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Abstract. The classical situation of dynamical systems with two degrees of freedom is completely 
modified by the introduction of a stochastic element which provides a slow dissolution of the zone of 
stability. Using a Fokker-Planck method it has been shown that the Gambler's ruin problem is a 
rather good approximation of the diffusion process. Furthermore the orbits exhibit a C-system charac- 
ter even during the diffusion process. 

1. Introduction 

The study of dynamical systems with n degrees of freedom can be reduced to the 

study of a 2 n - 2  measure preserving mapping, using the method of surface of sec- 

tion (H6non and Heiles, 1964). On the other hand a second important reason to 

study such a diffeomorphism is that the same phenomena and problems occur as 

in the qualitative theory of differential equations (Smale, 1967). For n = 2  the 'sur- 
face of  section' has two dimensions and the corresponding mapping T which maps 

an intersecting point into the next one is an area preserving mapping which can be 

easily represented. Numerical studies indicate that the set of  points corresponding 

to a given trajectory, i.e. Po. P: = T(Po), P2 = T(P1) .... Pn = T(P,_ : )=  T~(Po) .... some- 
times lies on a one-dimensional manifold (invariant curve), hnd sometimes fills a two- 
dimensional region. Complicated intermediate structures are found (H6non, 1969). 

However, such dynamical systems are idealizations of real problems. Hence, the 

introduction of stochastic perturbations is quite natural (Sinai, 1970; Sulem and 
Frisch, 1972; Frisch et aL, 1973). 

The present paper deals with an area preserving mapping but in which a stochastic 

element has been introduced. Hence, we have researched how the classical situation 

of dynamical systems with two degrees of freedom was modified. In Section 2 we 
give some properties of  the mapping T and its features. In Section 3 we give graphical 

displays of  the diffusion process. We define and estimate the diffusion time in Sec- 
tion 4 and in Section 5 its variations with the magnitude of the random term. In 

Section 6 we study the ergodic character of the diffusion using the variations of  the 
eigenvalues of  the linear tangential mapping as indicators of  stochasticity. 

2. The Mapping 

We consider the mapping T~ of the (x, y) plane over itself defined by 
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f x~ = xo + a sin (Xo + Yo), T~ (mod 2 / / )  (1) 
L y ~  Xo + Yo + e .  

where e is a constant. If we make the change of variables 

y - -  ~ ,  

we get in the new axes X Y  the mapping To hence the topology of T~ is the same as 
that of  To within a translation of vector ( -  e, e). 

Figures 1 and 2 display typical sets of points for the mapping To. The initial con- 
ditions and values of  the parameter a are presented in Table I. N is the total number 
of  points plotted for each orbit. Figure 1 exhibits all the characteristics and well- 
known features of problems with two degrees of freedom, i.e. invariant curves and 
islands which correspond to the existence of isolating integrals, and also wild zones, 
sometimes called 'ergodic' where the points seem to fill a broad region in the plane, 
and which correspond to the non-existence of isolating integrals. On the other hand, 

3 . 1 4 2  

1 . 8 8 5  

0 . 6 2 8  

- 0 . 6 2 8  

- 1 . 8 8 5  

- 3 . 1 4 2  

- 3 . 1 / . 2  

j / ,  �9 . .  . . . . . . . .  - . "  ' .  . . . . . . .  ' "- . . . . . . . . . . .  , : ' r ' . ' , ' ,  '( ( (  

~ . .  " . "  t . : . o ' . : . ' . - " "  . "  ' . . "  . ; ' . ' . "  . . ? "  . . . : . . ;  " : ; ~ . . " ~ / ~  " : ' : : . z  .'.. �9 : "  

.." - , ' ; - ' " . . ' "  " .  : , . : : ,  '," . " . .  " ' , ' . "  " . ' " " ' . . .  : . :  "-" " . ' I ,~ : '~:. ' i '~,~ i ? ' "  : ? ' . . . ' ~ "  
�9 " V  . "  . �9 " - .  " �9 : " �9 �9 �9 �9 . . . .  " ' i  . " ' " .  ' " . - . "  . ' ~ . .  

"h '1"  " ' " " : ' " " ' "  " ' "  . . . . .  " " ~"  " "  ~' ' " " ;  " ' ""  , . . , i "  .~" ". " : . " "  - " ' "  ." " �9 " : "  . . . . .  , , ~ - ' ~ '  " r  " , ;  .. . . .  : " " :  

�9 " . . . .  �9 . . . ,  . . .  , . -  , . . . . ~ - ~  �9 . . �9 , , - . .  ; ,~ . . , .  ; . : .  . . :  , :  . . . . ' ; ,  

�9 " ",;..,"'-.-.': . / "  ~ . ,  " -  .. ",. ":  . . . .  i-'~"~ -'...":,'.:,..," ' 
�9 .," " "  .. : " . . / "  , . . . . . . . . . . . .  " - , ,  �9 ." " '  . " .  ' ,  "...~'v~t,'{..:~:, '... :r., :..... ., 
: , . . [ ~/ "~. .,," ...... ..,.",.:: .':-;.,. ,~-...... 

.. ', "..-.. " - [i . - . "':,.. �9 ",, ." ".-,;" :-:',,.' r-'-,,.-. 
." " .'~ ' ~" ; ". ",I "-- ...... ..z "~". ", ~ ,..~c.~,r..,.....G ,._i 

. ' . X : x  . . . . .  �9 " " / " :  \ ' .  '. ", �9 : . ~ X ~ . . ' ,  r ~ ' , t  
' r  - : "  ". : " ' " ' "  " : " : .  : ' ~ { "  . . . . .  . " , ,  ~ ,  ~. �9 - : ' . ' " . "  " , ' " , ~ &  "~1 

]~  " �9 � 9  "" "" " " ,  ". - ~  , ' ,  : " ' ,  " " .  ", ' ,  �9 ':' '. " : ' .  ~ ~ ~ I v " . ' " "," ". "X ", \ " ", "" ". " ", " '" " :::,-"\ 

I , ' ~  , : - . , 4 . - o - :  :.  �9 " .  " , ' ,  .... ; ;  i ' , ' ,  , ,  ": : :~ 

I. " U  " : . " : :  ;-" �9 . " ,  " ....... , ,  " " " " , l  ': ', . . . . . .  ,".~.~..'. 
�9 . . . . . . . . . . . . ~  . , ~ , , - - . ' 7 . . .  I �9 .:~:" : ; ; " g  '.,: : "  " " .  �9 " " ' . .  .." i " . ~ ~ .:" 

, . , . : . . . . : . . .  . . . . . .  , . .  , ,  " ~  ~ / . . . . .  , . ,  , 

1..'.....,.- , . ' . .  : ~ : ' . . ' . ' . '  , , .  : ," ... , '-... - . . . . . . . . . . .  / �9 : .  . . . -  . . ; :  
";-I"-~-:" ",. ".'. ,'t., - ":,. . : . :  . .  " . "---.. " . . . . . . . . . . .  . - "  ." " ' . .  -._'.-.  ' " C ' : " : " "  " , ,  : . . . .  " ~ , , . . "  " " ~ "  . '  . "  �9 

";..~ ".~ ..'..'. : . . : . . . .  :: - . . . . . ' .  - . . . . . :  , " . :  ~ ,  . . . . . . .  . - "  : : . . . . . . . . . .  : - ' . . . - . . . , , . . ,  

I" . ' . . : : ,  : ; . :  . . . .  " : : , " "  " . . . . .  . :  " �9 " ." " "  ." . " i . .  " " . . .  ~'~.'",1 
~ , , : , "  . ,  :.:..'..':: : ~ , ' .  :. . , ,  , ' .:.. ...., ..." . . . " . �9 . . . .  ".. . .. , :....," 5~ ,  . 1 " ' .  ,-, ' . ' "  �9 ' ": . . . .  ; ,." ; : ' ': . . . "  . ' "  ," ~., - , : ' . ' : "  . . . "  " .  " . i "  ~ " ,. ; ' -  

�9 , . , , . :  : . . .  . . . . .  ~ ' . : "  . . . .  . .  �9 , : . ' .  . . . , . .  - . . . ~ : . . ~ . . : . ' . : ' - ~ " '  

[ : . . - . < . . ,  . . . . .  . v . ~ , . . : . . . . . .  : . . . . .  : ,.: . . . . .  ~ . - . . . . . . . . .  . . . .  :.,~,: .~:,,::;....-;..---.-...~ 

�9 . '~ "  , .  " : ' ,  . :  : "  ~." " ;  " . . . "  " .  . " ~* �9 " " " . " "  ", t ' :  " 3 :  ' " :  / 

- 1 . 8 8 5  - 0 . 6 2 8  0 0 . 6 2 8  1 . 8 8 5  3 . 1 4 2  

F i g .  1 .  T h e  a r e a  p r e s e r v i n g  m a p p i n g  T o  f o r  a z  = - 1 . 3 .  



NUMERICAL STUDY OF A RANDOM DYNAMICAL SYSTEM WITH TWO DEGREES OF FREEDOM 89  

T A B L E  I 

D a t a  for Figures  1 and  2 

Fig. a Xo Yo N 

1 - 1.3 2.8274 - 3.1416 700 
2.6000 - 3 . 1 4 1 6  700 
2.5133 - 3 . 1 4 1 6  700 
3.0000 0 700 
2.9845 0 700 
2.8274 0 1000 
2.5133 0 900 
2.1991 0 800 
1.8860 0 800 
1.5708 0 700 
1.2566 0 500 
1.0000 0 400 
0.9425 0 400 
0.7000 0 200 
0.6283 0 300 
0.3142 0 200 
0.1000 0 10 
0 0 3 

--2.0741 - 1.7318 700 
--1.7880 - 2 . 3 1 1 4  700 

0.1969 -- 2.2867 700 
2 --0.3 _+3.1400 0 10 

+ 3.0000 0 700 
+ 2.8000 0 700 
+ 2.7000 0 1000 
+ 2.6500 0 400 
_+ 2.6000 0 700 
+ 2.4000 0 700 
+ 2.2000 0 700 
+ 2.0000 0 700 
-+ 1.8000 0 500 
+ 1.6000 0 500 
+ 1.4000 0 500 
-+ 1.2000 0 500 
+ 1.0000 0 500 
+ 1.9500 0 500 
_+ 0.8500 0 500 
+ 0.8000 0 500 
-+ 0.6000 0 500 
-+ 0.4000 0 500 
_+ 0.2000 0 200 

0 0 1 
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3.142 

1.885 

0.628 

0 

- 0.628 

-1.885 

-3.1/,2 
-3.142 ol.885 -0.628 0 0.628 1.885 3.1/,2 

Fig. 2. The area preserving mapping To for at= -0.3. 

on Figure 2, isolating integrals seem to exist everywhere: this is a case very close 

to an integrable case. All the points are either on libration curves (associated with 

the stable invariant point (0, 0)), or on circulation curves (associated with the unstable 

invariant point (17, 0)). 
In this article we study a random mapping Y,~ for which co=(ele2...) is an infinite 

sequence where each of the ek can take the value d or ~ with equal probabilities. 
Let T,, and T~ be two area preserving mappings defined by the Equations (1). Let 

~"o, = T~,T~n-, ... T , , ,  (2) 

denote the random product of  n mappings T~, or T,. This problem, apparently an 
academic one, has in fact connections with various physical problems: the study of 

a plane wave propagating in a semi-infinite random medium (Sulem and Frisch, 
1972; Frisch et  al., 1973); the problem of an artificial satellite at a low altitude, 

etc., ... 

3. Graphical Displays of the Diffusion Process 

In order to study the fluctuations of  the invariant curves, the points P,,=3-~(Po) 
(n = 1 to N) have been plotted for various values of  N. Figure 3 shows the results for 
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Fig. 3. A n  orbit  o f  the random mapping  Y~, where al = - 1.3, xo=  0.4, yo=  0.4, e ' =  0, e=0.05 for 
various values of  N and a giver~ realization o f  co. 
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Fig. 4. An  orbit  for the same initial conditions as for Figure 3 but for a~ = - 0 . 3 .  
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a = - 1.3, e' =0 ,  e=0.05 and the initial conditions Xo =0.4, Yo =0.4 ,  which correspond 

to a zone of invariant curves for both T~, and T,. For  N less than 2000, the points 

lie on strips including the invariant curves. The width of  these strips increases with 

N. For N greater than 2000, the points are scattered and ' ergodicity' appears. Figure 
4 shows the same experiments for a = - 0 . 3 .  Again the points lie on strips including 

the invariant curves surrounding the origin, but for N greater than 2000 the points 

still remain in a band along the y axis. The phenomenon of diffusion is much slower 

than in the preceding case. This is due to the topology of the invariant curves for 

a = - 0 . 3 .  Indeed as we no longer have an ergodic zone but some invariant curves 

nearly parallel to the y axis, the effect of  the perturbation which is also on y is strongly 

weakened. 

4. Definition and Estimation of the Diffusion Time 

In order to have some quantitative information about  this random walk, a measure 
Dj of  the dimension of the invariant curve has been computed here, as given by  

m = j  

Dj = Z (XZm - a(yZm + XmYm))/lO0" (3) 
r e = j - - 9 9  

The quadratic term in this expression is constant, in the vicinity of  the origin, in the 

linear approximation, in the case e ' =  e = 0. 

20 
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D j, a measure of the dimension of the curves, against j. 
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Figure 5 shows the variations of Dj for the same case as for Figures 3 (case 1) 
and 4 (case 2). The variations of Dj are quite large and in good agreement with the 
graphical results given by Figure 3. Indeed we observe, for the values of  j ,  correspond- 
ing in Figures 3 and 4 to the scattering of the points, a sudden increase in the value 
of D~. We call 'diffusion time' the number of iterations of the mapping Y~ which 
are necessary for the points (x,,, y,), starting in the integrable zone (or the libratory 
zone) of To, to reach the wild (ergodic) zone (or the circulatory zone). In other words, 
'diffusion time' is the time necessary for the disappearance of isolating integrals 
in the case 1. For estimating this time, we use the sudden change in the value of the 
measure D~. As soon as Dj is greater or equal to 4, we say that diffusion has occurred. 

5. Variation of the Diffusion Time with the Random Term z and with 
the Distance of the Initial Point to the Origin 

We intend to estimate the diffusion time as a function of the magnitude of e and as 
a function of the initial conditions. 

We take the Gambler's ruin model (Feller, 1971) as an approximation of the dif- 
fusion process, since the problem is reduced to the study of the jumps of (x., y.) 
from one elliptic curve to another, up to the ergodic zone, which is considered as an 
absorbing barrier. 

Indeed, the family of invariant curves surrounding the origin can be taken, in a 
first order approximation, as a continuous elliptic family (cf. Figures 1 and 2). 

We consider the family of similar ellipses of equations 

C = x z - a(y  2 + xy) ,  (4) 

where C is a constant which can be considered as a generalized distance of the points 
(x, y) to the origin. C takes all values from 0 to Cma x corresponding to the largest 
ellipse, that is to say, the absorbing barrier. Let N(C)  be the expected number of 
iterations which are necessary for reaching the absorbing barrier when starting on 
the ellipse C, at the generalized distance C from the origin. 

We have the fundamental equation 

N(C)  = 1 + f N(c + AC)  o(AC) d(AC), (5) 

where Q(AC) is the probability to jump from an ellipse C to an ellipse C + A C .  

Expanding to second order (see the Fokker-Planck method), we get 

dN(C) 1 d2N(C) ( A C 2 ) ,  (6) N(C)-= 1 + N ( C )  + ~ (AC> + 2 dC  z 

we have 

A C =  x z -  a((y + V) 2-t- x ( y  + V ) ) -  x 2 + a(y 2 + xy) ,  

A C  = - a ( x  + 2 y ) V -  aV 2, 

(7) 

(8) 
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with V being a random variable taking the value 0 and e with the probability 0.5. 

Furthermore the points (xy) are distributed on the ellipse C with a density propor- 
tional to ds/]lgrad HII, where 

H(x, y) = x 2 - a(y 2 + xy). (9) 

In order to compute (AC)  and (AC 2) we take as new axes the principal axes of the 
ellipse C. After some algebra we obtain the equations 

( ; =  X c o s 6 -  Ys in6 ,  (10) 
X sin d + Y cos 6, 

where d is given by the equations 

1 + a + V'A 
tg 6 = , (11) 

a 

A = 2 a  2 + 2 a +  1. (12) 

Then Equations (4) become 

X 2 y 2  

A ~ + ~  = 1, (13) 

with 

2C 
A 2 = (14) 

1 - a -  ~/A' 

2C 
B 2 = " (15) 

1 - a + ~  

Let ~0 be the eccentric anomaly of the ellipse C, such that 

X = A cos ~o, Y = B sin ~0. (16) 

Then the density probability is uniform with respect to (0 on [0, 2//] - i.e., 

1 
P((0) = ~ d~. (17) 

From the Equations (8), (10), (1~/) we get immediately 

1 
(AC) = - ~ ae 2. (18) 

Neglecting terms of order greater than 2 in e, we have 

1 2 2  <AC2> = ~ a e ((x + 2y)2). (19) 

From (4) and (17) we get 

( ( x +  2y) 2) = 4 C +  1 + ( x ) ;  (20) 
a 
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and from (10), (14), (15) and (17) 

( x 2 ) =  C(  1-a+-a(a~/Ac~ 4) 

Using (11) and (12) we obtain after some algebra 

2C 
a + 4 ;  

f X 2 )  = - -  

hence, from (20), 

2C 
<(x + 2y)2> = - - - ,  

a 

(A C 2) = - ae 2C. 

The fundamental Equation (6) becomes 

ae 2 dN(C) ae2C d2N(C) 

2 dC 2 dC a 

Hence, it follows by integration that 

e2N(C) = - ~  (Cma x - -  C) 

where Cm,x and K are constants. 

(21) 

(22) 

(23) 

(24) 

= - 1 .  ( 2 5 )  

+ e2Klog C, (26) 

It is obvious that K is equal to zero to avoid the singularity at C=  0 which is with- 
out any physical meaning. 

Finally for small e we have 

2 
~ 2 N ( C )  ~ - - •  (Cma x - C ) .  (27)  

5.1. VARIATIONS WITH THE STRENGTH g OF RANDOM PERTURBATIONS 

Figure 6 shows the variation of e2N(C) plotted vs e in the case C=0.  In order to 
eliminate the fluctuations due to the fact that N(C)  depends on the sequence of the 
e, we take an average of 25 experiments for a given value for e. 

Considering the crude approximations which have been made for obtaining 
Equation (1), the results are in rather good agreement with the Gambler's ruin 
model. From the numerical results, we get, taking the mean value of e2N(C) which 
is 10.37, the value 6.74 for Cma,. This value is in rather good agreement with the 
value we can estimate on Figure 1 taking into account the distortion along the Y 
axis of the invariant curves near the border of the ergodic zone. 
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Fig. 6. 
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Fig. 7. Verification of the diffusion law N(C)~2+2y~_constant for e=0.05, Xo=0. 
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5.2.  VARIATIONS WITH THE INITIAL CONDITIONS 

We take a fixed value of the random term: e=0.05, and the initial conditions Xo=0, 
Yo being the parameter. From (27) we get 

e2N(C) + 2yoZ = 2 Cmax" (28) 
a 

Thus we plot the values of e2N(C)+ 2y z vs Yo on Figure 7. Each value of N(C) is 
computed in the same way as previously (average of 25 random sequences). 

The straight line represents the average of  the values of e2N(C)+2y~ which is 
found to be equal to 10.44 and, hence, to be very close to 10.37 given previously. This 

average has been,taken for yo~<2 because for y o > 2  the orbit starts immediately in 
the ergodic zone of To and eZN(C) is equal to zero. 

Also in this case the Gambler's ruin model seems to be a good approximation of 
the diffusion problem. 

6. Stochasticity of the Mapping ~- 

In a previous paper (Froeschl6, 1970), the variation of the largest eigenvalue 2~ of 
the linear tangential mapping Tg x of the mapping Tg has been used as an indicator 

of stochasticity in the case of a dynamical system with two degrees of freedom. We 
shall use in the present paper the same indicator not for the mapping 3-  itself but for 
a given realization Y~o, which will show us the character o f '  C-system' of  the map- 
ping 3_. 

To compute the eigenvalues of the Jacobian matrix J which represents the linear 

tangential mapping (~--~)* of ~-' J ,~  at Po (Po being the initial point) the composite 
mapping theorem has been used - i.e., 

Y ~ * ( P o )  �9 , ~ , - 1  ~ - i -  = T . n ( s  ~, (Po))  ~ o 1" (7o) .  

As the elements of this matrix can sometimes exceed the largest number which can 
be stored by the computer we have used the following device. If  ]2,1 becomes larger 
than 10 2 we divide each term of the Jacobian matrix by 10 2 as many times as it is 

necessary and take 

]2,1 = 102m12',] , 

where m is the number of times the elements are divided and 2', is the largest root of 
the new characteristic equation. We remark that the characteristic equation is reci- 
procal; therefore the second root is the inverse of  the first one. 

Figures 8 and 9 display the variations of log 12,1 plotted vs i. We can see that a 
sudden change in the slopes of log ]2,1 occurs when the points P,  reach the ergodic 
zone. However, we note that the values of these slopes are always strictly positive. 
This means that the orbits have an ergodic behavior and that the dynamical system 
is close to a C-system, even when the diffusion process is still going on. The values 
of these slopes, which are characteristics of the orbits (Froeschl6 and Scheidecker, 
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1973a, b, and c) and which change suddenly, are related to the topological structure 
of  the two-dimensional mappings displayed in Figures 1 and 2. 

7. Conclusion 

The results obtained show that the classical situation of dynamical systems with two 

degrees of  freedom is completely modified by the introduction of a stochastic element 

which provides a slow dissolution of the zone of  stability. 

A characteristic time of dissolution has been defined and it has been shown that 

the Gambler 's  ruin problem is a rather good approximation of the diffusion process. 

Furthermore the C-system character of  the orbits has been shown to appear even 

during the diffusion process. 

Finally, the results given by Froeschl6 (1971) and Froeschl6 and Schiedecker 
(1973a, b, and c) concerning dissolutions of  isolating integrals for systems with three 

degrees of  freedom but without any stochastic parameters, appear to be very similar 

to those given in this paper. I t  confirms the stochastic behavior of  orbits during the 

disappearance of the isolating integrals. However, we note that in opposition to 

deterministic systems, no well behaved orbits exist for random dynamical systems. 
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