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Abstract. An equation of state for cold matter at neutron star densities, ¢>> 10 gm/cm3, is evaluated.
The gas is considered to be a degenerate mixture of neutrons, protons, leptons, hyperons and massive
baryons. We derive the equilibrium equations including the effects of nuclear interactions among all
the hadrons.

1. Introduction

The purpose of this work is to calculate an equation of state for the interior of stars
in which the densities exceed that of nuclear matter. This is essential to the calculation
of the maximum mass neutron star that may be formed after a supernova explosion.
In a previous paper (Langer et al., 1969) an equation of state was developed for
densities up to 1.0 x 10" gm/cm?>. This was accomplished by including nuclear inter-
actions and minimizing the relevant thermodynamic potentials. When one extends the
method of calculating the equation of state beyond this point, certain complexities
enter the problem. Due to the combination of nuclear interactions plus fermi level
of the baryon, the effective mass of the neutrons increases with increasing density.
A point is reached, therefore, where the chemical potential of the neutron exceeds
the rest mass of the sigma minus hyperon — a mass of 1197 MeV (Table I). From this
point on, hyperons (and other massive baryons) enter as components of the equation
of state. Each hyperon in turn interacts with all other baryons and must satisfy its
own set of equilibrium conditions, including, of course, conservation of charge and
baryon number. One is hurt by two principal problems: on one side is the necessity
to use a proper nuclear interaction and on the other is the increasing numerical
difficulty which goes almost exponentially with the addition of new hyperons as the
density increases. The latter problem enters because of the requirement of solving a
set of coupled equations for all components in the equation of state. These are in
reality integral equations since the binding per particle must be found by integrating
the contribution of nuclear interactions due to all other particles. Tsuruta and Cameron
(1966) developed an approximate treatment for a hyperon equation of state by in-
cluding nuclear interactions only after the equilibrium number densities of non-
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TABLE I
Particle Mass Charge Spin Threshold density x 104 gm/cm3
Noninter-

MeV q K acting Va Vy
e 0.511 -1 1
w 105.7 —1 3 7.75 2.30 2.35
n 939.6 0 ¥
p 938.3 +1 1
z- 1197.0 —1 3 11.2 2.60 2.83
A° 1115.0 0 3 19.1 4.02 4.17
A~ 1236.0 —1 3 19.1 4.45 4.49
Ay 1197.0 0 3 70.6 9.28 8.93
A° 1236.0 0 3 112.0 12.1 11.6

interacting particles in the gas had been found. In this paper, the full set of coupled
equations is solved, using of course a good fast computer.

The nuclear interaction used in this work is that developed by Weiss and Cameron
(1969) based upon the Levinger-Simmons V, and V, potentials. Levinger and Simmons
(1961) originally developed these potentials from neutron scattering data between 20
and 340 MeV. A word of caution must therefore be entered. The equation of state
extends in the upper region beyond this energy for some of the constituents. The
maximum energy of any of the constituents never tends to more than 410 MeV,
however, since the equation of state is cut off at the point at which the pressure equals
the energy density. This limit represents the requirement that the speed of sound shall
never exceed the speed of light (Zeldovich, 1962).

2. Equation of State

We have to find the equation of state for a mixture of leptons and baryons where
nucleon-nucleon interactions are included (electrostatic interactions are neglected
because their energies are orders of magnitude smaller than the other interaction
energies). The equation of state will follow from the conditions which determine the
equilibrium mixture of the gas. These conditions will follow from minimizing the
thermodynamic potential

®=&(P, T,n), (1)

where T is the temperature, P the pressure and »; the number densities for particle 7.
& will be minimum for fixed T (=0 K) and P when d®=0, or

o N P n, 0 @
on; on; on;

2

for all ;.
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The chemical potential is defined as

oo
o (a—”)T P ©

For neutron star matter the degenerate gas mixture must be minimized subject to
the two constraints of charge neutrality and baryon conservation. The new ¢’ with
the Lagangian constraints « and f is,

=D +ay gn+py m, 4
7 3

where ¢; is the charge on i, i is summed over all particles and k over all baryons.
Writing out @’

P = Z f E;(n)dn; + 13 f f by (g, i) dny dn,
+ ) ffbk(nka n)dnedn; + o) gn+ ) . )
i k

k+#j
The first term is the free energy of the gas where E;(n,)=(p*(n;) ¢ +mic*)* is a
function of number density through the relationship of momentum to number density
for a degenerate fermi gas. The second term is the interaction term for like particles,
and the third integral is the interaction energy for unlike particles. b, (1, n ;) is the
interaction energy as a function of number density or momentum.
In terms of the average binding energy for an interaction <5 (i, j)>, we have

@ =5 [ Ei(n) dn + 35 0k ok, 0

+k§'”k”j<b(k, »+ “Z‘Ii”i"‘ﬂ;nlr (6)
J i
Before describing the derivation of the b(i, j), let us solve
0P’
-—=0. 7
on, (7)

Taking the derivatives with respect to n, and n, we find that

a=ple”)=Eg(e), ©
8 (b(n,, k))
o)

n

. {nk<b(n,,, Q) + myn, ©)

k#n,

Equation (9) shows the form for the chemical potential y in which E; is the free
energy at the fermi surface. The remaining solutions of Equation (7), expressed in
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terms of the chemical potentials are
(a) for leptons, I,

p(l) = ple™); (10)
(b) for baryons with ¢=0,

u(q =0) = p(n)=u(p) + n(e); (11
(c) for baryons with g= —1

p(g=—1)=p(n)+ ple); (12)
(d) for baryons with g= +1

plg=+1)=p(m)— pule). (13)

The relationship between number density and fermi momentum p, in a completely

degenerate gas is
N (@si+1Da .
n(i) === (), (14

where

2\3
a, = 8n<mec > =1.76 x 10> cm ™3
he

and (2s;+1) is the spin multiplicity of particle i.

In the thermodynamic potential (5) we have included the effects of nucleon-nucleon
interactions between all pairs of particles. The average binding values {5(i, j)) for a
two body interaction potential have been derived by Weiss and Cameron (1969) (see
also Langer et al. (1969)). We briefly outline their results below and refer the interested
reader to their paper.

Weiss and Cameron (1969) determined the binding energies for a degenerate gas
of interacting fermions, where only two body interactions are considered, based on
the V, and V, nucleon-nucleon potentials of Levinger and Simmons (1961).

These velocity dependent potentials have the following form

A
Va = — V0J1(7") —MPJZ(V)P,

1 r<b,
Jh(=LF)=13 r=>b, (15)
0 r>b;

P=ihV,V, =169 MeV,1=—0.21 and b =24 fermis.

V== Voli (1) + 1 [P0 () + o) P,

Vodi (r) = [1 + 20 (r)] {112 exp(— 1.4r) — %(1(%2)@7)}, (16)

w(r) =5exp(— 3.6r).
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These potentials provide a fair to good fit for 1S and 1D phase shifts in low energy
scattering. They are assumed to have the same form in each of the four possible spin-
parity states, singlet-even, singlet-odd, triplet-even, triplet-odd. All four states are
present when unlike particles interact, but only the singlet-even and triplet-odd appear
for like particles.

Weiss and Cameron found it necessary to adjust the various interaction strengths
to agree with nuclear matter results; in particular they reproduced the saturation
density and the volume and symmetry energy coefficients in mass formulae for nuclei.

The average binding is found by first calculating the interaction part of the ground
state in lowest order (Hartree-Fock terms)

=43 {<| V> =< v i}, (17

where V' is the two-nucleon potential energy operator and the sum is over all the single

TABLE 1I
V.« potential

/] P He ny~ 23 hp

gm/cm3 dynes/cm? 1030 cm—3 1030 ¢m~—3 1089 cm—3 1032 ¢cm~—3
1.00 x 1014 4.08 x 1032 9.81 x 103 0.0 5.93 x 107 9.81 x 105
1.51 x 1014 1.32 x 1088 2.40 x 108 8.75 x 107 2.40 x 108
2.00 x 104 2.95 x 1033 3.47 x 108 1.14 x 108 4.37 X 108
2.30 x 104 4.50 x 1033 5.98 x 108 1.47 x 105 1.31 x 108 6.13 x 108
2.60 x 1014 6.90 x 1033 7.51 x 108 7.43 x 108 1.46 x 108 8.38 x 108
2.66 x 1014 7.41 x 1033 7.61 x 108 7.88 x 108 1.48 x 108 9.22 x 108
2.81 x 1014 8.48 x 1033 7.65 X 108 8.08 x 10° 1.52 % 108 1.16 x 107
3.00 x 1014 9.84 x 1033 7.57 x 108 7.73 X 105 1.57 x 108 1.48 x 107
3.51 x 1014 1.42 x 1034 7.17 x 108 5.90 x 105 1.67 x 108 2.48 x 107
4.02 x 1014 1.95 x 1034 6.75 x 108 4.13 x 108 1.75 x 108 3.52 x 107
4.20 x 1014 2.18 x 1034 6.62 x 108 3.65 x 105 1.79 x 108 3.84 x 107
4.45 % 1014 2.55 x 1034 6.45 x 106 3.01 x 105 1.83 x 108 4.31 X 107
5.06 x 1014 3.52 x 1034 5.95 x 108 1.41 x 105 1.90 x 108 5.35 x 107
5.51 x 1014 4.29 x 1034 5.60 x 108 5.03 x 104 1.94 x 108 6.08 x 107
6.00 x 1014 5.23 x 1034 5.20 x 108 0.0 1.99 x 108 6.87 x 107
6.52 x 1014 6.36 x 1034 4,79 x 108 2.04 x 108 7.73 x 107
7.08 x 1014 7.74 x 1034 4.36 x 108 2.09 x 108 8.65 x 107
7.55 x 1014 9.04 x 1034 4.00 x 108 2.13 x 108 9.45 x 107
8.05 x 1014 1.05 x 1035 3.65 x 108 2.17 x 108 1.03 x 108
8.57 x 1014 1.23 x 103 3.29 x 108 2,22 % 108 1.12 x 108
9.28 x 1014 1.50 x 1033 2.86 x 108 2.28 x 108 1.24 x 108
9.60 x 1014 1.64 x 1035 2.68 x 108 2.30 x 108 1.28 x 108
1.00 x 1015 1.86 x 103 2.42 x 108 2.34 x 108 1.36 x 108
1.21 x 10%5 2.85 x 1035 1.62 x 108 2.47 x 108 1.64 x 108
1.62 x 1015 5.68 x 1035 6.46 x 105 2,71 x 108 2.12 x 108
2.00 x 1015 9.20 x 1035 2.05 x 103 2.91 x 108 2.53 x 108
2,76 x 1015 1.92 x 1036 <102 . 3.32x 108 3.30 x 108
3.01 x 1015 2.31 x 1036 < 102 3.51 x 108 3.50 x 108

3.51 x 1015 3.17 x 1036 < 102 3.86 x 108 3.86 x 108
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TABLE III
Vs potential

0 ny- n40 ny- nyo n 0 r
gm/cm? 1030¢cm—3 103%¢cm—3 103%¢m—2 10%%cm—3 1030¢m—3

1.00 x 1014 0.0 0.0 0.0 0.0 0.0 2,99
1.51 x 1014 2.98
2.00 x 1014 2.96
2.30 x 1014 2.95
2.60 x 104 1.26 x 105 2.94
2.66 x 1014 8.24 x 10° 2.90
2.81 x 1014 3.10 x 108 2.50
3.00 x 1014 6.49 x 108 2.36
3.51 x 1014 1.70 x 107 2.40
4,02 x 1014 2.80 x 107 2.59 2.53
4.20 x 1014 3.15 x 107 4.69 x 105 2.82
4.45 x 1014 3.63 x 107 2.42 x 108 8.59 x 104 2.93
5.06 x 1014 4.46 x 107 9.64 x 108 2.82 x 108 2.58
5.51 x 1014 4.94 x 107 1.60 x 107 5.70 x 108 2.54
6.00 x 1014 5.42 x 107 2.35 x 107 9.32 X 108 2.56
6.52 x 1014 5.89 x 107 3.17 x 107 1.36 x 107 2.61
7.08 x 1014 6.36 x 107 4.06 x 107 1.86 x 107 2.67
7.55 x 1014 6.73 % 107 4.80 x 107 2.31 x 107 2.73
8.05 x 1014 7.11 x 107 5.55 x 107 2.80 x 107 2.78
8.87 x 1014 7.50 x 107 6.32 x 107 3.34 x 107 2.84
9.28 x 1014 7.99 x 107 7.29 x 107 4.08 x 107 8.28 x 105 3.36
9.60 x 1014 8.19 x 107 7.68 x 107 4,39 x 107 2.38 x 108 3.00
1.00 x 1015 8.49 x 107 8.27 x 107 4.88 x 107 5.98 x 108 2.93

1.21 x 1015 9.51 x 107 1.02 x 108 6.71 x 107 2.63 x 107 1.17 x 108 2.98
1.62 x 1015 1.11 x 108 1.32 x 108 9.98 X 107 6.68 x 107 3.69 x 107 3.18
2.00 x 1015 1.24 x 108 1.54 x 108 1.28 x 108 9.75 x 107 8.38 x 107 3.45
2.76 x 1015 1.49 X 108 1.92 x 108 1.82 % 108 1.47 x 108 1.79 x 108 3.87
3.01 x 1015 1.35 x 108 2.05 x 108 2.15 x 108 1.63 x 108 2.12 % 108 3.89
3.51 x 1018 1.13 x 108 2.38 x 108 2.71 x 108 1.90 x 108 2.69 x 108 3.90

particle quantum numbers. Then by averaging Equation (17) over the states available
in a degenerate gas, we have an average value for the binding terms.

We used the analytic results of Weiss and Cameron for the ¥, and V, potential
averaged over a degenerate gas in our calculations of the average binding energy per
particle. In Equations (6, 9, 11-13) these interactions appear as all the possible pair
wise interactions between like and unlike particles.

We solved the set of p; relationships for the following particles: e”, u~ (muon),
p,m 27, A% A~ (also called ni;), Z° A°(n3,,), whose properties are listed in
Table 1. The y; are solved in terms of a parameter, the number density of any particle,
including charge neutrality. As all the baryon u’s are coupled to each other through
the two body interactions the problem must be solved on a computer.

It should be emphasized that we approximate the potential interaction for the
hyperons. We use the V, and V, forms with the same interaction constants as for the
neutrons and protons for the hyperon-hyperon and hyperon-nucleon interaction.
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TABLE 1V
V', potential

¢ P He— Hu-— Hy np

gm/cm? dynes/cm? 1030 cm—3 1080 ¢m—3 1030 cm—3 1030 cm—3
1.00 x 1014 3.54 x 1032 8.45 X 105 0.0 5.93 x 107 8.45 x 10°
1.50 x 1014 1.22 x 1033 2.07 x 108 8.75 x 107 2.07 x 108
2.00 x 1014 3.01 x 1038 4,00 x 108 1.15 x 108 4.00 x 108
2.35 x 1014 4.90 x 1033 5.46 x 108 2.46x 10* 1.31 x 108 5.48 x 108
2.83 x 1014 8.66 x 1033 7.72 x 108 8.39 x 105 1.55 x 108 1.06 x 107
3.00 x 104 9.92 x 1088 7.67 x 1086 8.17 x 10° 1.59 x 108 1.37 x 107
3.51 x 1014 1.42 x 1034 7.29 x 108 6.40 x 105 1.69 x 108 2.37 x 107
4.01 x 1014 2.28 x 1034 6.80 x 108 4.34 x 105 1.76 x 108 3.52 x 107
4.17 x 1014 2.49 x 1034 6.66 x 108 3.81 x 10° 1.79 x 108 3.84 x 107
4.49 x 1014 3.00 x 1034 6.45 x 108 3.01 x 105 1.83 x 108 4.43 x 107
5.04 x 1014 3.97 x 1034 6.03 x 108 1.62 x 10° 1.90 x 108 5.35 x 107
5.67 x 1014 5.19 x 1034 5.48 x 108 2.76 x 104 1.96 x 108 6.39 x 107
6.17 x 1014 6.29 x 1034 5.06 x 108 0.0 2.00 x 108 7.20 x 107
6.49 x 1014 7.08 x 1034 4.78 x 108 2.02 x 108 7.73 x 107
7.05 x 1014 8.64 x 1034 4.32 x 108 2.07 x 108 8.65 x 107
7.64 x 1014 1.04 x 103 3.82 x 108 2.11 x 108 9.65 x 107
8.25 x 1014 1.26 x 1035 3.32 x 106 2.15 %108 1.07 x 108
8.93 x 1014 1.53 x 1035 2.84 x 108 2.19 x 108 1.19 x 108
9.70 x 1014 1.89 x 1035 2.36 x 108 2.24 x 108 1.31 x 108
1.06 x 1015 2.33 x 1085 1.90 x 108 2.28 x 108 1.44 x 108
1.16 x 1015 2.90 x 1035 1.47 x 108 2.32 x 108 1.58 x 108
1.57 x 1015 5.81 x 103 4.65 x 105 2.46 x 108 2.05 x 108
1.73 x 1015 7.29 x 1085 2.56 x 105 2.51 x 108 2.23 x 108
2.10 x 1015 1.15 x 1038 < 102 2.61 x 108 2.61 x 108
2.75 x 1015 2.01 x 1036 << 102 3.03 x 108 3.03 x 108
3.12 x 1015 2.62 x 1036 <102 3.26 x 108 3.26 x 108
3.34 x 1015 3.05 x 1086 < 102 3.40 x 108 3.40 x 108

3. Conclusion

The solution of the coupled set of equations as described in the previous section yields
the number densities of all particles described in Table I as a function of the energy
density, ¢, in gm/cm?, of the system. The equation of state is then found from

po_ (6U {0V (n) 3
- aV) "(anl’ (18)

where U is the total energy density, # is the baryon number den51ty and V(n) is the
energy per particle of the medium.

The values of the number densities of the particles, the pressure and I', defined as
(P+U/P) 0P[oU are given in Tables II and III, and IV and V for the V, and V,
potentials respectively. It may be noted that the massive baryons enter the equation
of state for both potentials in the following order: X~, A%, A4~, 2% and 4° last. The
equation of state for the hyperonic gas is plotted in Figure 1 for both the V, and the
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TABLE V
V', potential

] ny- 140 ny- nyo 140 r
gm/cm3 1080 ¢m—3 1030 ¢cm—3 1030 ¢cm—3 1030 ¢cm—3 1030 ¢cm—3

1.00 x 1014 0.0 0.0 0.0 0.0 0.0 3.19
1.50 x 1014 3.22
2.00 x 104 3.18
2.35 x 104 3.14
2.83 x 1014 2.02 x 108 2.66
3.00 x 1014 5.19 x 108 2.40
3.51 x 1014 1.56 x 107 2.44
4.01 x 1014 2.79 x 107 247
4,17 x 104 3,14 x 107 9.62 x 104 2.62
4.49 x 1014 3,75 x 107 2.45 X 108 3.19 x 104 2.68
5.04 x 1014 4.47 x 107 9.26 x 108 2.60 x 108 2.54
5.67 x 1014 5.13 %107 1.89 x 107 7.02 x 108 2.48
6.17 x 1014 5.59 x 107 2.69 x 107 1.11 x 107 2.57
6.49 x 1014 5.85 x 107 3.22 x 107 1.40 x 107 2.63
7.05 x 1014 6.27 X 107 4.15 x 107 1.95 x 107 272
7.64 x 1014 6.74 x 107 5.07 x 107 2.53 x 107 2.71
8.25 x 1014 7.20 x 107 5.98 x 107 3.20 x 107 2.86
8.93 x 1014 7.62 X 107 7.03 X 107 3.96 x 107 3.64 X 108 2.92
9.70 x 1014 8.08 x 107 7.96 X 107 4,78 x 107 5.37 x 108 2.96
1.06 x 1015 8.54 x 107 8.92 x 107 5.67 x 107 1.47 X 107 2.98

1.16 X 10%5 9.01 x 107 9.88 x 107 6.64 x 107 2.68 x 107 1.34 x 106 3.07
1.57 x 1015 1.05 x 108 1.28 x 108 9.94 x 107 6.91 x 107 4.12 x 107 3.31
1.73 x 1015 1.11 x 108 1.37 x 108 1.12 x 108 8.27 x 107 6.35 x 107 3.36
2.10 x 1015 1.44 x 108 1.57 x 108 1.17 x 108 1.10 x 108 1.16 x 108 3.14
2.75 x 1015 9.18 x 107 1.92 x 108 2.11 x 108 1.54 x 108 2.10 x 108 3.80
3.12 x 1015 6.88 x 107 2.10 x 108 2.57 x 108 1.74 x 108 2.56 x 108 4.05
3.34 x 1043 5.59 X 107 2.21 x 108 2.84 x 108 1.86 x 108 2.83 x 108 4.11

V, potentials. Near nuclear densities, it is seen that the pressures for both cases are
the same, a conclusion one would expect since the Levinger-Simmons potentials are
both fitted to agree in this region. Below this region, the V, is softer than the V, by
a few percent. At higher densities, however, the ¥V, is more repulsive and the equation
of state for this potential becomes stiffer than that for the V, potential (the pressure
for the V, is typically 159 greater than that for the V,). The equation of state for both
cases is terminated at that density at which the pressure becomes equal to the energy
density; these are the last points listed in Tables Il and IV.

The thresholds for the appearance of the particles are listed in Table I for both the
V, and V, potential, as well as for the noninteracting case. Langer and Cameron (1969)
have shown that neutron stars containing hyperons have their vibrational energy
damped rapidly on an astronomical time scale. Our results would indicate that neutron
stars with central densities >2.60 x 10'*, for V,, and >2.83x10'* for V, will not
sustain vibrations.

The number densities of the electrons, muons, neutrons, protons, sigma minuses,
sigma zeros, delta minuses and lambda zeros as a function of density are illustrated
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Fig. 1. Pressure versus density for the V4 and ¥V, potentials.
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Fig. 2. Number densities of all the constituents of the hyperonic gas for the Vi potential as a
function of density o.
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Fig. 3. Same as Figure 2 except that ¥, is the potential,

in Figures 2 and 3 for the V, and V, potentials respectively. From these figures we can
note the decrease in the electron number density and the disappearance of the muons.
By Equation (10) we see that the presence of the muon is connected to the electron
and when the electron fermi energy falls below the muon rest mass, the muons are
no longer present.

The effect of the nuclear potentials is to increase the number densities of the other
baryons compared to the neutrons. The decrease of the electrons is related to the fast
rise of the protons and even faster rise of the sigma minus particles. Once the ¥~
appear they can replace the electrons in maintaining charge neutrality. As the density
increases, the potential effect of the baryons becomes more important than the kinetic
energy of the electrons.

We also note that negative pions do not appear in our density range as u(e™) <m,.
As long as the potentials, V, are long range attractive and short range repulsive, pions
are excluded.

I', which is a measure of the stiffness of the equation of state, softens at the onset
of the hyperons. Its general behavior is to decrease to a minimum at ¢~3.0 x 10**
gm/cm?® and increase until the equation of state is no longer evaluated. The local
maxima and minima at a few points are results of small fluctuations of the equation
of state as calculated on the computer. Since I' is a measure of the slope of P versus U,
it is sensitive to these small changes in the equation of state.
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