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Abstract. Thermal and electrical conductivities due to electron scattering on phonons are calculated 
for degenerate cores of white dwarfs and envelopes of neutron stars for wide ranges of density, 
temperature and ion charge. In the stellar zones, in which T >~ ho~pi(Ztl3eZ/hvv) (~opi is the ion plasma 
frequency and vv the Fermi velocity of electrons), the main contribution into scattering comes from 
the Umklapp processes. In the zones with lower T, the Umklapp processes are frozen out, that 
results in a sharp growth of electrical and thermal conductivities. This, for instance, should make 
nuclear burning more stable in such zones. 

(1) To study the many  processes  in neutron stars and degenerate  dwarfs  

(cooling, evolution of magnetic  field, nuclear burning of accreted matter ,  etc) 

one should know the t ranspor t  propert ies  of stellar matter.  This paper  presents  

calculations of electron thermal  and electrical conductivit ies for  degenerate  

envelopes  of  neutron stars and cores of white dwarfs  at tempera tures  below the 

melting tempera ture ,  T~, of ion crystals.  Without  an al lowance for  zero-point  

quantum oscillations of ions, T~ is determined by  the condition (Pollock and 
Hansen,  1973) Z2e2/kBTM a ~ 150- i .e . ,  T~ ~-- 1.5 • 105ZS/3(p~/~e)l/3 K; where 

a = (3/47rn~) 1/3, tx~ = A / Z ,  A and Z are the mass  and charge numbers  of the ions, ni 

the ion number  density, p the mass density of the matter ,  and p6 = p/106g cm -3. 
At rather  high densities, P m 1012 g cm-3, when neutrons begin to drip f rom nuclei 

(e.g., see Baym and Pethick,  1975), /.L e becomes  equal to the total number  of 

nucleons per  proton instead of to A[Z .  Evaluat ion of TM with an al lowance for  

zero-point  ion oscillations was pe r fo rmed  by  Mochkovi tch  and Hansen  (1979) on 

the basis of the L indemann  criterion. These  authors found that zero-point  
oscillations become significant at p > 400 Z6A 4 g c m  -3 and suppress the onset  of  
crystallization. As p reaches 6.1 x 104 Z6A 4 ( f o r  odd A) or 1.7 • 1 0 4 Z 6 A  4 g c m  -3 

(for even A) TM falls down to 0, and at higher p no stable lattice is possible. The 
density dependence  of TM is shown in Figure 1 for  helium and carbon ions, 4He 
and 12C. 

We shall consider the densities P ~> Z2g c m-3 at which electrons are ideal 
(Ze2/a ~ kBTv, Tv being the degeneracy  temperature) .  At such densities ions are 
usually fully ionized. They  form Coulomb crystals (-- ion Wigner crystals) on the 
uniform electron-charge-densi ty  background.  Vibration propert ies  of  these crys-  
tals are similar to those of electron Wigner crystals (with an ion-charge back-  
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Fig. I. A density-temperature diagram for the matter of neutron star envelopes and degenerate dwarf 
cores. Solid lines are the crystallization curves (Mochkovitch and Hansen, 1979) for carbon and 
helium ions, ~2C and 4Fie. The dashed line corresponds to k~T = hcopi (i.e., t =-kBT[hwpi = 1, see 

Section 2), and the dots show the offset of the Umklapp processes (t = Z~;3e21hvF, see Section 3). 

ground) theoretically investigated in detail in solid state physics (Cohen and 
Keffer,  1955; Carr, 1961; Coldwell-Horsefall  and Maradudin, 1960; also see 
Albers and Gubernatis,  1981, for references).  Also, the thermodynamics and 
vibration spectrum of Coulomb crystals were studied directly for astrophysical 

conditions (Pollock and Hansen,  1973; Mochkovi tch and Hansen,  1979). 
It is widely recognized that the crystals under discussion (with one species of 

ions) have a bcc lattice (for bcc being most stable, see Coldwell-Horsefall  and 
Maradudin, 1960; Pollock and Hansen,  1973). In degenerate dense stellar matter, 
heat  and charge are mainly transported by electrons, the most important scatter- 
ing mechanism of electrons at T < TM being the scattering on phonons. Trans- 
port  properties of such a matter have been studied in a number of papers, of 
which the works by Flowers and Itoh (1976) and Yakovlev and Urpin (1980) 
seem to be the most  detailed ones. For references to other works and their critical 
analysis, see Yakovlev and Urpin (1980). As a rule, various authors have 
considered heavy ions (Z -> 1) and rather high temperatures of crystals (higher 
than the Debye  temperature).  This paper considers arbitrary Z, including Z = 1, 
and arbitrary temperatures,  including very  low ones; the effect of the magnetic 
field will be neglected. Astrophysical applications of the obtained results will be 
discussed in Section 4. 
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(2) The thermal and electrical conductivities, K and ~r, of the relativistic 
degenerate electron gas are conveniently described (Flowers and Itoh, 1976) in 
terms of the effective electron collision frequencies v~ and v~: 

7r2k~Tne 1015 ~ ( 1 0 1 6  S - l "  K -  --~4.11x x-f3T~ - - ~  ) ergs 
m,v~ \ cm s deg '  (1) 
) 

o ' -  -~1.51• 1016s-1" 
m , l.'o- \ ' 

where ne is the number density of electrons, x = hkdmc = (p6/l~e) ~r [3 = VF/C = 
X(1 + XZ) -~/z, with kv = (37r2n~) ~/3, vv and m,  = m(1 + x2) ~/2 being the momentum, 
velocity and relativistic (effective) mass of electrons on the Fermi surface, 
respectively. 

To calculate v~ and v~ for electron scattering on phonons we shall use the 
variational method well-known in solid state physics (see Ziman, 1962). The 
deviation of the electron distribution function, f(p), from the equilibrium Fermi- 
Dirac function f0 = {exp[(e - ~)/kBT] + 1} -~ will be set equal to the simplest trial 
function which is (Ofo/OE)(pE) for v~(E the electric vector) and (Ofo/Oe)x 
(e - tx)pXTT) for v~. At temperatures above the Debye temperature O (see below) 
this approach leads to exact result, and at T ~< | it gives negligibly small errors 
for v~ and the errors <20% for v~ (see Ziman, 1962). This accuracy is quite 
satisfactory for astrophysical applications. 

We will use the formalism of extended Brillouin zones in the free-electron 
approximation to describe electron states. In this case, the Fermi surface as well 
as dispersion relation are the same as for an ideal electron gas (see below). Since 
the ions are fully ionized, the potential of electron interaction with lattice 
vibrations has a simple form 

dq V(r)=47rZe2i f ~ ~fl (q~,) e '~ , (2) 

where ~ is a small displacement of an ion numerated by I = 1, 2 , . . .  from its 
equilibrium position, % in a lattice. Equation (2) takes into account the static 
screening of the ion charge by electrons with the screening length k ~ =  
vd~/3wv~, where Wpe = (47reZnJm,) ~/z is the electron plasma frequency. Sub- 
sequent calculations are similar to those in solid state physics (Ziman, 1962). The 
only difference is in considering relativistic electrons and rather peculiar spec- 
trum of phonons. The result is 

_ e 2 ksT F,~ ~ ~ 0.96 x 1015 Tr162 s 1 (3) 

where we introduce the convenient dimensionless functions 

2 d S d S '  [ 1 - (  [3q'z] zs 
F~,~ = ~ f ( q 2 + k ~ v )  2 \2kF] J ~  [qe'(k)]Z(e~s- 1)-z e g . . . .  (4) 
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kBT 0.187T,~/A ~1j2 h~o~(k) 

2 2 2 2 ~2 q z, 3kFz~ 
g, =q2, g = q  - - -2~-~  -- ~ - - - ~ - '  

o~  = (4r ~/2 is the ion plasma frequency and s numerates the phonon 
modes. In Equation (4) integration is carried out over all the possible positions of 
the electron momenta before and after scattering, p and p', on the Fermi surface 
(see Figure 2 for illustration) and S = 4~rk~ is the area of the Fermi surface. 
Furthermore, q = p' - p, and k and e,(k) denote the momentum and polarization 
vector of a phonon excited or absorbed by an electron. According to quasi- 
momentum conservation rule in electron-phonon scattering, k lies in the first 
Brillouin zone and is given by - - - k = q - K ,  where K is the vector of the 
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Fig. 2. A schematic picture of electron scattering on phonons in a simple square two-dimensional 
lattice at Z = 5 (for illustration). Dot-lines show the boundaries of the first three Brillouin zones 1, 2, 
and 3. The solid circle is the Fermi surface, heavy short  lines indicate the places where the Fermi 
surface is distorted due to the Bragg reflection of electrons. The transition A ~  B corresponds to 
normal process whereas the transition A ~  C corresponds to the Umklapp process.  The vectors AB 
and DC are the phonon quasi-momenta for these transitions, and AD is the corresponding reciprocal 

cell vector  for the Umklapp process.  
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reciprocal cell containing the end of the vector q. Equation (4) takes into account 
one-phonon transitions only which is not very accurate at T ~ TM (Flowers and 
Itoh, 1976). It should be noted that the expressions for vK and u~ used by 
Flowers and Itoh (1976) as well as by Yakovlev and Urpin (1980) are not as 
general as Equations (3) and (4), and may be derived from (3) and (4) by making 
use of approximate treatment of the Umklapp processes described by Ziman 
(1962, Chapter 9, w 

Three phonon modes, s = 1, 2, 3, are available in Coulomb crystals (Cohen and 
Keffer, 1955; Carr, 1961). Two of them (s = 1, 2) are acoustic, and the third 
(s = 3) is optical. Near the centre of the Brillouin zone (at k ~ke ,  kD = 
(6~r2ni) 1/3 = (9rc/2)I/3a < being the radius of the sphere whose volume is equivalent 
to the volume of the Brillouin zone) the acoustic modes are transverse but the 
optical one is longitudinal. At k - k D  the modes are purely transverse and 
longitudinal for several specific directions only. 

Since ions are fully ionized under the astrophysical conditions, the number of 
free electrons per one ion is equal to Z. If Z = 1, q lies in the first Brillouin zone 
at any orientation of p and p'. In this case k = q in Equation (4), and only normal 
processes contribute into scattering (Figure 2). If, however, Z/> 2, q ' jumps out' 
of the first zone at some orientations of p and p' that corresponds to Umklapp- 
processes (Figure 2). The number of reciprocal cells, occupied by q, may be 
roughly estimated a s  (kF/kD) 2~ Z 213, i.e., increases with Z. 

If Z >> 1, the integrals (4) may be analytically evaluated. Let us first fix p and 
integrate over dS'. For this purpose let us define the reciprocal lattice with the 
centre in the end of the vector p, where q = 0 (point A in Figure 2). The Fermi 
surface will be separated into many ( - Z  2/3) pieces which lie in different 
reciprocal cells. The main contribution into the integrals comes from the pieces 
distant from the central one. The vector q changes only slightly, while integrat- 
ing over the surface of a distant piece, whereas the quantities which depend 
upon k change rather sharply. Therefore, q in integrand may be replaced by a 
constant equal to some mean vector that characterizes the position of a given 
piece on the Fermi surface. Then the integral equals the surface area of the piece 
multiplied by the value of the rapidly oscillating function of k averaged over this 
area. Taking into account the variety of distant pieces, the above averaged value 
may be replaced by the value averaged over the volume of the first Brillouin 
zone. It is easy to show that this replacement is equivalent to setting, in Equation 
(4), 

3 

[e~(k)q]2zT(eZ,_ 1)-2_+ ,2~2~(n) 
~ u ( t )  , 

s 1 

G(") (3Vst2~'~)-l~ f dkzs~(e ~* - I) -2 e ~' (6) (t) : 

where n = 0 or 2, and integration is carried out over the first Brillouin zone (for 
bcc lattice, the first zone has the shape of rhombic dodecahedron; its volume is 
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denoted by VB). With replacement (6) integration over dS and dS'  in Equation 
(4) is easily carried out. In this case the integration region over dS'  should be 
restricted by the values q > qmin-- kD corresponding to the distant parts of the 
Fermi surface which give the main contribution into the integrals. Since kTp/kD 
ZZ/3(eZ/hve) ~/2 ~ 1, the screening of the ion charge may be neglected. Small q 's  do 
not contribute to the integrals in almost all the terms in which one can set qmin = 0. 
Only in one term (in FK at small q), does the integrand behave as dq/q. 
Therefore,  this term depends on qmin, although only slightly. Finally, we obtain 

F~ = (2 -/32)G(~ + (3X - / 3 2 -  1)G(Z>(t), 

ln(2k ) (7) F~ = (2-/32)G(~ A = \ ~ /  

These equations were derived by Yakovlev and Urpin (1980) by the different 
method from simplified expressions for v~ and v~. For evaluating, Yakovlev and 
Urpin (1980) put qm~n = kD that gives X = �89 In (4Z). Numerical  calculations per- 
formed in this work (see below) show that a more accurate result is 

?t ~ ~ ln(4Z) + 0.4 = ~ln Z + 0.86. (7a) 

Moreover,  Yakovlev and Urpin (1980) derived the asymptotic expressions of 
G(~ and G(2>(t) at t >> 1 and t ~ 1, and proposed the following analytic 
formulae for arbitrary t which fit the main terms of the asymptotic expressions 

{ 3u-~ \2q-1/2 
G((~(t) = u-: 1 + ~--~c2t) J = 13(1 + 0.017t-2) -~/2 , (8) 

G2(t ) (Trt)_2[l+ 2/ 15 x~213"] -3/2  16t-2)-3/2 = t-  ~4~---~2) ] ~0.1t-2( l  +0.01 , 

where u-2 ~ 13 and c2 ~ 30 are the numerical constants which characterize the 
phonon spectrum (see Yakovlev and Urpin, 1980, for details). In this work we 
calculated G(~ and G(2)(t) numerically from initial Equations (6) with the exact 
spectrum of phonons (see below) at t > 0.01. The simple fitting formulae (8) 
appeared to give quite satisfactory accuracy (the error < 10% even at t ~ 1). 

ff  Z is small (~  1), simple analytic evaluation of the integrals (4) seems to be 
impossible. Therefore,  the integration was carried out numerically by Monte 
Carlo method. The phonon frequencies ws(k) and polarization basic vectors e~(k) 
in this integration were determined by interpolating the values found by Carr 
(1961) at 512 points of the Brillouin zone. This appears to be quite accurate 
everywhere  in the Brillouin zone except  in the small vicinity ka ~ 1 near its 
centre. Thus, in a certain small vicinity (whose sizes were varied to check the 
accuracy of computation), the phonon spectrum was determined directly from 
the dispersion relations which, at ka ~ 1, are simplified and acquire the form 
(Cohen and Keffer, 1955; Carr 1961) 

' ] [ ' ~  kikj - (ka)Z(akikj +/30k23ij + 7ij~,,klk~) - - w  kzS~j eli = 0 ,  (9) 
O.) p[ 
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where a, /30, and Yijt,, are dimensionless constants evaluated by Cohen and 
Keffer (1955). By substituting the values of these constants Carr (1961) found 
that the phonon frequencies at ka ~ 1 are given by 

2 [0.583 - 1.010(O -- ~v/Q -~Z- 3P)] ,  (10) 
COpi 

- ~ - = 1 - 1 . 1 7  - -  +2.02Q , (10) 
(D pi 

~ . 2 ~ 2 ~ 2 ~ - 6  = 2 2 k~,k;+ kxkz)k2 2 -4. e , O (kxk + 

We determined the polarization basic vectors from Equation (9) by substituting 
the frequencies (10). 

The above-mentioned data on phonons do not take into account electron 
response to lattice vibrations. According to Pollock and Hansen (1973) this 
response becomes important only at small k ~ krv-~ k> Its effect is that the 
mode s = 3 changes the dispersion relation from (10) to the acoustic relation 
r  ) = mp{k/KTF. To account for this effect, the values oil(k) in the computer 
program were multiplied by k(k2+ k2rF) -11~. 

Computations were performed for different Z and t >0.01. The results ap- 
peared unexpectedly well fitted (with error < 15%) by Equations (7) and (8) at 
any Z > 2 (for the case Z = 1, see Section 4), if in (7) qmin = kD/1.49 and, thus, 

I h = 5 in Z + 0.86. It is remarkable that in Equations (7) and (8) only a depends on 
Z, and yet very weakly (logarithmically). It should be noted that the Debye 
temperature of Coulomb crystals is given by (Carr, 1961) | = 0.45fiCopJkB. Thus, 
at t = 1, the temperature T = 2.20. Therefore, the extreme cases t >> 1 and t ~ 1 
correspond to temperatures much higher and lower than the Debye temperature, 
respectively. The validity of Equations (7) and (8) down to Z = 2 may be 
explained by the major role of the Umklapp processes under astrophysical 
conditions (Flowers and Itoh, 1976; Yakovlev and Urpin, 1980). The importance 
of the Umklapp process is mainly due to the absence (at k > kTl:) of the 
longitudinal acoustic mode in the phonon spectrum. In particular, at t ~ l, only 
the phonons with frequencies c0s ~< o)p~ ~ cop~ may participate in scattering. In 
Coulomb crystals (at k > krv) these are the acoustic phonons (s = 1, 2) with 
k~,2<~ kDt ~kD. But these phonons are traverse and, thus, contribute only in 
Umklapp processes. Strictly speaking, at k ~< kTF the mode s = 3 turns into an 
acoustic one and contributes towards normal processes, but it is easy to verify 
that, in the presence of Umklapp processes, this contribution is insignificant. 

(3) We used the free-electron approximation in the above calculations. It is 
well-known, however, that electrons are not free near the boundaries of Bril- 
louin zones due to Bragg reflection. Near the boundaries, the dispersion relation 
of electrons, e(k) differs from that for free electrons, and at the boundaries e(k) 
contains energy gaps whose widths, Ae, are easily estimated in the weak 
coupling approximation (see, e.g., Kittel, 1976). The estimate is AE ~ Vk, where 
Vk ~ ZeEn~k -2 is the Fourier component  of the Coulomb lattice potential. The 
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distance to the Brillouin zone boundary,  at which the effect of the gap is 
significant, is given by Ak ~ zkdhvF. 

Thus, at Z t>2, electrons on the Fermi surface are not free in the bands 
(Figure 2) of the width Ak near the intersections of the Fermi surface with 
Brillouin zone boundaries (at Z = 1 the intersections are absent). In these bands 

the shape of the Fermi surface is distorted. Taking k = kF we obtain ~k 
kFe2/hvF. Since e2/hvF ~ 1 at the conditions under consideration, the bands are very  
narrow (in fact,  this is because the typical electron-ion interaction energy is much 
smaller than the kinetic energy of electrons). 

Brillouin zones are restricted by the planes which pass through the middle of 
reciprocal lattice vectors and are perpendicular to these vectors.  That  is why the 
intersections of the Fermi surface with the boundaries of Brillouin zones are the 
circles of the length 27r(4k 2 -  k2) 1/2. The  number of intersections is roughly 

estimated as (kv/kD) 3 - Z (while estimating we drop the numerical factors - 1). 
The above calculations are valid, provided the total surface area of the distorted 
bands on the Fermi surface, kF2xkZ, is much smaller than the area of the whole 

surface. Using the above value of ~k, we find that the validity condition of the 
calculations coincides with the standard Born-approximation condition 

Ze2lhvF ~ 1. 
It should be emphasized,  however ,  that the presence of distorted bands on the 

Fermi surface plays an important  role at low temperature.  This is because, with 
decreasing T, the places of the Fermi surface, between which the Umklapp 

processes proceed effectively, become more and more narrow and tighten to the 
intersection lines with the boundaries of Brillouin zones (Figure 2). When the 
widths of these places, 8k, become smaller than the widths of the distorted 
bands, the Umklapp processes are switched off ( ' f rozen out'). Then the main 
contribution to scattering comes from normal processes.  Taking into account 
that at low T the acoustic phonons s = 1, 2, for which 8 k -  k -  tkD, are most 
important  for  Umklapp processes we conclude that Umklapp processes are 
switched off at t ~ Z I / 3 e Z [ ~ v F  = ZI/3/137/3. 

At t ~ Zme2/hvv, only normal processes on phonons s = 3 with k ~ kTvt ~ kD 
contribute to scattering. For  these phonons,  one can set (e3q) 2= q2, ~o3(k)= 

wp~k/kTv in Equation (4). The contribution of the phonons s = 1, 2 is negligibly 
small because they are almost transverse ((%2q) 2 -  q6k)4, see Equation (9)). 
Finally, we obtain from Equation (4) 

F~ = 120~(5) t 4, FK = ~ r , (11) 
7r 

where ~(5)= 1.03 is the value of the Riemann zeta-function, and (krflkv) a= 
4e~lTrhVF~O.O09313 -~. Notice that formally F~ and F~ from Equation (11) 
correct ly  describe the contribution of normal processes at t < Zll2(eZ/hvr) 3/4 and 
t < Z1/3(e2/hvv) 112, respectively. 

(4) We discover that, at Z ~> 2, electron thermal and electrical conductivities 
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due to scattering on phonons, are given by Equations (7) and (8) if t > Z*13e2/hvv 
and by Equation (11) if t~Z1/3e2/hvv. Thus, the transport coefficients are 

different at three temperature intervals. 
At temperatures above the Debye temperature (t >~ 1), according to Equations 

(7) and (8), 

F, = Fr = (2-/32)u_2 ~ 13(2- ~ 2 ) ,  (12) 

i.e., o- and K-temperature dependences are o- ~ T -1 and K ~ T ~ In this case the 
Wiedemann-Franz rule is valid, K/~r = rr2k~Tl3e 2. 

At temperatures below the Debye temperature but above the Umklapp 
process switch-off temperature, when Z1/3e2/hvF ~ t ~ 1, in accordance with (7) 

and (8), 

2 2 3"/" '77 
S ~  = -~- ( 2 - / 3 2 ) c 2  t, F .  = ~ - ( 2 -  3/32+ 4X)cet; C 2 ~  3 0 ,  (13)  

i.e., o- oc T -2 and K ~ T <. The Wiedemann-Franz rule is violated only quant- 
itatively in this temperature interval but not qualitatively. This is due to a major 
contribution of the Umklapp processes under astrophysical conditions (Flowers 
and Itoh, 1976; Yakovlev and Urpin, 1980) and is rather unusual for 'terrestrial' 

metals (cf. Ziman, 1962). 
Finally, at temperatures t .~Z1/3e2/hv~, when the Umklapp processes are 

switched off, Equations (11) become valid. In this case ~r ~ T -s and ~c ~ T -z, 
just as in terrestrial metals. 

An exception should be made for proton crystals (Z = 1), where Umklapp 
processes are absent. However, this case requires no special evaluation for it is 
described by Equations (1t). This is because the protons solidify at very low 
temperatures (Mochkovitch and Hansen, 1979) when Equations (11) are already 
of use for describing the contribution of normal processes. 

For crystallized helium ions (Mochkovitch and Hansen, 1979), Z = 2, the 
parameter t is always < 1 (Figure 1), so that the case (12) of high-temperature 
phonons is not realized. For heavier ions, all three cases are possible (Figure 1). 
Let us emphasize that, according to Equations (13) and (11), while passing from 
the region where t >> ZII3e2/~It)F into the region where t ,~gll3e2/hVF (the latter 

region usually lies deeper in the neutron star envelopes than the first one), the 
thermal and electrical conductivities suffer rather sharp increases due to the 
offset of the Umklapp processes. This effect may play an important role in 
thermonuclear burning of matter in neutron stars and degenerate dwarfs (see, 
e.g., Lamb and Lamb, 1978). The burning regime is extremely sensitive to 
thermal conduction. Low conductivity is unable to carry away the released 
nuclear energy and leads to the nuclear explosion. On the contrary, high thermal 
conductivity makes nuclear burning stable. The activity of bursters is usually 
explained by the explosive burning of accreted matter. According to the above 
results, the conditions for stable burning are more favourable in layers where 
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t ~ Zl/3eZ[hvF than in layers where t ~> Zll3e2/hvF. It is interesting to notice that if 
the burning occurs in the intermediate layers,  at t - Zme2/hvF, the heat conduc- 
tion inside the neutron star will be much larger than outside. Thus,  the main 
fraction of the released heat will propagate inside the neutron star and heat its 

core. 
The above results may also be of use for investigating some other processes in 

neutron stars and degenerate dwarfs,  for instance, the cooling of neutron stars 
(for references see Glen and Sutherland, 1980; Van Riper and Lamb,  1981; 

Yakovlev and Urpin 1981; Nomoto  and Tsuruta,  1981), the diffusion of the 
magnetic field (e.g., see: Ewart  et al., 1976), and the onset  of superfluidity in the 
neutron star cores (see Greenstein,  1975, for references).  

It should be noticed that in not very  pure crystals at sufficiently low tem- 
peratures,  the electron scattering on impurities may be more important  than on 
phonons. This mechanism is investigated in detail by Flowers and Itoh (1976) 
and Yakovlev and Urpin (1980). Also, the phonon thermal conductivity may 
become significant at low temperatures;  its rough estimation is given by Yakov- 
lev and Urpin (1980). 

Recently,  Flowers and Itoh (1981) derived simple fitting formulae for their 

values of thermal conductivi ty computed earlier (Flowers and Itoh, 1976). It 
should be noted that their values of the thermal and electrical conductivities for 
scattering on phonons are three to five times larger than our values (7). This 
difference has been analysed in detail by Yakovlev and Urpin (1980) and is 
mainly because Flowers and Itoh (1976) did not  use a very  accurate ap- 
proximation of the phonon spectrum, especially near the centre of the Brillouin 
zone. The present  work is based on exact phonon spectrum. 
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