
O N  T H E  U N D E R S T A N D I N G  O F  T H E  O B S E R V E D  F L A T  O R  

S L O W L Y  RISING R O T A T I O N  C U R V E S  I N  L A R G E  DISK 

G A L A X I E S  

MITA G H O S H  andB. BASU 

Department of Applied Mathematics, University of Calcutta, India 

and 

TARA B H A T T A C H A R Y Y A  

Department of Mathematics, Jogamaya Devi College, Calcutta, India 

(Received 17 August, 1988) 

Abstract. Recent observations of the rotation curves of large disk galaxies of all Hubble-types have shown 
that they possess flat or slowly rising rotation curves up to large distances from the centre. It has been 
suggested here that such rotation curves are understood under normal fluid dynamical considerations 
provided that viscous (and/or magnetic) transfer of mass and angular momentum from inner to outer regions 
of these galaxies is efficient. Flow of gas from halo to the disk in regions close to the axis of rotation is also 
suggested. The existence of rising rotation curves in some galaxies with varying gradients and flat rotation 
curves in others suggest that probably these galaxies are not coeval. The formers are probably of more recent 
origin. 

I. Introduction 

The attempts to determine the rotation curves of  disk galaxies and calculate the masses 

of  these galaxies thereby date back to the late fifties and early sixties. The pioneering 

works were done by Burbidge etal.  (1959, 1960, 1962, 1963, 1964)and  Rubin etal.  

(1965). These curves were found to rise linearly from the centre, attain peaks at distances 

of  several kiloparsecs from the centre and then fall. At large distances from the centre, 

these curves were believed to obey the Keplerian law indicating that most  of  the mass 

of  the Galaxy was concentrated in the central bulge region. 

Roberts and Rots (1973) first observed a completely different type o f  rotation curves 

for some galaxies (e.g., M31, M101, M81). These curves rise linearly from the centre 

up to some distances, reach maximum and then remain flat up to large distances (50 kpc 

or more) from the centre. Similar type of  rotation curves were observed by Krumm and 

Salpeter (1976, 1977). In more recent years Rubin etal .  (1978a, b), undertaking a 

massive programme, observed the rotation curves o f  a large number  o f  more distant and 

bright galaxies belonging to all Hubble classes. All these curves are seen either to be flat 

or to rise slowly up to very large distances from the centres of  these galaxies. 
The flat rotation curve indicates a very widespread mass distribution around the disks 

of  these galaxies thus suggesting the existence of  massive, widespread halos around 

them. The physical state of  this nonluminous halo mass is, however, not  known. It  has 

been suggested that this mass may be in the form of  black holes or dead stars like white 

dwarfs (black dwarfs, in fact) and faint Population I I I  stars (Rubin et aL, 1982). 
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The present paper deals with a mathematical model which simulates the observed flat 
or slowly rising rotation curves in disk galaxies. We assume that close to the axis of 
rotation of the Galaxy, a flow of gas from halo to the disk is present. We have taken 
the Navier-Stokes equations in cylindrical coordinates and considered the presence of 
viscosity in the fluid. A plausible density law has also been used. The solution to the 
equations under the conditions stated above gives fiat or slowly rising rotation curves. 
Whether a galaxy will give a fiat or a slowly rising rotation curve depends possibly on 
its age since its disk was formed. Galaxies with flat rotation curves are probably of 
earlier origin than those possessing slowly rising rotation curves. 

In Section 2, the mathematical formulation of the work has been developed. Section 3 
deals with the solution of equations to derive the formula for the rotation curve in the 
galactic disk. The nature of the rotational motion of the gas in the halo region is derived 
in Section 4. Section 5 contains the discussion of the transfer of angular momentum 
from the central to the outer parts of the Galaxy. The summary of the entire work along 
with the necessary discussions are given in Section 6. 

2. Mathematical Formulation of the Problem 

We consider here the motion of gas in the Galaxy and try to derive the form of the 
rotational curve in the presence of viscosity in the gas. Considering the cylindrical 
coordinates with (r, 0) plane as the plane of the disk of the Galaxy and the Z-axis as 
its axis of rotational symmetry, the Navier-Stokes equations for viscous compressible 
fluid are: 
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/z being the dynamical coefficient of viscosity, and we have taken V - (u, v, w), where 
u and v are the radial and cross-radial velocities parallel to the plane of the disk and 
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w is the velocity parallel to the axis of  rotation. Due to the rotational symmetry, we have 

taken c3/~0 = 0 for any variable. Also we have used 

~U ~W b/ 
Z = - -  + - -  + - �9 ( 4 )  

~r ~Z r 

The equation of  continuity is 

- -  + (rpu) + (rpw) = 0 & - ~  �9 (5) 

The density distribution o f  the gas is given by 

p,-, R -n  where R 2 = r 2 + Z 2 , n > 0 . (6) 

The equation of  state of  the gas is 

n'irp 
p - , (7) 

where p is the gas pressure; T its temperature; R ' ,  the universal gas constant;  and # ' ,  

the mean molecular weight of  the gas~ F r and F z ard the components  of  gravitational 

force in r and Z directions, respectively, and are given by 

F ~  = 
GM(R) r 

r 2 + Z  2 ~ ' 

= 
GM(R) Z 

r 2 + Z 2 ~ 2  ' 

where G is the universal gravitational constant  and M(R) is the mass of  the sphere of  

radius R = ~ 2  + Z 2. The density can be written as p = A R - ' ,  where the constant  A 
will be given by 

R 

M(R) = f 4nR2p dR - 

0 

4r~lR 3 -n  

3 - n  

Since M(R) increases with R, but M(R)/R 2 decreases as R increases, we must  have 
1 < n < 3 and we now have 

4m4G r 

Fn = 3 - n ( r  2 + Z 2 )  n/2 ' (8)  

41~4G Z 
r z  - (9) 

3 - n  (r 2 + Z2)  n/2 
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3. Gas Motion in the Disk of the Galaxy 

We first solve the equations of  mot ion on the disk of  the galaxy where Z = 0. In this 

case, R = r also. Let us assume that u = B(r) at z = 0. At any (r, Z) ,  let w = - Zf(r);  
then w = 0, and ~w/~Z # 0 when Z = 0. We assume that the mass moves from the halo 

to the disk. Then w ~ 0 according as Z >< 0. Considering the steady motion on the disk 

and using the density law given by (6), the equation of  continuity (5) becomes 

~U t~W b/ iv/ 
- - + - - + - = -  U .  
Or ~z r r 

Substituting the values for u and w, we get 

dB(r) 1 - n 
- -  + - -  B ( r )  = f ( r ) .  (10) 

dr r 

The integration yields 

B(r) _ ~ f (r)  dr + cons tan t .  (11) 
?.n-  1 J r n -  1 

Since u decreases as r increases and finally tends to zero, f (r)  can be assumed to be 

a slowly decreasing function o f r  and so, the integration constant  in (11) ultimately tends 

to zero. Let us take f (r)  = K r - %  m > 0. Then Equation (11) yields 

g y l  - m 

u = B(r) = , (12) 
2 - m - n  

where we must  have m > 1 and 2 - m - n # 0. Thus we have, 

Zf(r)}) where f (r)  ,,~ r -m 
(J) 

u ~ r f ( r )  J 

In the plane Z = 0, Equation (1) becomes 

(13) 

4# gZ au v z 1 @ +  + F  r .  (14) 
U - -  - -  - -  

~r r p ~r 3p ~r 

Substituting in Equation (14) from (4), (6), (7), and (8), we get 

4m4G r2_n V2 = K 2 ( 1  - m )  r 2 - a m  + _ _  + 

(2 - m - n) 2 3 - n 

4# Kmn nR' T 
+ r . . . . .  , (15) 

3A 2 - m - n  #r 

where A represents the proportionality constant  in the density law (6). Also, using 
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Equations (2), (6), and (14), we get 

r2 d2v dv d 
- -  + r - -  - v - Pr - 2 -  (rv) = O , (16) 
dr 2 dr dr 

where 

A K  
L = m + n - 2 ,  P =  - - -  (17) 

~L 

Setting rv = x, we find that Equation (16) becomes 

d2x  1 d x  

dr 2 r dr 
(1 + p r - I ) ,  

which yields, on solution 

x = rv = C I r e - ( P / z > - L  dr + D ; (18) 
i d  

where the integration constants C = C(O and D = D( t )  are independent of r, but may 
be functions of the time t. For large values of r, r -  z. + 0 when L > 0 and e - (P/z.>-L ~ 1, 
and v+�89  For very small values of r, e - ( e / z > - ~ - + O  i f P / L  > O. So there is no 
singularity at the centre if P > 0 that is, if K < 0, which implies that the radial flow is 
outward. Also, when r--+ 0, r e-o,/z.>-L ~ 0, whence Equation (18) yields D = 0. 

We now consider the nature of v for large values of r. As (P /L ) r  - L  ~ 1, expanding 
e -(P/L>-L in series, we get 

v = r 1 . . . .  P r - L  + r - 2 L  
L 2 L e 6 L 3 

- -  - -  - -  r - - 3 L  q _  . . . )  dr = 

C r I ~  P r - L  1 P2  r - 2 L  ] 
= + + " "  . (19) 

L 2 - L  2 L 2 2 - 2 L  

The series on the right-hand side of Equation (19) is an alternating series with 
monotonically decreasing terms and is, therefore, convergent even for large values of 
r. 

Equations (i 5) and (19) give similar forms of the rotational velocity v at large distances 
from the galactic centre provided the parameters m and n are suitably chosen under the 
constraints 1 < n < 3, m > 1 and m + n - 2 > 0. These constraints imply that both the 
non-rotational velocity and the gas density will decrease as the distance from the centre 
increases, and they ultimately die away. 

From Equation (19) we see that for any values ofm and n lying in the prescribed range, 
v tends to �89 for large values of r. From Equations (17) and (18) we see that C(t) 

is of the order of t -  t. Hence, for older galaxies (large t) C becomes smaller and smaller. 
So the increase of v with r may be checked with decreasing C ultimately adjusting with 
a constant value of v. Physically, this means that the galaxies having fiat rotation curves 
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at large distances from the centre may be older than those having slowly rising rotation 
curves at these distances. This can possibly be verified by observing the oxygen 
abundance gradient or, in general, the chemical abundance gradient in these two types 
of galaxies. In this connection it may also be conjectured that spiral arms develop in 
disk galaxies after they have attained sufficient age. 

It is also found from Equation (15) that when n = m - 2, v tends to constant at large 
values or r, and 

4# K m n  
v ~ 4m4G + , (20) 

3A 2 - m - n  

the value of the last term in Equation (15) being negligible in comparison with other 
terms. If we assume that at the periphery of the Galaxy (r ~ 50 kpc or more) the density 
of gas is almost the same as that in the intergalactic medium (O ~ 10 - 2 H atoms cm -  3) 
and u_~ 10 km s -  ~ then we get A ~ 3.75 x 102~ g c m -  1 and K / ( 2  - m - n) 

1.5 x 1029 cm 2 s - 1. The value of the dynamical coefficient of viscosity # for non-ionized 

hydrogen is given by 

/~ = 5.7 x 10 -5 T~/2 gcm -~ s -~ 

(Lang, 1978). The value T = 100 K yields # = 5.7 x 10-4 g c m -  1 s - 1. Substitution in 

(20) yields v ~ 173 km s-  1. This value is in fairly good agreement with the observed 
values in galaxies with flat rotation curves at large distances from the centre (e.g., Rubin 
e ta l . ,  1978); 211kms  -~ at 34kpc for NGC2998,  20Skins  -1 at 17.6kpc for 
NGC 3672, etc.). The second term on the right-hand side of Equation (20) is found to 
be small compared with the first term. This implies that, at large distances from the 
galactic centre, the viscosity of gas has little effects on the magnitude of the rotational 

velocity. But its influence on the form of the rotation curve there is important. The flat 
or slowly rising rotation curve at large distances from the centre implies that the mass 
and angular momentum of gas must have been transferred from the central region of 
the Galaxy to the outer disk by the action of viscous forces. This is discussed in 

Section 5. 

4. The Gas Motion in the Halo 

Let us now investigate into the nature of the motion of gas in the halo region. We 
consider the motion at the point (r, z). The velocity components parallel and perpendicu- 
lar to the galactic plane are given, respectively, by 

v R v~ 
Ur, z = r ~ ~  Wr, Z = Z , ' 

x / r ~ +  z 

where v R is the velocity at a distance R from the centre of the Galaxy along the direction 
joining the point (r, Z )  to the centre. The value of v R is obtained from Equation (12) by 
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replacing r by R -- x / r  2 + Z 2. Thus,  

K VR _ (r 2 + Z 2 ) ( 1 - m ) / 2  ; 
2 - m - n  

so that  

K 
u~, z - r ( r  2 + Z 2 )  -m/2 

2 - m - n  

and 

K 
Wr, z -- Z (  r2 + Z 2 ) - m / 2 "  

2 - m - n  

Substituting these values of  ur, z and wr, z and also the values of  p, p, and F r f rom 
Equations (6), (7), and (8), respectively, in Equation (1), we get 

v 2 = L~(1 - m ) r 2 ( r  2 + Z 2 )  - m  - - -  ~', g 
nR' T 

r 2 4 # m L  1 
• + 

r 2 + Z 2 3A 
(3 - m ) r 2 ( r  2 + Z 2 )  ~("-m)121 - 1  + 

4r~/G r a 
+ Z 2 )  "/2 , (21) 3 - n (r 2 + 

where 

K 
L I  ~--- - 

2 - m - n  

Substitution of Z = 0 in Equation (21) yields the value of v 2 on the disk and the result 

coincides with that  already obt ianed in Equation (15). 

For  large values of  R, two cases are of  particular importance:  (i) r is finite and Z tends 

to infinity, and ( i i )Z  is finite and r tends to infinity. In the first case the rotational 
velocity tends to zero and in the second case the rotational velocity is constant  if 
m -- n = 2. This implies that  at sufficiently large distance from the rotat ion axis, the gas 

in the inner halo moves  in a similar fashion to that  in the disk producing a constant  

rotational velocity there, the values of  the rotational smoothly decreasing with increasing 
values of  Z. 

5. Transfer of Angular Momentum 

The law of  conservat ion of  angular m o m e n t u m  gives vr = constant.  This means  that  v 
is inversely proport ional  to r, which contradicts the observed fiat rotation curve. So the 
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angular momentum I does not remain conserved. The angular momentum must be 
transported by some agent. 

Now, let us consider the fact that the rate of change of angular momentum about the 
centre is equal to the moment of external forces about it. Since both the gravitational 

pull and the centrifugal forces pass through the centre, there should exist some tangential 
force so that the resultant moment about the centre does not vanish. Viscous force 
and/or azimuthal component of magnetic field may serve this purpose. Here the 
viscosity of gas in the Galaxy has been taken as an agent for transfer of angular 
momentum outwards. 

Thus the rate of transfer of angular momentum at any point is equal to the tangential 
component of viscous force at that point multiplied by the distance of its line of action 
from the galactic centre. This is equal to 

+ - - +  v r =  + - - + - -  v r .  (22) 
p I_& 2 (~Z 2 ~ 7 I_& 2 ~Z a Or 

When v = const, as in Equation (20), this expression reduces to - v/r: 

d I  _ d I  /dr  constant 
dr dt 

Since dr /d t  ~ r -  1, that is the rate of radial transport of angular momentum is constant. 
Again, substituting the expression for v from Equation (19), we get 

d /  
- -  = C 0 ) r ;  

dr 

i,e., the rate of radial transport of angular momentum increases with r. 
As C ~ t -  1, the transfer rate decreases with time. As the time passes, activity of the 

nucleus of the galaxy becomes feeble, so the rate of flow of gas from nucleus to the outer 
region decreases and consequently the rate of transfer of angular momentum decreases. 

6. Summary 

The work contains a mathematical model showing the nature of rotational velocity of 
galactic gas at a large distance from the centre. Also the transfer of angular momentum 
has been discussed here. 

We assume the spherical distribution of galactic mass and solve the Navier-Stokes 
equations for compressible fluid in the cylindrical coordinates. Thus we obtain 
expressions for rotational and non-rotational velocities of galactic gas in the galactic 
disk as well as in the halo region. It has been shown that at a large distance from the 
centre the rotational velocity of gas in the galactic disk either rises very slowly or remains 
almost constant. Our mathematical model is in agreement with the recently observed 
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fiat or slowly rising rotation curves for spiral galaxies. The same type of rotation curves 
has been derived mathematically for the gas in the galactic halo. 
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