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Abstract. We derived the set of equations determining the structure of a spherically symmetric charged star 
within the framework of general relativity (modified Oppenheimer-Volkoff equations). The equations have 
been solved for a completely degenerate Fermi gas with a charge density assumed to be proportional to the 
matter density. It is shown that the presence of a net charge does not affect the existence of a critical mass. 
The value, however, could be substantially altered, in some cases doubled. 

1. Introduction 

The possibility that a self-gravitating system could contain a net charge has been 
discussed in the context of stars by Eddington (1926), the universe by Lyttleton and 
Bondi (1959) and in a slightly different version (electricaUy polarized universe) by Bally 
and Harrison (1978) among others. The presence of such a net charge could result from 
the escape of some electrons from the system, and/or from the inequality of the 
electronic and proton charge and/or from the non-zero charge on a neutron. The first 
possibility would give rise to a charge-to-mass ratio of ,,~ 100 coulombs per solar mass 
(Bally and Harrison, 1978), while a limit of bq ~ 10-2~ can be imposed on the last 
two possibilities from precision experiments (see, e.g., Hughes 1964). It seems that the 
immediate physical consequences of such a net charge are always found to be extremely 
small, but nonetheless the picture of an electric field playing a role in gravitationally- 
bound systems is, in principle, intriguing and interesting. 

In this short note we address ourselves to the specific problem of the effect of a net 
charge on the structure of a degenerate configuration, for example, a neutron star. In 
particular, we want to find out if the additional pressure support coming from the 
electrostatic field would affect the concept and existence of a critical mass. It seems 
manifestly and intuitively clear that significant changes are not to be expected if the 
magnitude of the field is limited by the arguments in the last paragraph. However, we 
are taking up an issue of principle here by studying how the presence of various amount 
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of net charge would affect the structure of the system, without worrying about the fact 
that presently known mechanisms cannot give us the required amount for interesting 
results. It is in this spirit that the subsequent calculations should be taken, as also should 
be the case with other work on the same topic (e.g., Bally and Harrison, 1978; Mehra, 
1982). 

2. T h e  Structura l  Equat ions  

For a static, spherically-symmetric system, the metric and the energy-momentum tensor 
can be written in the form 

ds 2 = c2 dt2 e v(r) - e Z ( r ) d r 2 -  r2(dO 2 + sin20 d~b 2) (1) 
and 

T~ = (p + pc2)v~' G + p ~  + - - ( F  Fv~,- ~F~,aF 6~), 
41t 

(2) 

where all the symbols have their usual meanings. The fluid four-velocity in the present 
case can be written as 

v r = V o = V ~ , = O ;  vo = e-V/2 ; (3) 

and the electromagnetic field tensor F "~ can be obtained from the four potential A~ given 
by 

a o=tp(r);  A t = 0 ,  V g # 0 .  (4) 

With the help of Equations (1)-(4), we can then obtain the following structural 
equations for the system: 

( 2  d~r ) 1 8 n G (  u~) e-  a 1 1 
r r 2 = c 4 p c 2  + ' (5 )  

e_.l (~  dv ~ )  r zl 8rtG(c 4 u~)  - -  + - - z  = p -  , (6)  
dr 

dr 2 dr (p + pcz) + --8n + ' (7) 

du 2u 
- -  + - -  = 4~zpee ~/2 ; (8) 
dr r 

where u(r) - exp ((2 + v)/2)(d~b/dr), and pc(r) is the charge density measured in proper 
co-ordinates. We note that Equations (5) and (6) are obtained from the Einstein field 
equations, Equation (7) is derived from the vanishing four-divergence of T~ (i.e., 
T~;, = 0) and Equation (8) from the general relativistic Maxwell equation, where the 
four-current j ,  is related to Pe by pe = -v,( j" /c)  = exp (v/2)(j~ 
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3. General  So lu t ions  

The set of Equations (5)-(8) can be solved for the unknowns 2, v, p, p, u and Pe if they 
are supplanted by an equation of state and a charge distribution law. We will defer a 
discussion of this to the next section while we study here the properties of the equations 
in general. Equation (8) can be readily reduced to a quadrature for u: i.e., 

r 

U(~) ~ ~2 f 4~r2~e e'~/2 d~". 

o 

(9) 

It is obvious that u(0) = 0 and for r >__ R, the 'radius' of the star ; 

where 

u(r) = Q (10) 
r 2 

R 

Q = f 4rcr2pe e x/2 dr .  

0 

Similarly, Equation (5) can be formally solved for 2 to yield 

(11) 

e - 2 =  1 
2GB(r) 

rc 2 
(12) 

where 

B(r)= 41rr 2 p+ ~ dr. 

0 

(13) 

With the aid of Equation (11), we can write Equation (22) as 

e- a 1 2GB GQ 2 
= - -  + - -  ( 1 4 )  1.C 2 /,2C4 

where 

B =  4zcr 2 p +  8~-c2 dr .  

0 

It is obvious from Equation (12) that 2(0) = 0. We also remark that B and Q represents 
the total 'gravitating' mass (both material and electromagnetic) and the total charge of 
the star as measured by a distant observer. 
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Combining Equations (5) and (6), and using 2(00) = v(oo) = 0, we obtain 

v(r) = - 2 ( r ) -  i 8nGreac 4 
Y 

- -  (p + pc 2) dr ; 

from which we immediately have 

v(r) = - 2(r), for r > R (15) 

and 

v(O) = - ; 8rCGrc 4 e 2 

0 

- - ( p  + pc2)dr. (16) 

With the above expressions for 2, v and u, we can write the 'hydrostatic' equation of 
equilibrium (7) as 

dp 

dr 

p U 2 

r2(1 2GB(r)~rc 2 11 
(p + p /c 2) + pe u e a/2 . (17) 

A comparison with the Oppenheimer-Volkoff equation for the uncharged case of the 

form 

dp _ -G(M(r) + 47zr3p/c 2) (p + p/c2), (18) 

dr r 2(1 2GM(r) 
rc-S ] \ 

shows that the presence of a net charge (or electrostatic field) contributes not just an 
increase in repulsion but also an increase in the 'mass' or the gravitating source as defined 
by Equation (13). This is important in the discussion of the critical mass. 

4. Numerical Solution: Application to Neutron Stars 

For the purpose of numerical integration, it is convenient to rewrite Equations (5), (6), 
(7) and (8) in the following way: 

d 2 _  8nGrez(  u 3 ) (e~ r 1) 
dr c 2 P + 8~c ~ - - -  , (19) 
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dv (; 
- r e ~ + - -  ( 2 0 )  

dr c z 8~cc 2 ' 

d p  r 4 , G r e ( u ~ )  ( e a - l ~ l  eZ/e 
dr L c 4 P -  ~ + ~,~--Y ,J--](P -I- 0122) + pe u ; (21) 

and 

du 2u 

dr r 
+ 4rOPe e a/2 . (22) 

Equation (20) can be decoupled from the rest of the equations, which can then be solved 
for a given Pc = p(0) (we recall Z(0) = u(0) = 0) if we are also given p = p(p) and 
Pe = Pe(P)" 

We now consider the case of a self-gravitating completely degenerate fermion system 
described by 

p = ~ ( cosh r  ~), (23) 

where 

 cos  +3 

K -  m4c3 ~ = 4 s i n h _ l  PF 
327z2h 3' mo c ' 

(24) 

and PF, mo are the Fermi momentum and the rest mass of the fermions, respectively. 
We furthermore assume that 

/0 e = ~ / ) ,  ( 2 5 )  

where cc is a constant. Equation (21) can now be re-written as an equation for ~, of the 
form 

d~ [ [ (~ ) uZ 1 e "~-1_} = -~ 4rcGrea 8sinh-~ + ~ - + x 
dr ( ~ - -  K sinh r  ~ 2 ~ 2r 

x (4  sinh ~ -  8 s inh~)  + 

Equation (26) has been solved numerically together with Equations (19) and (22) for 
~(r), 2(r) and u(r) for various values of ~o (and hence, 0o). Similarly, the mass re(r) 
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defined by 

d m  
- -  = 4 r c r 2 p ,  (27) 
dr 

with m(0) = 0 is also evaluated. With the solution for 2(r), r and u ( r ) ,  we can then 
solve Equation (20) for v(r), using v(0) as given by Equation (16). 

The results are readily separable into two different classes, depending on whether 
is smaller or larger than a critical value % ~ 0.000 25. For ~ > %, no stable equilibrium 
configuration can be obtained. It seems that the increase in the pressure gradient cannot 
compensate for the corresponding increase in the effective mass. For ~ < 0.00025, on 
the other hand, a stable equilibrium configuration was obtained, and for a given 4o 
(hence Po), the set of equations can be integrated outwards to a finite value o f r  at which 

= 0. The resultant mass M as given by Equation (27) is plotted as a function ofpo for 
various values of c~ in Figure 1. We remark that while B represents the totat 'gravitating' 

M/Me 

I I I I 

~ = 0 . 0 0 0 2 5  

I I I I 
1~ 3 1~ 4 10 is 1~ 6 1~ ~ 

Po [g/cm3l 
Fig. 1. Mass versus centraI density for various values of a. 

mass, we nonetheless plot M vs/90 here, as this will afford the closest comparison with 

the non-charged case. If can be seen that for a given Po, M(~ ~ 0) > M(c~ = 0), an 
expected result in view of the additional pressure support. However, the property that 
M increases with Po up to a maximum value Mot i at Pc and then decreases with Po still 
remains as long as ~ < ~c. Thus, the concept of a critical mass and the associated 
transition of the equilibrium configuration from a stable to an unstable one (see, e.g., 
Weinberg, 1972) are not changed by the presence of a net charge as long as ~ < ~c. 
Furthermore, the value of Mcri increases with ~, and Mcr i (~ = 0.00025),~ 2 M~i 
(~ = 0), as shown in Figure 2. We also plot the run of 2, v and p with r for various values 
of ~ in Figures 3 and 4. It can be seen that the electrostatic repulsion results in a more 
gradual density gradient, a feature particularly obvious in the outer layers, with a 
resultant increase in the radius of the configuration. 
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Fig. 2. Critical mass  as a function of ~. 
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5. Summary and Conclusions 

We observe the following in connection with the structure of a selfgravitating completely 
degenerate, ideal fermion system carrying a net charge density Pe =dp;  p being the 
'baryonic' mass density: 

(1) For e <  c~c = 0.00025, stable configurations can exist. For the same central 
density, the values for the mass and the radius are larger than corresponding ones for 
the non-charged case. These effects are understandable in terms of the electrostatic 
repulsion. 

(2) For a given ~ < ec, there still exists a critically maximum mass for the equilibrium 
configuration, although its value could be drastically changed (indeed doubled for 

--- e~). Thus the associated increase in effective mass manages to compensate for the 
increase in pressure gradient, both effects being results of the same electrostatic field. 

(3) For ~ > ~c, no stable equilibrium configuration can be found. 
While the above results are interesting, and certainly correct, in principle, it is still 

appropriate to relate e to values imposed by presently known charge-inequality mecha- 
nisms. Thus we find e ~ 100 coulombs/solar mass if the net charge comes from the 
escape of some electrons, while e ~ 10-12 if we have qe --/= qp, or qn r 0. It is comforting 
to realize that the concept of a critical mass for a completely degenerate configuration 
is not changed even when e has a value 100 million times larger than the one presently 
established. 
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