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HOW TRUTHLIKE CAN A PREDICATE BE? 

A NEGATIVE RESULT’ 

Tarski [ 10, Section 71 showed that, if our theory of truth I’ includes among 
its consequences all instances of the schema 

(where ‘q -I is the Godel number of cp under some reasonable coding), and 
if, moreover, r entails certain very basic truths of arithmetic, then I? must 
be inconsistent. The result has been strengthened, notably by Montague 
[8], who showed that, if we require r to be closed under first-order conse- 
quence and we require it to contain T’q l whenever it contains cp, then the 
left-to-right direction of schema (T) will be enough to give a contradiction. 
The present note gives a further result along the same lines, showing that, 
if we require I’ to be closed under certain further natural logical operations, 
we can get an o-inconsistency without assuming either direction of schema 
CT). 

Let 9’be a countable first-order language which includes the language of 
arithmetic; there will be a predicate “N” whose intended extension is the 
set of natural numbers. Let-Y’+ be the language obtained from 9’by adjoin- 
ing the new predicate “T”. 

THEOREM. Let r be a set of sentences of 9” which: 
(1) contains axioms for the theory Q obtained from Robinson’s arith- 

metic by relativizing the quantifiers to “N” (see [ 1 I]); 
(2) is closed under first-order consequence; 
(3) contains T ‘(p l whenever it contains cp; and 
(4) contains all instances of the following schemata: 

(4 T’p-t $ -‘-+(T’cp-‘-+ T’J/l); 

(7) T’ 7p1+‘Trq1; 

cc> (Vx) (Nx -+ T ‘q(i) 3 + T ‘(Vx) (Nx + q(x)) ? 

Then r is w-inconsistent. 
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Proof. Using the usual diagonal construction (all such constructions 
are modeled after Godel [3]), find a ternary predicate F of the language 
of arithmetic such that 

(9 b W) WI @‘(O,Y, z) *Y = z); 

@I b 0’4 (‘0) W) Wx -, @W%Y, z) *Y 

= ‘(Vy) (F(i, y, 2) + Ty)-‘)). 

(s is the successor function). Now fmd a sentence u of 9’ such that 

(iii) Fe CJ * ‘(Vx) (Njc + (Vy) (F(x, y, ‘o -‘) + Ty)). 

u says that not every result of prefixing T’s to CJ is true. The following 
sentences are in P 

04 

(4 

(xii) 

~u-,(Vx)(~~~(Vy)(F(x,y,‘u~)~Ty)) 
(from (iii)) 

- 0 --* (WI (F(O, Y, ‘o’> + Tr) (from (iv)) 

WY) (WA Y, rul) *Y = ru’) (from (i)) 

~u+Trul (from (v) and (vi)) 

u --, -0’4 0’~ + (Vy) (F(x, Y, rul) + 7”)) 

(from (iii)) 

T’u +-(Vx) (Nx + (Vy) (F(x, y, ‘a3 + Ty))’ 

(from (viii) by (3)) 

Trul+Tr-(Vx)(A’x+(Vy)(F(x,y,r~)+Ty))l 

(from (ix) by (4a)) 

-u+Tr~(Vx)(Nx+(V~)(F(x,y,r~)+Ty))l 

(from (vii) and (x)) 

70 - T’(Vx) (Nx + (Vy) (F(x,y, =) + 5)) 

(from (xi) by (4b)) 



(xiii) 

(xiv) 

(xv) 

(xvi) 

(xvii) 

(xviii) 

(W 

(J4 

(4 

HOWTRUTHLIKECANAPREDICATEBE? 401 

-a+~(vx)(Nx -, T’(Vy) (F($y,‘al) + 5)‘) 

(from (xii) by (4~)) 

ow w -, WY) (m(x), Y, ‘al) * Y = VY) w, Y, G) 

-, TV)-?) 

(from (ii)) 

1 CJ --, -W) (Nx --f WY> (~Ts(x),Y, ‘~3 --, TV)) 

(from (xiii) and (xiv)) 

1 u + -(Vx) (Nx + (Vy) (F(x, y, ‘03 -+ Ty)) 

(from (xv)) 

7u+cI (from (iii) and (xvi)) 

U (from (xvii)) 

T rul (from (xviii) by (3)) 

WY) wk Y, ‘03 *Y = ‘u-9 (from(i)) 

WY) (Wh ~9 ‘~‘1~ TY) (from (xix) and (xx)) 

We intend to show that, for each n, the sentence “(Vy) (F(n, y, rul) + 
Ty)“?s in r. We have just shown this for n = 0. Now suppose that 

cw WY) Wk Y 9 ru3 -+ TY) 

is in r. Then so are these sentences: 

(xxiii) T ‘WY) (Wt Y > r,, > + TY) (from (xxii) by (3)) 

(xxiv) WY) (W + 1, Y, ‘03 *y = ‘WY> (F(& Y, q) + TV) ‘1 

(from (ii)) 

(xxv) WY) (WC + 1, Y, ‘~3 -, TY) (from (xxiii) and (xxiv)) 

It follows by mathematical induction that, for each n, the sentence 

(xxvi) 0’~) Vh Y 3 ‘03 -, TY) 

is in I’. But also 
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(xxvii) 7w> w + (try) (Jx-6 Y, ‘al) + 5)) 
(from (iii) and (xviii)) 

is in l?. So P is w-inconsistent. 

This theorem is a variant of Montague’s result [8] that we get an out- 
right inconsistency if we replace condition (4) by the requirement that all 
instances of the schema 

be in r. The present result is interesting, I think, because its hypotheses 
do not include either direction of schema (T) and they do not include the 
principle of bivalence. (The converse of (4b) requires that each sentence be 
either true or false; (4b) only requires that no sentence be both true and 
false .) 

Montague was particularly interested in cases where the theory I’ was not 
a theory of truth, but a theory of provability. If we take “T" to be an 
abbreviation for the natural arithmetical predicate expressing provability in 
Peano arithmetic and we take r to be the set of theorems of Peano arith- 
metic, r will satisfy conditions (l), (2) (3), and (4a). Condition (4b) will 
fail, by Godel’s second incompleteness theorem [3], and condition (4~) 
will fail, by the proof of Godel’s first incompleteness theorem. 

Various recent authors have come up with theories of truth which 
attempt to circumvent the difficulty raised by Tarski, although in 
admittedly imperfect ways. The consequences of these various theories 
do not satisfy conditions (1) through (4~) as we can see by noting that the 
theories have models with standard integers. Yet (1) through (4~) are 
structural conditions we might naturally have expected the set of conse- 
quences of a theory of truth to satisfy. Indeed they are structural conditions 
we might have continued to look for even after giving up hope of getting 
one or both directions of schema (T). It will be interesting to see, for the 
most prominent of the current theories of truth, which of conditions (1) 
through (4~) fail. To simplify our notation, let us assume that .Epis just 
the language of arithmetic. Let N be the standard model of -E”: and, for 
U a set of natural numbers, let (Jv; U) be the model of-%‘+ obtained 
by setting the extension of “T" equal to U. 

The best known alternative theory of truth is that developed by Kripke 
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[7], who talks about partial interpretations ofL?. A partial model ofY+ is 
a structure (&(U, V)), where U and V are disjoint sets of sequences. U, 
the extension of “T”, consists of those sentences that are definitely true, 
whereas the antiextension V consists of those sentences that are definitely 
untrue. Truth in a partial model is specified according to Kleene’s rules for 
strong 3-valued logic [6, Section 641. If we take (X, (U, I’)) to be the 
minimal fixed point, that is, we take (U, I’) to be the smallest pair such that 

U = the set of sentences true in the partial model 
(J”-,.W, W, and 

V = the set of sentences false in the partial model 
(Jf-i (UT V), 

we find that the set of sentences true in the partial model (Jr (U, V)) 
meets only conditions (1) and (3). Thus for Kripke’s theory the constraints 
imposed by our theorem aren’t the least bit confining. This is, I think, 
unsurprising. We normally require that, when someone proposes a theory, 
he be willing to accept all the logical consequences of that theory. This puts 
some rather strong restraints on what his theory can look like; it cannot 
have impossible or incredible logical consequences. If semantic theory is 
exempted from this requirement, so that, in doing semantics, one is only 
bound to accept those consequences of one’s theory that are prescribed 
by some very weak logical calculus, then one has a free hand to develop 
the semantic theory any way one likes. We will be unlikely to find any 
interesting formal constraints on what such a theory can look like. 

Thus our theorem has nothing interesting to say about those theories 
that resort to nonclassical logics to solve the semantic antinomies. It only 
has bearing on those theories of truth that allow us the full range of 
our customary modes of inference. 

Feferman [2] has shown how to develop an interesting version of 
Kripke’s theory entirely within a classical logical context. He gives a simple 
set of axioms of the classical predicate calculus that are satisfied by a 
classical model ( JYT U) if and only if, for some V, the partial model 
(X, (U, V)) is a fried point of the Kripke construction. The set of con- 
sequences of Feferman’s theory will satisfy conditions (1) (2), (4a), (4b), 
and (4~). Condition (3) will not be met, since it is possible to prove things 
in Feferman’s theory that are not, according to Feferman’s theory, true.3 

While the construction using the 3-valued logic is the best-known version 
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of Kripke’s theory, Kripke [7, pp. 7 1 l-7 12 ] mentions alternative formu- 
lations that are, from our present point of view, more interesting. These 
variants use some form of van Fraassen’s method of supervaluations [ 121 
to evaluate truth in a partial model. If we stipulate 

A sentence is true (false) in the partial model 
(.H, (3, V)) iff it is true (false) in every classical model (JV, 
W)inwhichULWLSent-V 

(where Sent = the set of sentences of-@‘+), the set of sentences true at the 
minimal fixed point will satisfy conditions (1) (2), and (3). If we restrict 
what classical models we will look at, saying 

A sentence is true (false) in the partial model (Jv; (U, V)) 
iff it is true (false) in every classical model (./v; W) in which 
IV is a consistent set of sentences with U C IV C Sent - V, 

the set of sentences true at the minimal fixed point will satisfy condition 
(4b) as well. Further restriction, saying 

A sentence is true (false) in the partial model (Jv; (V, V)) 
iff it is true (false) in every classical model ( Jy; (U, I’)) in 
which IV is a maximal consistent set of sentences with 
US. WC Sent - V, 

will yield a set of sentences that satisfies all the conditions except (4~). 
If we restrict the class of classical models we look at still further, 

stipulating 

A sentence is true (false) in the partial model (M, (U, I’)) 
iff it is true (false) in every classical model (M, W) in which 
W is a maximal o-consistent set of sentences with U E. W E 
Sent - V, 

we fimd that, for any fixed point, the set of sentences true at the futed point 
would have to satisfy conditions (1) through (4~). Yet the set of sentences 
true at a fixed point would also have to be w-consistent. Consequently, 
there is no fxed point. What has gone wrong? Kripke proves the existence 
of fured points by an inductive construction, setting 
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Ue = V, = the empty set 8, 

U,+r (resp., Vol+I) = the set of sentences true (resp., false) 
in the partial model (N, (II,, I’,)), and 

(/h = U, chUa and VA = Ua<h V,, for h a limit. 

The minimal futed point is the model (X’, (U,, V,)) for which we have 
U, = Ua+I and Va = V,,,. What happens in the present case is that U, 
is an w-inconsistent set of sentences, so that at the o + 1st stage we get 
the degenerate model (K(Sent, Sent)). 

We know from the general theory of inductive definitions (see, e.g., 
[9, p. 71) that a monotone operator, acting on a set of objects of any sort, 
will have a fixed point. We now see, however, that monotonicity alone is 
not enough to guarantee success in the present context, since it will not 
rule out the possibility that, at a certain stage, a sentence will be declared 
both definitely true and definitely untrue.4 We need some further con- 
dition, such as the following: Let’s say that a partial model (N, (U, V)) is 
consistent (with respect to a scheme for evaluating truth in a partial model) 
iff no sentence is both true and false in (4 (U, V)). Thus with respect 
to the 3-valued logic and with respect to the first supervaluational scheme 
we looked at, a model (M, (U, V)) is consistent iff U I? V = 8. With res- 
pect to the next two supervaluational schemes we examined, ( JY, (U, V)) 
is consistent iff U is first-order consistent and no member of I/. is a first- 
order consequence of U. With respect to the last, ill-fated supervaluational 
scheme we looked at, (Jy, (U, V)) is consistent just in case the union of 
U with the set of negations of members of V is consistent by w-logic. To 
insure that we get a consistent futed point, we require: 

(J, (8, 9)) is consistent. If (.X, (U, V)) is consistent, so is 
(Jv; ({sentences true at ( Jv; (U, V))}, {sentences false at 

(.K (U V))})). Th e union of a chain of consistent partial 
models is consistent.’ 

Let us now turn to the so-called naive semantics of Hans Herzberger [S] 
For U a set of sentences, Herzberger defines: 

h(U, 0) = u; 

h(U, (II + 1) = {sentences true in the classical model 
(Jc hH-4 al. 
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h(U, A) = {sentences eventually in the sequence 
(h(U, a): a < N} 

= “,<A f-L<p<a h(UYP). 

h(U, -) = {sentences eventually in (h(U, cx): Ly E OR)). 

cp is everywhere stably true iff, for every U, cp is in h(U, -). 

The set of everywhere stably true sentences satisfies conditions (I), (2), 
(3), (4a), and (4b), but not (4~). So does the set h(U, -), for each U. Gupta 
[4] and Belnap [l] propose systems closely similar to Herzberger’s which 
do something different at limit stages. In their systems (4a)-(4c) all fail. 

The three authors do different things at limit stages, because what 
happens at limit stages is somewhat arbitrary. What is crucial is what is 
done at successor stages, namely, application of the function taking U to 
h(U, l), which Gupta calls the “rule of revision”. Yablo (in conversation) 
has defined the degree of classicality of a set of sentences U to be the 
supremum of the set of ordinals n < w such that there is a set V with 
U = h( V, n); this is the number of times that one can apply the inverse 
of the rule of revision to U. Our theorem shows that every set has a finite 
degree of classicality. There is no infinite sequence U,, U, , Uz, . . . with 
U, = {sentences true in the model (X, U,,, r)}, since, if there were such a 
sequence, n, < w U, would satisfy conditions (1) through (4c), even though 
( N, VI) would be a standard model of n, < w U,. 

Up to now, our attention has been focused on condition (4~) which says 
that our theory of truth should require that a generalization be true if each 
of its instances are true. Both in the various versions of the Kripke semantics 
we looked at and in the different systems of naive semantics, condition (4~) 
fails, while in some of the systems all the conditions other than (4~) are 
met. Yet there do not appear to be any convincing philosophical reasons 
for giving up (4~). Thus it might be worth our while to look at the prospects 
for keeping (4~) and giving up one of the other conditions. 

We have already mentioned the work of Feferman [2], who investigates 
(among other things) the consequences of abandoning condition (3), the 
analogue of the rule of necessitation in modal logic. In Feferman’s system, 
there are sentences 6 such that it is possible to prove 0 and also possible to 
prove -, T ‘13~. The system is certainly elegant, yet one is uncomfortable in 
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accepting it, for doing so seems to obscure the connection between truth 
and proof. Why do we prove things, if proving something gives us no 
guarantee of its truth? Why do we cherish truth, if we are willing to accept 
as proven statements that we admit to be untrue? 

The consistency principle (4b) naturally falls under suspicion, not only 
because of the second incompleteness theorem, but also because of the 
prominent role such consistency principles play in paradoxes about know- 
ledge and belief, such as the surprise examination paradox. It turns out that 
we get a rather elegant system if we give up (4b) and keep the natural rules 
for the connectives other than negation and for the quantifiers. Consider 
the following axioms: 

cp + T k ‘pl for cp a sentence of 9’; 

Tkr~v~-‘*(Tkr@‘vTkrJ/-‘); 

Tk ‘q& $‘*(Tk ‘ql& Tk ‘$-‘); 

Tk rep+. J/‘++(Tk rIpi+. Tk rqy; 

Tk ‘+,(Tk r-,plcf- Tk ‘,p’); 

T ’ ‘(Vx) cp (x)’ +, (Vx)T k ‘&)’ ; 

Tk r (3x)q(x)‘*(3x)Tk ‘q(i)‘; 

(Here k varies over integers > 1, and Tk ‘ql is the result of prefuting k T ‘s 
to the Code1 number of cp.) The set of sentences true in all standard models 
of this axiom system satisfies conditions (1) (2), (3), (4a), and (4~). The 
standard models are precisely the models (x, h (Sent, n)), where n is a 
natural number. They have the following pleasant property; 

A sentence cp is true in every standard model of the axioms 
iff T ‘lpi is true in every such model. 

Let me conclude by showing that we cannot strengthen the main 
theorem to say that any set of sentences that satisfies conditions (1) 
through (4~) is simply inconsistent; indeed we do not give a simple incon- 
sistency even if we strengthen condition (1) to require that r contain all 
of true arithmetic. Consider the axiom system, which I’ll call A, consisting 
of all sentences obtained by prefixing T’s and universal quantifiers to 
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instances of the following schemata: 

cp ++ Trql for cp an atomic formula of -2’; 

T’~v~-‘~(T’cp’l~T’~~); 

T’p& $-‘*(T’q-‘& T’$-‘); 

T’cp+ $‘+, (Trq- T’$l); 

TryqTi-+ ‘T’,+,l; 

T ‘(Vx)tp” ++ (Vx)T ‘lp’. 

Tr(3x)q-‘+t(3x)Trp’. 

(Here “T rql” is to be understood in such a way that all variables that occur 
free in cp occur free in T’lpl. If cp is cp(vr, v2,. . . , v,), T’cplis T’tp(&, 
iI+,... , 6,)l.) The set of first-order consequences of true arithmetic 
together with A satisfies conditions (1) through (4~). Yet A is first-order 
consistent with true arithmetic, as we can see by observing that the model 
(X, h (Sent, k)) satisfies all axioms of A in which fewer than k T’s have 
been prefKed to instances of the given schemata. 

Theory A is motivated, first of all, by a belief that the laws of semantics 
ought to themselves be true and, second, by the idea that there is nothing 
wrong with the truth conditions for quantified and molecular sentences 
that we get from Tarski’s analysis [lo] and nothing wrong with the truth 
conditions for atomic sentences of 2’ that we get from schema (T); 
problems only arise when we attempt to use schema (T) to get truth con- 
ditions for atomic sentences of the form TrG1. At one time, A seemed to 
me to be a rather attractive theory of truth. That was before I realized it 
didn’t have any models with standard integers. 

NOTES 

’ In preparing this note, I profited from valuable discussions with a number of 
persons. Let me mention Nuel Belnap, Charles Chihara, Michael Lavine, William 
Reinhardt, Jack Silver, Albert Visser, Peter Woodruff, and Steven Yablo. Work along 
the same lines by Harvey Friedman was alluded to by Kripke [7, p. 712111. 
’ r&)T is the Gijdel number of the result of substituting the numeral for n for free 
occurrences of “x” in the formula q(x). “p($l is the function which, for n as argu- 
ment, takes ‘q(F)’ as value. 
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3 Woodruff [ 131 has investigated the effects of dropping the requirement that the 
extension and the antiextension be diioint. This gets a Larger class of fixed points. 
We can modify Feferman’s axioms to get an axiom system characterizing the fixed 
points of Woodruffs system simply by dropping the axiom 

T~x-*lTx. 

The consequences of this weakened system will satisfy (l), (2), and (4~). 
4 If, following Woodruff [ 13 ] , we regard the prosciption of truth-value gluts as 
artificial and unnecessary, we will be automatically guaranteed that there is a fixed 
point. Even so, we will need to take pains to insure that the fixed point we get is not 
the degenerate model ( X, (Sent, Sent)). 
’ More precisely, the last requirement is this: Given a set {( X, (4, Vi)): i E 1) of 
consistent partial models, where, for each i and] in I, either f/r c Uj and Vi 5 VJ 
or Uj c Ui and VI IZ Vt, the partial model ( X, (U~EI Ur, Ui,rV()) will be consistent. 
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