as a matter of fact, is one of your difficulties. You have been giving 
comparisons with polymers in which there are honest bonds that live a long 
time compared to the lifetime for reorientation of the water molecule, which 
Professor Hertz has been telling us is 10 -11 sec. We cannot use this analogy, 
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therefore, unless we can count on a water molecule turning around and 
coming back to the same place. If this can be achieved, then you can have your 
rubber stretching. 

Professor Gibbs. This raises a point I should clarify. As long as a bond 
persists for enough vibrations, then, as far as the thermodynamics are con- 
cerned, you can treat the system in the way I have described. What we do is 
say that we have all different kinds of clusters, all different kinds of topologies 
and shapes, etc., that we put on the lattice. Now, as the system flows in time it 
makes no difference for the thermodynamics whether a cluster of shape A 
originally in one location and a cluster of shape B originally in another location 
interchange places by diffusion or whether A and B simply change into B and 
A, respectively, by breaking bonds and forming new connections. In the 
theory for equilibrium properties, all that matters is that I sum over all 
possible states, that is, all kinds of shapes in all kinds of locations. But you are 
right in your observation that it is necessary for the validity of such a model 
that bonds persist for a time long compared to the periods of important 
intracluster vibrations. 

One other thing your question brings to mind is that, although we have 
had in mind an interpretation of the density maximum, this phenomenon is 
the one thing among all the things we have looked at which has not yet fallen 
out of  our model in a rather natural way. I should not be surprised if we 
should come to like your suggestion on this point better than the more-or-less 
conventional one that we have invoked. 

Professor P. A. Gigu~re (UniversitdLaval, Canada). Let me point out that 
any explanation for the density maximum of ordinary water at 4~ must also 
account for the important fact that in heavy water the temperature range of 
increasing density is nearly double, viz, from 3.8 to 11.5~ 

May I also make one last remark regarding hydrogen peroxide. The 
melting point of that crystal is very close (-0.4~ to that of ice in spite of a 
nearly double molecular mass. Now, the packing forces are quite the same in 
both crystals, namely, four hydrogen bonds per molecule. However, in ice 
these forces are much better balanced (tetrahedral about each oxygen atom) 
than in hydrogen peroxide (one unengaged orbital on each oxygen atom). 
This makes for a less stable structure. 


