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Abstract. In this paper we prove the existence of ring-type bounded motion in an isolated system consisting 
of a massive point particle and a homogeneous cube, We study the case of planar motion where the particle 
moves in a symmetry plane of the cube and we use a rotating frame of reference with its center at the mass  
center of  the cube and its axes coinciding with the symmetry axes of the cube. We prove that, for negative 
values of the total energy and properly chosen values of  the total angular momentum,  the relative distance 
of the bodies has an upper and a lower bound - i.e., the regions of possible motion lie inside an annulus 
around the cube (motion inside a ring or an island). 

1. Introduction 

The existence of bounded motions in the gravitational N-body problem is a property with 
obvious physical interest. In the case of two-point bodies bounded motions do exist for 
negative energies and they are of the ring type. In the case of N point bodies (N > 2) 
the integrals of energy and angular momentum cannot assure the existence of bounded 

motion (Bozis, 1976; Loks and Sergysels, 1985). However, if one replaces at least one 
of the particles with an extended body the possibility of bounded motion arises. In fact, 
in the case N = 3, if we replace one particle by a homogeneous sphere it can be proved 
that bounded motions exist (Bozis and Michalodimitrakis, 1982). 

Here we start with the problem of two-point bodies and we generalize it by replacing 

one of them by a homogeneous cube. We prove that the integrals of energy and angular 
momentum can assure the existence of ring-type bounded motions. These motions 

require negative energies. 

2. Equations of Motion and First Integrals 

Let K be the mass center of a homogeneous cube of mass M and edge 2a. Let also Kxyz 
be a rectangular system of Cartesian axes coinciding with the symmetry axes of the cube. 

We consider a point particle Z, of mass m, which moves in the symmetry plane z = 0 
of the cube. The cube K and the particle Z form an isolated system of two bodies moving 
in a plane under their mutual gravitational attraction. We also consider an inertial 
rectangular system GXYZ of Cartesian axes with its origin at the mass center G of the 
system (K, Z) and its Z = 0 plane coinciding with the z = 0 plane (Figure 1). 

The configuration of the system is completely specified by the coordinates x, y of E 
relative to the Kxy axes and by the angle ~o between the positive x and X semi-axes. We 
choose x, y, (p as generalized coordinates. 
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Fig. 1. 
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The inertial axes GX Y Z  and the rotating axes Kxyz. G is the mass center of the system. 

T h e  absolu te  veloci t ies  o f  K and  ~ are equal  to 

UK = - m ( M  + m ) - X  [(2 _ c~y)i + (p  + c~x))] , 

U z  = M ( M  + m ) - I  [(2 - c~y)? + (j~ + c~x))] .  

I n t roduc ing  the m o m e n t  o f  iner t ia  I = 2MAC~3 of  the  cube  wi th  respec t  to the  z axis and  

the  r educed  m a s s  # = M m / ( M  + m), the  kinet ic  energy of  the  sys tem can  be  wri t ten  in 

the  fo rm 

1 "2 T = 5Iqo + 1#{(5c - c~y) 2 + (j~ + ~bx)2]. 

T h e  po ten t ia l  energy o f  the  sys tem is equal  to G a m V  where  (cf. M a c M i l l a n ,  1973) 

V =  - ( x  + a ) ( y  + a)A l + (x + a ) ( y -  a)A 2 -  2a(x  + a)A 3 -  

- (X - a)  ( y  - a )A  4 + ( x  - a )  ( y  + a)A 5 + 2a(x  - a)A 6 - 

- 2a(y  + a)A 7 + 2a(y  - a)A 8 + (x + a) 2 ( B  1 - B2) - 

- ( x  - a) 2 (B 3 - B 4 )  - ( y  + a) 2 (B s - B 6 )  - -  ( y  - -  a) 2 (B 7 - B s )  - 

- a2(B9 - Blo + B l l  - B12) ,  

wi th  

~Zl~l = IF/ Pal + a ~"z In Pl2 + a ~"3 = In /311 + /912 + 2a 

Pll  - a /o12 - a /911 + P12 - 2a 

A 4 = In - - P 2 2  + a , A 5 = in P2~ + a 

P22 - a 1921 - -  a 

A 6 = In P22 4- D21 q- 2a 

P22 4- P21 - 2a 
, ( l a )  

A 7 = In Pll + /921 + 2a 

Pll + /921 - 2a 

, A 8 = In P22 + /012 q- 2a , 

/922 + /912 - 2a 

a ( y  + a) , B z = t a n - 1  a ( y  - a )  

p l a (X  + a) P12(x + a) 
B 1 = t a n -  1 
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B 3 = t a n -  1 a ( y + a )  , B 4 = t a n -  1 a ( y - a )  
P21(x - a) #22(x - a) 

B 5 = t a n -  1 a ( x  - a) , B6 = t a n -  1 a (x  + a) 

P21(Y + a) P l l (Y  + a) 

B 7 = t a n -  1 a(x  + a) , B ,  = t a n - 1  a (x  - a) 

PI2(Y - a) Pz2(Y - a) 

B 9 = t an  
1 (X + a ) ( y  - a )  

api2 
B l o  = t a n -  

1 (x + a ) ( y + a )  

ap~ 1 

( l b )  

B l l  = t an  i (x - a) (y  + a)  , 

ap2i 

The  d is tances  no (i, j = 1, 2) are given by  

p21 = ( a + x )  2 + ( a + y ) 2  + a  2 ,  

p~, = (a - x) 2 + (a + y ) 2  + a 2 ,  

The  Lagrang ian  of  the system is equal  to 

L = T -  G a m V .  

B12 = t a n -  
1 ( x  - a )  ( y  - a )  

ap22 

~ 2  = (a + x)  2 + (a - y)2 + 12 

p~2 = (a  - x )  2 + (a  - y)2 + a 2 .  

' ( 2 )  

Since  3L/3r# = 0 an d  3L/c3t = 0, the integrals  o f  angu la r  m o m e n t u m  a n d  energy exist and  

are equal,  respectively,  to 

I(o + # (xp  - • + #qS(x 2 + y2)  = const .  - c ,  (3) 

1 "2 ~I~o + �89 - ~oy) a + (p  + ~bx) 2] + G a m V  = const .  = h .  (4) 

The  co r r e spond ing  Lag rang i an  equa t ions  are 

= _ # -  i G o m V  x + c~(2j; + x(o) + I -  a y G a m ( x V y  - y V x ) ,  

p = _ # - i  G G m V  v _ ~b(22 - y(o) - 1 - 1  x G o m ( x V y  - y V x ) ,  

(o = 1 - 1  (xVy - y V x ) G a m ,  

(5) 

where  the part ial  derivat ives Vx and  Vy are given by  

V x = a(  - A  1 + A 5 - A 2 + A4 - 2A3 + 2/16 + 2B1 - 2B2 + 2B3 - 2B4) + 

+ 2 x ( - B 3  + B4 + B1 - B2) + Y( - A 1  + A5 + A2 - A 4 )  ( 5 a )  

and  

Vy = a(  - A  1 + A 2 + A 4 - A 5 - 2/17 -I-  2 A  8 - 2B 5 + 2B 6 + 2B 7 - 2B8) + 

+ x ( - A I + A 2 - A 4 + A s ) + 2 y ( - B s + B 6 - B 7 + B 8 ) .  (5b) 



220 M, MICHALODIMITRAKIS AND G. BOZIS 

Introducing the dimensionless variables 4, n, ~ by the transformation 

( x = a ~ ,  y = a n ,  t =  Ga - -  z - b ~ ,  

the equation and the integrals of motion assume, respectively, the form 

= - Vr + ~b(2h + r + 1 .5kn(~V.  - n V r  

= - V. - ~b(2~ - nqb) - a.5k~(~V. - n V r  

~o = 1 .5k(~V.  - nV~) 

and 

(6) 

2 + + ( r  ~ n ) + + ( r  2) L ,  (7) 
3k 

2 + 2 + ( ~ 2 + h  2 )+2qb({h_~n)+c~2({  2 + n  2 ) + 2 V ( { , n ) = E ,  
3k 

(8) 

where k = m / ( M  + m) and dots denote differentiation with respect to the normalized 
time z. The new constants L and E are related to the old ones (c and h) by the relations 

L = b c ( k a 2 M ) -  1 , E = 2hb2(M + rn) ( m M a  2) - 1 . 

The function V(~, n) in (8) can be obtained from the function V ( x , y )  in (1) by the 
substitution x = ~, y = n, a = 1. Using polar coordinates r, 0 we write Equations (7) and 

(8) in the form 

+ r 2 gp + r2 0 =  L ,  (7a) 

+ r  2 + + + + 2 V = E .  (8a) 

3. Curves and Surfaces of Zero Velocity 

Eliminating ~b between (7) and (8) we find that 

= (E - 2 v ( ~ ,  , ) )  ~ + ~2 + n 2 _ r 2 .  (9) 

It is easily seen that the first member of (9) is a positive definite quadratic function of 
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and h. Therefore, we must have 

( E - 2 V ( ~ , n ) ) ( 2  ~ 2 +  +n 2 ) - L 2 > 0 .  (10) 

Inequality (10) defines in the 0~n plane the regions of possible motion. The equality sign 
in (10) corresponds to the boundaries of these regions - i.e., to the curves of zero velocity 
(hereafter referred to as ZVC). 

The ZVC depend on the choice of the values of the constants E and L. If E < 0 it 
follows from (10) that V cannot become zero. Since V is equal to zero in the case of 
infinite separation of K and Z only, it follows that, for E < 0, the particle Z cannot escape 
to infinity, i.e., the motion of Z relative to Kxyz is bounded. 

Eliminating t) between (7a) and (Sa) we find that 

2 (  2 ) .  2 L 2 4L~b 
/ , 2 + 2 V + _ _  1+ cp + - - - E .  (11) 

3k 3kr 2 r 2 3kr 2 

Since 7 2 >_ 0 it follows that 

F(~, n, ~b) > 0,  

where 

(12) 

2 (  2)(b2 4L L 2 
r 2+ + - -  q b + ( E - 2 V ) - - -  (13) 

F( ~, n, (p) - 3kr 2 ~s 3kr 2 r 2 

Equation F(~, n, ~b) = 0 defines in the ~, n, c~ space a zero velocity surface (hereafter 
referred to as ZVS) for which we note that: 

(i) The values of~b along a ZVS are finite. In fact, for ~b ~ oo (or ~b --+ - oo) we should 
have 

2 1+ 0,  
3k 3kr 2 

which is impossible. 
(ii) The domain of definition of (13) on the 0~n plane can be found by eliminating 

~b between (13) and 8F/8 0 = 0. We find that 

( E - 2 V )  r 2+ - = 0 ,  (14) 

i.e., the above domain is bounded by the ZVC. 
(iii) The intersection of a ZVC with the plane (b = 0, i.e., the curve 

( e -  2V)r 2 - L 2 = 0 (15) 

lies in the interior of (14). 
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(iv) The intersection of  a ZVS with the plane (9 = (9o is the curve 

- + ~P6 + - -  (90 + (E - 2 V) - - -  = 0 (16) 
9 k ~ r  ~ 3 k r  2 r 2 �9 

For r ~  ~ we have V ~ 0  and (16) gives 

(90 = + ( 1 . 5 k E )  1/2 . (17) 

Therefore, for E > 0 the surface (13) extends to infinity asymptotically to the planes (17). 

For E < 0 it is obvious that the surface (13) is bounded in the space 4, n, (9. 

4. Ring-type and Island-type Bounded Motions 

We shall prove that for negative E and properly chosen values of  L the regions of  

possible motion lie inside a circular ring encircling the cube. 

From (1) and (2) we find that 

V(A1) - 8 1 n  ~ f 6 + l  41n ~ / 6 + , ~ + 2  ~/6 .,/6 = _ + 8 t a n  -~ _ _ + 4 t a n  -1 
~/-6 - 1 .~f6 + .~f2 2 12 3 

and 

V ( A 2 )  = - 4 in 10 + 8 tan-  1 �89 + tan-  1 4 
3~  

0 

Fig. 2. 
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Evolution of the regions of possible motion with increasing L for E = - 1 and k = 0.5 (only the lower 
half of the first quadrant is shown). 
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where A 1 and A 2 are, respectively, the points (1, 0) and (1, 1). We note that 

V ( A I )  < V(A2)  < o . 

More generally, we prove that 

n) 1 - < { < m ,  
V(AI)  ~ V(~, ~ _ n ~ O .  

In fact, the function V(~,O) is monotonically increasing 
F~ = - dV(~, O)/d~ on the ~ axis is attractive (Fe < 0). Therefore, 

V(AI) < V(g, 0)[ 1 < 4<  ~ .  

On the other hand we have 

V(r 0) < V(~o,n)lr 

since the 

(18) 

force 

for every ~oe(1, oo). In fact, if for ~= ~o there exists a n e 0  such that 
0 >  V(~o, 0 )>  V(~o,n ) then we could find a n = n o r 0 such that (because 
V(~o, ~>) = o) 

[ dV(~'~ n) 1 = 0  or 
d~v~ H ~ n o 

[~v(4,  n!l  = -F.(~o,  .o) = 0. 
~= r 
n = n  o 

But this is impossible. Therefore, the inequality (18) is valid. 
Let V~ = V~(~) and F~ = F~(~) be, respectively, the potential and the algebraic value 

of the force on the ~ axis inside the cube. Although we do not know the expressions for 
V~ and Fo we do know that 

F(AI)<_F~(~)<-O[O<_~<_ 1 and Fo(O)=O. 

We shall prove that 

Va(O) < V(A 1). 

We introduce the functions 

and 

fW~(~) j 0 ~ ~ < 1, 
V*(~) 

(V(~, 0)[ 1 _< ~ < 

[F~(~) i 0 -< ~ < 1, 
F / 

(r(~,  0) 11 < ~ < ~ .  
We note that: 

(i) F*(~) < 0]0 < ~<  oo 
(ii) The function F*(~) is decreasing for 0 < ~ < 1 and increasing for 1 < ~ < ~ .  
(iii) The function F*(~) is not necessarily continuous at ~ = 1. 
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Fig. 3, Schematic evolution of the regions of possible motion in the case of Figure 2. 

(iv) The function V*(~)10 -< { < m is continuous because V*(~) = - ~ F(~) d~ 

and F(~) has one point of discontinuity (at ~ = 1) at most. 
We also note that for { ~  1 we have dV*({)/d{ = -F*({)>_ 0, i.e., V*(~) is an 

increasing function of 4- Therefore, V*(0) < V*(A ~) and according to (18) we must have 

v~(o) < V(A,) < V(~, n). (19) 

Let us choose E so that 

0 > E > 2 V~(0), (20) 

then 

E - 2Vo(0) 

E - 2V({, n) 
> 1. (21) 

Let us also choose L, so that 

L 2 _> 2 ( E  - 2 v o ( o ) )  1 + . 

Then the inequality (10) becomes 

(E-  2V)r 2>--L 2 -  2 (E av) 
3k 

o r  

t 
r 2 ;> 

E - 2 V  
2 ( E - 2 V ~ ( 0 ) ) -  2 ( E - 2 V ) ~ - -  2(E - 2V~(0)) + ~ 

) 

(22) 

4 (V - V~(0))~ > 2 E - 2V~(0) 
_ 1 2 ( E  - 2 V ~ ( 0 ) )  + 3-k J E - 2V 

E - 2 V  
> 2 .  

From the above we conclude that i fE and L are chosen so that (20) and (22) are verified, 
the particle s cannot escape to infinity or approach the cube closer than , f 2  (ring-type 
bounded motion). 

Figure 2 shows the evolution of the ZVC with increasing L for E = - 1 and k = 0.5. 
We note that the regions of possible motion are almost circular rings whose width 
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decreases as L increases. However, it turns out that the width along the diagonal of the 
cube decreases at a slightly lower rate than that along the ~ or n axes. In this way, the 
moment the L takes the value corresponding to the equilibrium points on the r or n axes, 
the width along these axes becomes zero, i.e. the inner and the outer ZVC meet at the 
equilibrium points of the ~ and n axes. If we further increases L, the permissible ring 
brakes at these equilibrium points and four islands of permissible motion are formed. 
These islands shrink (as L increases) and finally they reduce to points which, obviously, 
are equilibrium points on the diagonal of the cube. The above evolution of the regions 
of possible motion is shown schematically in Figure 3. 

5. Conclusions 

The main conclusion of this paper is the fact that, for properly chosen values of the 
energy and angular momentum of an isolated system consisting of a homogeneous cube 
and a massive point particle moving in a fixed plane under their mutual gravitational 
attraction, there exist ring-type bounded motions. The corresponding regions of possible 
motion take the form of almost circular tings around the cube or of islands around the 
diagonal equilibrium points. 
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