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Abstract. The solution of equation of state corresponding to equality F = F 3 gives non-terminating solutions 
for isothermal neutron star cores. Hence, for this equality, core-envelope models have been developed by 
taking another equation of state, corresponding to the condition F 3 = constant, in the envelope. Various 
static, pulsational, and rotational parameters pertaining to neutron star models are calculated. These models 
are gravitationally bound and stable for radial perturbations and slow rotations. 

1. Introduction 

A single equation of state or mass distribution is unlikely to describe a physical structure 
completely. A relativistic massive sphere-like neutron star can be considered as a 
configuration made of two regions, core and envelope. Hence, there is need to consider 
a physically-reasonable model with two or more density distributions. In this arrange- 
ment there is more flexibility in adjusting the various parameters of the model in a 
multidensity distribution. 

In general relativity the core-envelope model was first developed by Bondi (1964) for 
cores with 3P = E. Das and Narlikar (1975) have discussed core-envelope models with 

P = K E ,  K = constant 

in the core, and 

dP/dE = K ' ,  K'  = constant 

in the envelope. 
Durgapal and Gehlot (1969, 1971) have discussed two density models with constant 

density in the core. Pandey et al. (1983) have solved equation of state P = K E  in the 
core for finite central densities and polytropic equation of state in the envelope. 

The models of neutron star based upon an isothermal equation of state in core with 
a finite central density is rather simple in the sense that a massive sphere with an 
isothermal equation of state has an infinite size and has to be terminated abruptly at 
some place. The models with an isothermal equation of state must have an envelope of 
some other kind. The solution within the core and the envelope should match at the 
core-envelope boundary. The models with constant density core give discontinuity in 
the value of density at the core-envelope boundary. In the Das and Narlikar (1975) 
model, dP/dE is discontinuous at the core-envelope boundary. 

For an isothermal core and a suitable envelope, the continuity of density and dP/dE 

can be ascertained at the core-envelope boundary. By considering alP/dE = constant for 
the core, Durgapal et al. (1980a, b) established continuity of dP/dE at the core-envelope 
boundary. 
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In our earlier paper (Fuloria et al., 1988) we have given the parameters of isothermal 

neutron star cores for the condition F = F3. For this equality the equation of state gives 

a non-terminating solution (i.e., as P ~ 0 ,  r ~  oc). Hence, in this paper we have 
presented core-envelope models for this equation of state in the core. In the envelope 

we have taken the equation of state corresponding to the condition 1-" 3 = constant. With 
these density distributions we have established continuity of dP/dE along with that of 

v, 2, P, and E at the core-envelope boundary. For these models we have calculated static 
(mass, size, gravitational binding, central and surface red-shifts), pulsational and 

rotational parameters. All these models are gravitationally bound and stable for radial 

perturbation and rotation. 

2. Equations of Hydrostatic Equilibrium and Adiabatic Exponents for Neutron Star 
Matter 

In order to obtain properties of relativistic structures we choose some equation of state 

of general form 

P :  P ( E )  or P :  P(p) or E =  E ( p ) ,  (1) 

and solve it along with coupled differential equations for hydrostatic equilibrium 

dP/dr = - (P + E )  (4rcPr 3 + m)/r(r - 2m),  (2) 

din~dr = 4~Er 2 , (3) 

dP/dr = - (�89 ( e  + E )  dr~dr, (4) 

where E is the energy density; p, rest mass density; and v appears in spherically-symme- 

tric and static metric in Schwarzschild coordinates 

ds 2 = eVdt 2 - e ~ dr 2 - r 2 d0 2 - r 2 sin2 0d~  2 , (5) 

where v and 2 are functions of r alone. 
For neutron star matter the adiabatic exponents are defined as 

F1 = (d lnP/d lnp) s , F2/(F 2 - 1) = (d lnP/d in T)s,  (6) 

F 3 - 1 = ( d l n T / d l n p ) , ,  and F = ( d l n P / d l n E ) s ;  

where the subscript 's '  stands for constancy of entropy. 
The relationship among P, E, and p is given by the first law of thermodynamics as 

(dE/dp), : (P + E ) /p .  (7) 

3. Equations of State in the Core and Envelope 

From the equality F = F3 we obtained 

(dP/dE) = ( P / E )  (1 - ( P / E ) ) - I  (8) 
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o r  

P : K exp ( - E/P) (9) 

(where K = constant) as the equation of state. We have solved this equation of state in 
the neutron star core for certain central conditions (Fuloria et al., 1988). 

On the other hand, if we consider 1-" 3 = constant, we get an equation of state of he 
form 

dP/dE = K '  

o r  

P = K'(E - Eo),  (10) 

where K '  = constant and E a is the value of E when pressure vanishes, i.e., E -- E~ when 

Pa = 0, at the surface of the entire structure. Equation (10) has been used as equation 
of state in the envelope. 

4. Solution for the Envelope 

The values of two unknown constants K '  and E .  in Equation (10) can be obtained from 

the continuity of  (P/E) and (dP/dE)  at the core-envelope boundary. 
I f  at this boundary we substitute 

P= Pa, E-- Ea, f ( = P / E ) =  fa(=Pb/Ea), 
(11) 

v = % and r = rb, 

we get, 

K' = PJ(E b -  Pb) and E a= Pb. (12) 

On taking the initial values of different parameters as defined in Equation (11) and 

substituting the values of K '  and E~ as obtained above, the coupled Equations (2)-(4) 

and equation of state given by Equation (10) in the envelope are computed till the 
pressure vanishes. 

At the outer boundary of the envelope r = a the solutions are continuous with 
Schwarzschild exterior solution: i.e., 

e~(~=e-~(~)= 1- (2M/a)  at r = a ;  (13) 

where M is the total mass of the structure and a the radius of the complete configuration. 
The core-envelope models are constructed by taking core of different sizes for the 

following values of f (  = P/E) at the centre of  the structure 

)Co = 1, 0.50, �89 0.20, 0.10. (14) 

At the extreme relativistic case (when the signal moves with the speed of light, i.e., 
dP/dE = 1) PIE = 0.50. 
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5. Static Parameters 

The neutron star parameters have been calculated by taking the surface density 
E~ = 2 x 1014g cm-3 (Durgapal et aI., 1980a, b). This includes the calculations of 
surface and central red-shifts (z~ and z o, respectively), mass (M/Mo) ,  size (a km) and 
binding coefficient 

b M ~ - M  

Mr 

where the rest mass M r is given by 

M~ = i 4rcpr2eX/2 dr.  

0 

6. Pulsational Stability 

The spherically-symmetric and static configuration can have a relativistic gravitational 
collapse before they attain a large vlaue of central red-shift. Hence, it is necessary to 
study the stability of these configurations towards radial perturbations. We have used 
the variational method (Chandrasekhar, 1964) to ascertain the pulsational stability and 
o)2/Eo has been computed. 

7. Rotational Properties 

Using the theory of slow rotation (Chandrasekhar and Miller, 1974; Bonner, 1973; 
Irvine, 1978) we have calculated the drag of inertial frames associated with the 
configuration, and also their moment of inertia (I g cm 2) by assigning the surface density 
E a = 2 x 1014gcm -3. 

For different values offo, the variations ofz a, z o, M / M  o , a, and b with the ratio (ra/r~) 
of the core size (rb) and core-envelope size (ra) have been given in Figures 1-5. Figure 6 
shows variation of co2/Eo and z o. In Figures 7-9 we have shown variation of relative 
central drag (R.C.D.), relative surface drag (R.S.D.), and I with logE o. Variation of 
logE o and (rSrb) is given in Figure 10. 

8. Discussion 

The solution of equation of state corresponding to equality F -- F 3 gives non-terminating 
solutions in the isothermal neutron star core. Hence, two density models for neutron 
star have been developed. In the envelope we have taken another equation of state 
corresponding to condition F 3 = constant. 

The nature of various physical parameters is explained as follows while their 
variations are shown in Figures 1-10. 
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(i) The surface red-shift Z a increases sharply but becomes constant for some value 
of ra/r b. For ra/r b > 3 the value of Za is almost constant (Figure 1). 

(ii) The central red-shift Z o decreases sharply for higher value offo. For lower values 
offo the variation is almost smooth and becomes almost constant for certain value of 
r J r  b (Figure 2). 

(iii) The mass of neutron star model increases rapidly when ra/r b < 2; but then the 
increase in M / M  o is smooth and more or less becomes constant for high ra/r b values. 
The maximum mass of the neutron star thus obtained is 6.3 M / M  o (Figure 3). 
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(iv) The binding coefficient b increases sharply but becomes constant for some value 
of ra/r b. For ra/r b > 3 the value of b is ahnost constant. For all the cases the neutron 
star structures are bound (Figure 4). 
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(v) The size of neutron stars (in km) increases very rapidly for higher values of fo. 
For the low value of fo the variation in size is smooth. The maximum size of neutron 
star for assigned condition at the centre fo = 1 is 24.5 km (Figure 5). 

(vi) With the increase of Z o, o32/Eo decreases and becomes negative at certain value 
of Z o. At this stage the structure becomes pulsationally unstable (Figure 6). 

(vii) The relative central drag increases with the increase of central density (Figure 7) 
but the relative surface drag decreases with increasing central density (Figure 8). 

(viii) The moment of inertia decreases with increase in central density (Figure 9). 
(ix) The central density decreases with the increase in (ra/rb) value (Figure 10). 
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