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Abstract. Necessary and sufficient conditions for an alternative to be a sophisti- 
cated voting outcome under an amendment procedure are derived. The uncovered 
set, as first defined by Miller (1980), is shown to be potentially reducible, and 
conditions are determined for which this reduction equals the set of sophisticated 
voting outcomes. In addition, simple methods are given for calculating both the 
uncovered set and its reduction. 

1. Introduction 

During the last 10 years students of political voting models have become aware of the 
generic instability of simple majority rule as an aggregate decision process (McKelvey 
1979; Schofield 1978; Cohen 1979). The rule rather than the exception was found to 
be the absence of an "undominated" outcome and the existence of majority voting 
cycles, implying indeterminate outcomes. Rarely, however, do we find real-world 
situations which allow for the lack of structure underlying the above-cited results. 
Further work has focused on the constraints imposed by various structural character- 
istics (e.g. rules of order, juristictional arrangements), with equilibrium predictions 
becoming more precise as the structure on the voting process increases (Shepsle 1979; 
Denzau and Mackay 1981; Denzau and Mackay 1983). 

Another avenue of study revolves around the notion of an agenda as a means of 
facilitating the decision problem of voters when faced with a set of alternatives, the 
definition of agenda being simply an ordering of the alternatives from which pairwise 
comparisons may be made. The goal here is to determine the influence of the agenda 
setter over the voting outcome; hence the equilibrium concept involves the subset of 
alternatives which are outcomes of this process under a given ordering, and under 
specified assumptions on the voters' behavior. (The assumption here, and in the work 
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cited below, is that voters act sophisticatedly (Farquharson 1969), implying that they 
take into account the optimal behavior of others in solving their own optimal deci- 
sions.) Miller (1980) derived the uncovered set as a solution for this problem, which 
in turn led to research by McKelvey (1983) and Shepsle and Weingast (1984) on 
characteristics of this set. An alternative being in the uncovered set is only a necessary 
condition, however, for it to be the outcome under any particular ordering; that is, 
although all voting outcomes are in the uncovered set, not all elements of the uncov- 
ered set are voting outcomes. Thus a complete characterization of the equilibrium set 
of alternatives has not been established. 

This paper attempts to fill this void. Necessary and sufficient conditions for an 
alternative to be a voting outcome are derived using the majority preference relation 
on the set of alternatives. Also, a further necessary condition is given, one stronger 
than Miller's and more easily calculable than the above condition, with the property 
that, in certain situations, the set of alternatives defined by this condition equals the 
set of sophisticated voting outcomes. (Some of these results have been derived inde- 
pendently, and in a somewhat different context, in Moulin 1984). 

2. Notation, Definitions, Assumptions 

Consider a set N = ( I , . . . ,  n} of voters, n odd, a finite set X = {xl ,x2, . . . ,  xt} of 
alternatives, and assume that individual preferences are represented by a simple 
ordering P~ ~ X x X; i.e. all voters have a strict preference over the set X of alter- 
natives. For a set B let ]B] denote its cardinality. The majority preference relation P is 
defined as, for any xi, x k ~ X,  

n 
x~PXk ~ ] {i ~ N: xjPiXk} ] > ~. 

The assumptions on the preferences of voters and the set N of voters guarantee that 
the majority preference relation P is complete (in Miller's terms, the voting game is a 
"tournament"). 

A convenient representation of the majority preference relation is given by the 
dominance matrix D = [d j  where dij = I if and only if x i P x j, and d~ = 0 otherwise. 
Thus we have a matrix of zeros and ones, as is depicted in Fig. 1 : 

I i  1 0 1 i l  
0 1 1 

0 0 0 

0 1 0 

1 0 0 Fig. 1 

For this example we see that x1Px2, xaPx4 ,  and x l P x s ;  x2Px3 ,  x2Px4 ,  etc. (The 
zeros on the main diagonal are implied by the irreflexiveness of the majority preference 
relation.) For any given dominance matrix, define the score s~ of alternative x~ as the 

number of alternatives which xi defeats; i.e. si = ~ d~. 
j = 1  
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Define the correspondence P:  X--~ X by 

P(x j )  = {Xke X :  XkPXi};  

analogously define 

p -  1 (x~) = {Xk e X :  x j P X k }  

and set 

/5(x j) = p -  1 (x j) w {x j}. 

Definition. An alternative xj is a Condorcet  Proposal if P(xj) = X. 

Given any two alternatives x~, xk e X, we say that x j  covers x k if xk ~ P 1 (x2) and 
P - I ( X k )  c P - 1  (xi)" More generally, we have the following: 

Definition. For  any set B __ X and any x j,  x k ~ B, the covering relation C8 c_ B x B is 
defined as: 

xj  C R Xk if and only if 

i) Xk e P -  1 (x j), and 
ii) {P-  1 (Xk) c~ B} ~ {P-  1 (x j) c~ B}. 

Given B __c X, we define the uncovered set relative to B as: 

U(B) = { x j ~ B :  ~ [ ? X k ~ B  s.t. XkCBXi]}. 

The following is a generalization of results due to Miller (1980): 

Theorem 2.1. 

i) Given any set B ~_ X ,  C~ is transitive; 

ii) x j ~  U ( X ) ~  U P - l ( x k )  = X k { x j } .  
x~ ~ ~(xj) 

Theorem 2.1 i is a direct consequence of the completeness of the majority preference 
relation, since this implies that the first condition of the covering relation is vacuous; 
that is, P -  1 (xk) c P -  1 (x j) implies Xk e P -  a (x j). Since the inclusion relation is transi- 
tive, so is the covering relation, and it is in fact a strict partial order or any given subset 
B ~ X. Thus, the uncovered set relative to B is the set of maximal elements of B under 
the order C B . Theorem 2.1 ii is Miller's "two step" principle which states that, given 
any alternative Xk ~ X ,  an alternative xj e U (X) is either majority preferred to xk or else 
there exists an alternative x i ~ P -  a (x j) which is majority preferred to Xk. 

Notice that the square of the dominance matrix gives a representation of the 
alternatives which are "reachable" in two steps; since D 2 consists of elements of the 
form dij × djk, an element of D 2 is nonzero if and only if d~j ~: 0 and djk 4: O. That is, 
xk is reachable from x~ if and only if there exists an x i ~ X such that x~ P xj and x j  P x k. 

By Theorem 2.1ii then, the matrix S = D + D 2 c a n  be used to calculate the 
uncovered set. For  the example in Fig. 1, we have 

0 2 [1121i10 0 L1222110 2 1 2 0 1 S =  2 0 1 . 

1 0 0 1 1 0 

0 1 1 1_0 1 1 1 Fig. 2 
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To see whether, for instance, x 1 is in the uncovered set, we merely inspect the first row 
of the matrix S. If the j th entry in the first row is positive, than either xl P xj or xl can 
reach x~ in two steps. Notice that the main diagonal of S consists of zeros, which is 
a consequence of the asymmetry and irreflexiveness of the majority preference rela- 
tion. By Theorem 2.1 ii and Fig. 2, we see that in this example U(X)  = {x~, x 2, x 3 , x4} 
but not xs, since x 5 does not defeat x 1 and x 5 cannot reach x 1 in two steps. 

Before proceeding, we make the following behavioral and procedural assumptions: 

Assumption 1. There exists an agenda setter who permutes the set X of alternatives, 
thus creating an agenda. We may characterize this process by letting T = {1, 2, . . . ,  t} 
and defining the set of agendas as Z = {(x~(1) . . . . .  x4(t)) e Xt: ~b: T--, T a n d  ~b is I - 1}. 
Let Yl = x,~(0. Then the agenda setter chooses some A e .4 which assigns to each level 
of the agenda y~ a unique alternative from X. (Thus, for a fixed agenda, we can 
compare the y~'s in terms of the majority preference relation, since there is a one-to-one 
correspondence between alternatives in X and positions in the agenda.) 

Assumption 2. Voting follows an amendment procedure, where, for a given agenda 
A ~ .4 an aggregate decision rule is arrived at by: i) comparing y~ and Yr-a via the 
majority preference relation (i.e. taking a vote); ii) comparing the preferred alternative 
to Yt- 2, etc. After the t - 1 pairwise comparisons, the remaining alternative is declared 
the voting outcome. (This procedure is a generalization of Roberts '  Rules: let yl be the 
"status quo", Y2 be the "bill", Y3 the "amendment", Y4 the "amendment to the amend- 
ment", etc. Roberts '  Rules then dictates that the final amendment, say y¢, be voted on 
against y, 1, the winner vs. Yt 2, and so on, with the (possibly amended) bill voted 
against the status quo last.) 

Assumption 3. All voters adopt sophisticated voting strategies; the resulting decision we 
call the sophisticated voting outcome (cf. Farquharson 1969). 

A complete desciption of sophisticated voting under an amendment procedure can 
be found in Shepsle and Weingast (1984). 

Since each voter is assumed to be able to solve for the other voters' optimal 
decision rules, from any possible pairwise comparison between alternatives the voters 
can compute the resulting voting outcome from any decision that might be made. 
Suppose, returning to the Roberts '  Rules procedure, that t = 3; i.e. there exists a status 
quo, a bill, and an amended bill. Let a majority of voters prefer the status quo to the 
bill. The voters then are able to realize that, if they choose the bill over the amended 
bill at the first vote, the outcome will be the status quo (since no voter has any 
incentive to misrepresent their preferences at the final vote). Thus, the first vote is 
actually between the status quo and the amended bill; since it does not defeat the 
status quo, the bill cannot be the voting outcome. 

The following is a generalization of the above argument: 

Definition. Given an agenda A = (y~, Yz . . . . .  Yt), the sophisticated equivalent agenda 
A* = (y*, y* . . . . .  y*) is defined as: 

i) y* = y~ 
ii) f o r l  < i < t ,  

~'Yi if y iPy*  Vj < i y* 
Y* 1 otherwise. 
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The reduced form A' = (Y'I, Y~ . . . . .  y',) of the sophisticated equivalent agenda A* is 
defined as the truncated version of A*; for example, given the majority preference 
relation in Fig. I and the agenda A = (xs, x4, xl ,  x3, x2) (i.e. Yl = xs, Y2 = Y4, etc.) we 
have that A * =  (xs,x4,xl,xl ,xO, and A ' =  (xs,x4,xO. It is easily seen that the 
reduced form contains all the relevant information from the sophisticated equivalent 
agenda; using again the Roberts' Rules example, it is as if the bill itself did not exist, 
and the agenda consisted only of the status quo and the amended bill (Note that this 
is a consequence both of the majority preference relation and of the ordering of the 
alternatives). 

The following is due to Shepsle and Weingast (1984): 

Theorem 2.2. Given an agenda A = ( Y l ,  Y2 . . . . .  Yt), 

i) y* is the sophisticated voting outcome, 

ii) y* ~ y,Ny~ P(y*). 

Theorem 2.2 i simplifies, via the sophisticated equivalent agenda, the calculation of the 
sophisticated voting outcome for a given agenda, while 2.2ii gives a condition exemp- 
lified by elements of the sophsiticated equivalent agenda. If I A'I = r, we can replace 
y* with Y'r and y* with Yl in Theorem 2.2 and obtain an analogous result for the 
reduced form. Theorem 2.2ii is also equivalent to the following: 

Vy? * y~, y*6P-l(yt*). 

That is, the sophisticated voting outcome y~* defeats, under the majority preference 
relation, all other elements y~ =~ y* in the sophisticated equivalent agenda. 

Thus far we have shown how to compute the sophsiticated voting outcome for any 
given agenda. Of course, the set of all sophisticated voting outcomes can be calculated 
by running through all the permutations of the alternatives, solving for the sophisti- 
cated equivalent agendas and applying Theorem 2.2i. Our goal, however, is to achieve 
a more elegant characterization of the set of outcomes, one which will provide insights 
into the nature of the problem. It is to this task that we now turn. 

3. Solution Sets 

Definition. Given a set X of alternatives, let 

S ( X )  : {Xj ~. X: 3 an agenda with xj as the sophisticated voting outcome}. 

S(X) is thus the equilibrium set described in the introduction; all alternatives in S(X) 
are achievable as outcomes under some agenda, given that voters act sophisticatedly. 
Miller (1980) states that all sophisticated voting outcomes are in the uncovered set of 
X; that is, S(X) ~_ U(X). Unfortunately, this is only a necessary condition; the uncov- 
ered set does not completely characterize the set of potential sophisticated voting 
outcomes for a given set of alternatives [examples are given below]. Also, the uncov- 
ered set does not "reduce" in the sense of the dominance relation; that is, the uncov- 
ered set of the uncovered set [U(U(X))] is not the proper solution set, as the example 
in Fig. I shows. 
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Under the given majority preference relation, we see that U(X) = {xl, x2, x 3, X4}, 
and that U(U(X)) = {x 1, x 2, x3}. But given the agenda A = (x 5 , x 3, x 4, x 2, x 0,  it can 
be seen that x~ is the sophisticated voting outcome. 

By Theorem 2.2, an element xj of the set S (X) must exhibit certain characteristics 
about an ordering of alternatives Xk ~ P(Xj) if it is to be a sophsiticated voting outcome 
under a particular agenda. Now the alternatives in the reduced form of a given 
sophisticated equivalent agenda constitute a chain, call it H, defined as a set together 
with a linear order (i.e. irreflexive, transitive, complete) on the set. By constuction of 
the sophisticated equivalent agenda the related linear order is simply the majority 
preference relation P, and note that the maximal element of the chain is the sophisti- 
cated voting outcome of the given agenda. For  example, in Fig. 1 and given the agenda 
described above, the sophisticated equivalent agenda is A* = (xs,x3,x 4, x4,x4), the 
reduced form is A' = (x 5 , x 3, x4) = H and we see that x 4 P x3 P x s, so that P is a linear 
order on H. 

(Note that the requirement that P be a linear order on H is the same as saying that 
Co, the covering relation restricted to the set H, is a linear order on H. Also, note that 
H ~_ P(xj) and xj e H imply xj is the maximal element of H, and vice versa.) 

Next, define 

Hj = {H ___ X:  P is a linear order on H with maximal element xj}, 

and set 

/ 7 =  Q) Hi; 
i=1 

(i.e./7 is the set of all chains in X). Order ing/7  by the inclusion relation, we have the 
following: 

Definition. H ~/7 is maximal i n / 7  if and only if there exist no H'  e / 7  s.t. H c H'. 
That is, H is maximal if it is not possible to add any alternatives to H and still have 

a chain. 

Lemma 3.1. H ~ Hj is maximal in/7 

U e-1  (xi) = x \ {xA .  
xiE H 

Proof. Suppose not; then 3 xk~ X\{x j}  s.t. V xi ~ H, XkPXl (i.e. xk ~ ~ P(xl)). 
xi~ H 

Let H' = H u {Xk}; then H'  is a chain (with maimal element Xk) and H c H' ~ H 
is not maximal. Contradiction. Q.E.D. 

The following gives a necessary and sufficient condition for an alternative to be a 
sophisticated voting outcome. 

Theorem 3.1. xj ~ S(X) if and only if 3 H ~ H~ s.t. H is maximal in/7. 

Proof. (nec.) Suppose not; then xj ~ S(X) but V H e Hi, 3 a maximal H'  ~ /7  s.t. H c H'  
(by the transitivity of the inclusion relation and the finiteness of the alternative set). 
Let A be an agenda with x~ as the sophisticated voting outcome; then A' constitutes 
a chain with maximal element xj; set A' = H and let H '  be maximal with H c H';  

Claim: 3 Xke H' \H s.t. XkPXj. 
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Proof If not, then H'kH ~_ P-l(xj);  since H'  is a chain, this implies that xj is the 
maximal element of H', which contradicts the assumption that no H ~ Hj is maximal, 
proving the claim. 

Now, assuming for the moment that x k is the only element of H'kH s.t. Xk P x j, we 
have that H'  is a chain, H = H', Xk~H'kH and XkPXj which imply that XkPX~, 
VxI~H;  thus, wherever x k falls in the agenda, say at yk,Xk= yk = y*; but 
X k P Xj ~ Xj # y*. Contradiction. 

(Note that the assumption on H'kH was not crucial; if there were more than one 
such alternative, at least one would have to be in the sophisticated equivalent agenda.) 

(surf.) Let H E H j  be maximal; by Lemma 3.1, VXkeXk{xi} ,  3 x i ~ H  s.t. xiPxk; 
without loss of generality let H = (xl, x2 . . . . .  x j); set xl = Yl = Y*, x2 = Y2 = Y*, etc.; 
then xj will be the sophisticated voting outcome under the constructed agenda (order- 
ing alternatives not in H in any fashion following H). Q.E.D. 

Corollary 3.1. In the absence of a Condorcet Proposal IS(X)[ > 3. 

Proof 

i) Suppose [ S ( X ) I = I ;  let x jeS(X) ;  by hypothesis 3 x k ~ X  s.t .  xkPxj; set 
Xk = Yl = Y*; then xj cannot be the sophisticated voting outcome under any 
agenda of this form. Contradiction. 

ii) Suppose [ S(X) [ = 2;let x j, Xk ~ S(X); without loss ofgeneralitylet xjPXk; X k E S(X) 
3 x , ~ P  ~(Xk) s.t. x, Pxfi set x j =  Yl = Y* and x , =  Y2 = Y~; then xj is not the 
sophisticated voting outcome, nor is Xk, since xjPXk. Contradiction. Q.E.D. 

We can now state and prove Miller's Theorem as a corollary to Theorem 3.1: 

Corollary 3.2. (Miller's Theorem) S(X) ~_ U (X). 

Proof. By Theorem 3.1, xj E S (X) ~ there exists a chain H ~ Hj which is maximal in H. 
By Lemma 3.1, this implies that [.) P - ' l (x i )=Xk{xj} ;  but H =_P(xi)~ 

x iE  H 

U p -1  (xl) __ Xk{xj},  which, by Theorem 2.1 ii implies that xj ~ U (X). Q.E.D. 
xi ~ P(xj) 

Another consequence of Theorem 3.1 which relates U(X) and S(X) is the following: 

Corollary 3 .3 . / f  P(xj) ~ Hi, then x ~  U (X) ~ xj~ S(X). 

Proof If P(xj) is a chain, then xj~ U(X) implies that P(xj) is maximal. Q.E.D. 

Consider the following example: 

-0  1 

0 0 

1 0 

1 1 

D =  1 1 

1 1 

0 0 

0 0 

Lo o 

0 0 0 0 1 

1 0 0 0 1 

0 1 1 1 1 

0 0 1 0 1 

0 0 0 1 1 

0 1 0 0 0 

0 0 0 1 0 

0 0 1 0 0 

0 1 0 0 1 

1 1- 

1 1 

1 1 

1 0 

0 1 

1 1 

1 0 

0 1 

0 0_ Fig. 3 



302 J.S. Banks 

Calculat ing the uncovered set via the method suggested in Sect. 2, we see that  

U(X) = {Xl,X2,x3,Xg, X5,x6} but  that  S ( X ) =  {x2 ,x3 ,x4 ,xs ,x6} .  The reader  can 
verify that  the following chains are maximal:  

H = (x8, xT, x 3, X2) ~ H 2 

H = (Xs, xT, x4, x3) e H 3 

H = (x8, xT, x2, xl ,  x4) ~ / / 4  

H = (xT, X9, X2, Xl, X5) E H 5 

H = (X9, X8, X2, Xl, X6) ~ H 6. 

Because of the cyclical nature of xv, x 8, x 9, however, x I ~ S(X).  Given the chain 

H = (X9,X8,X2,Xl) , we could add x 6 and still have a chain; i.e. x6Pxi, VxiEH. 
Similarly for the chain (x7, Xg, x2, xl)  we could add x 5, and for the chain (Xs, xv, x2, xl)  
we could add x 4. Since these are the largest possible chains in H~, we conclude that  
xl ~ s(x). 

The derivat ion of the set S(X)  via Theorem 3.1 may  seem tedious, since in general 
there will be more  relations to inspect than in the derivat ion of the uncovered set 
U(X).  This relative difficulty is easily justified, however. Recalling the example in 
Fig. 3, we see that  if we alter one of three par t icular  binary relations, say x T P x  s to 
x s P x v, then the elements of P(x  1) constitute a chain H = (x7, X9, X8, X2, X1) , and now 
applying Corol lary  3.3, we see that  x t e  S(X) ,  while the uncovered set U(X)  has 
remained unchanged. Thus the proper  solution set must  be sensitive enough to deal 
with such minor  differences in the major i ty  preference relation. 

Also, if there is a natura l  or imposed Yl, e.g. a status quo to be voted on last, the 
process of comput ing chains proves to be a more  appropr ia te  method. Suppose that  
xl  is the status quo, with x 1 = y~ the rule. Define 

H i = {H ___ X: P is a linear order  on H with minimal  element xl} .  

Then Theorem 3.1 can be rewritten as: 

Theorem 3.1'. x j~  S(X)  if and only if 3 H  ~ (H't n Hi} s.t. H is maximal. 

That  is, there must  exist a maximal  chain H with maximal  element xj and minimal  
element x l .  

Unfortunately,  there do not  seem to exist any simple methods for calculating S (X) 
as there are for U(X).  What  we do know is the following: 

F o r  any subset B c X, with IB[ = n, and related dominance matr ix  DB, order  the 
elements of B so that  their scores restricted to B are in nonincreasing order. Define the 
score vector of B as the n-tuple of scores in B (after re-ordering). 

Theorem 3.2 (Moon •968). The following are equivalent: 

i) P is transitive on B. 
ii) B has score vector (n - 1, n - 2 , . . . ,  1, 0). 

iii) Each principal submatrix of  D 8 contains a row and column of zeros. 

Thus it is possible to determine whether a given subset of alternatives constitute 
a chain by inspecting their scores restricted to the subset and ordered appropriately,  
or by inspecting the related dominance matrix. To see whether the chain is maximal,  
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we then need to see if we can add any other alternatives to the subset and still maintain 
the transitivity. If we define Dx, as the dominance matrix restricted to the elements of 
P(x3 and first calculate maximal  chains in H i, the only way an alternative could be 
added would be for the alternative to defeat all the elements of the chain, and so we 
need only check to see if we can add any alternatives at the "top" of the dominance 
matrix; i.e. if B is a chain maximal  in H i then x~ is the maximal  element of B, and if 
[B[ = n, then xj¢  P(x~) can be added to B with B w x~ transitive if and only if B u xj 
has score vector (n, n - 1, n - 2 , . . . ,  1, 0). 

Nevertheless these conditions are somewhat  cumbersome, and we would like to see 
how far we can reduce the uncovered set before we have to impose them. We proceed 
now to derive a refinement of the uncovered set and to establish some conditions 
under which this set equals S(X). 

Let D, -- [d~j] be the dominance matrix restricted to the alternatives in the uncov- 
ered set. We shall say that the uncovered set is reducible if it is possible to parti t ion 
the alternatives into two nonempty  subsets, U*(X) and Uc(X) such that for all 
x i ~ U*(X) and all x~e Uc(X), xiPxj; the set is irreducible if this is not possible. Let 

s~ = ~ diS. If U (X) is reducible and the scores s~' are in nonincreasing order, then O, 
j = l  

has the following parti t ioned structure: 

[ Fig. 4 

where D,1 and 0,2 are the matrices of U* (X) and Uc(x), respectively (Moon 1968). 
If U(X) is reducible and U* (X) is irreducible, then we can derive the following 

results: 

Lemma 3.2. x2¢ U*(X) 

i) 33¢k~ U*(X) s.t.  XkCxXj, o r  

ii) VXk~ U*(X), xkPx J. 

Proof 
1) x j s  U(X) and xj¢  U * ( X ) ~  ii), by definition; 

2) x~¢ U ( X ) ~  3xk~ U(X) s.t. xkCxxj; 
a) if x k ~ U* (X), then i) ; 
b) if Xk ~ U* (X), Xk Cx xj and x i P Xk, V xl ~ U* (X) ~ xi P x j, '¢ xi ~ U* (X). Q.E.D. 

The following result shows that we have not eliminated any possible outcomes in 
our reduction of the uncovered set. 

Theorem 3.3. S(X) ~_ U*(X). 

Proof Suppose not; then 3x~6 U(X), xj¢ U*(X) and a maximal chain H6H~ (by 
Miller's Theorem we need not consider alternatives not in the uncovered set); 
xj¢ U*(X)~VXkE  H, Xk¢ U*(X); thus, by Lemma 3.2, xk6 H ~  

a) xiPXk, '¢Xi~ U*(X), or 
b) xiCxxk, for some xi~ U*(X). 
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Case 1. Suppose a) holds VXke H; then H cannot be maximal, since we can add any 
x~ e U* (X) and still have a chain. 

Case 2. Suppose b) holds for some subset H' c H; let xm be the maximal element 
(under the linear order P) of H';  then for some xl ~ U* (X), xl Cx xm ~ xl P Xk V Xk ~ H' ; 

but x~ P x,  V x n ~ H \ H '  ~ x~ P x k V xk ~ H which implies H cannot be maximal. 
Q.E.D. 

Combining the result of Theorem 3.3 with that of Corollary 3.1, we get: 

Corollary 3.4. In the absence of  a Condorcet Proposal, [U* (X)I > 3. 

Figure 5 gives an example of a reducible U(X): 
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1 0 1 1 0 1  

0 1 1 1 1 1  
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0 0 0 0 1 1  

0 0 0 0 0 1  

0 0 1 0 0 0  

0 1 0 0 1 1  

1 0 0 0 0 0  

In this example U(X)  = {xl ,  x2, x3, x4, XS}, SO that 

D u = 
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0 0 

1 0 

0 0 

0 0 

0 1 

1 1 

0 1 

0 0 

0 0 

1 1-  

1 0 

0 1 

1 1 

1 1 

0 1 

0 1 

0 0 

1 0_ Fig. 5 

1- 

1 

1 

1 

0_ Fig. 6 

Upon  inspection of Fig. 6, we see that U* (X) = {x 1, x2, X3}. Corollaries 3.1 and 3.4 
give us that if I U*(X)[ = 3, then U*(X) = S(X) .  Thus, in this example, we are able to 
calculate S(X)  without having to examine chains of alternatives required to invoke 
Theorem 3.1. In fact, we can strengthen this sufficiency condition to the following: 

Corollary 3.5. If I U*(X)[ <: 4, then U*(X) = S(X).  

Proof  

i) I U* (X)[ = 1 ~ xj E U*(X) is a Condorcet Proposal;  ~ xj ~ S(X) ,  and V xk # x j, 
xk ~ s (x). 

ii) [U*(X)] = 3: let Xi, Xj,Xk E U*(X); by definition they cycle; let x i P x j ,  x jPxk ,  

XkPXi; 

We set xl = Yl = Y* and x k = Y2 = Y*;  then x k will be the sophisticated voting 
outcome, and using the same argument we see that x i ,x j  ~ S(X).  

iii) ]U* (X)] = 4: let xl, x j, Xk, Xm ~ U* (X); by definition each defeats either one or two 
others: 
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a) let x~Pxj, xiPXk, x,,Px~; then either 

l) x j P x  m o r  

2) xkPXm; 

if 1), set xj 
come; 
if 2), set Xk 
come; 

b) let x~Pxj, XkPXz, xmPx~; then either 

1) x i P x  k or 

2) xjPXm; 
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= Yl = Y* and xl = Y2 = Y*; then x~ is the sophisticated voting out- 

= ya = y* and xl = Y2 = Y*; then x i is the sophisticated voting out- 

since x i E U * ( X ) ~ _ U ( X  ), 3 x , , x p ~ P - l ( x ~ )  s.t. x, PXk and xpPxm; if 1), set 
xv = Yl = Y•, xj = Y2 = Y*, xi = Ya = Y*, if x jPxp ,  or xj = Yl = Y*, xp = Y2 = Y~, 
xi = Y3 = Y*, if xpPxj;  then x~ is the sophisticated voting outcome; if 2), a similar 
argument holds. 

Repetition of this process proves that x~, x i, Xk, Xm ~ S(X).  Q.E.D. 

4. Conclusion 

The results of this paper show that there is a valid procedure for calculating the set 
of potential sophisticated voting outcomes: 

i) Derive the uncovered set via the method suggested in Sect. 2. If ] U (X)[ = 3, then 
V (X) = S (X). 

ii) If [U(X)[ > 3, determine whether U(X)  is reducible via the method given in 
Sect. 3. If it is reducible, find the irreducible set U*(X).  If [U*(X)[ < 4, then 
u *  (x) = s (x). 

iii) If i) and ii) fail to determine S (X), begin examining elements of U (X) (or U* (X) 
if U(X)  is reducible) to find alternatives which satisfy the conditions put forth in 
Sect. 3 in order to use Theorem 3.1. 

In Miller (1980) it was shown that, if we assume sincere voting on the part of the 
voters, then the set of potential voting outcomes was equal to the Condorcet  set C (X), 
defined as the largest subset of X such that for all x~ ~ C (X) and all xj 4 C (X), x~ P xj. 
But this corresponds to our definitions in Sect. 3 of reducible and irreducible sets, so 
that the same method used to calculate U* (X) can be used to determine C (X), where 
we now apply it to the whole of X. The necessity of an alternative being in C(X)  is 
obvious, while the sufficiency comes from the fact that, since C (X) is irreducible, there 
exists a cycle which spans C(X); i.e. it is possible to get from any alternative in C(X)  
to any other alternative in C(X)  via the majority preference relation, and also include 
all other elements of C (X) along the way (Harary and Moser 1966). The agenda setter 
thus can construct the agenda so that his preferred alternative is voted on last, and 
assure himself that it will be the final outcome. 
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