Microheterogeneity in Aqueous-Organic Solutions: Heat Capacities, Volumes and Expansibilities of Some Alcohols, Aminoalcohol and Tertiary Amines in Water

Geneviève Roux,¹ David Roberts,² Gérald Perron,² and Jacques E. Desnoyers^{2,3}

Received February 25, 1980; Revised May 13, 1980

The heat capacities per unit volume and the densities of aqueous solutions of 2-propanol, neopentanol, tert-amylalcohol, 2-amino-2-methylpropanol, triethylamine and diethylmethylamine were measured, in many cases as a function of temperature, over the whole mole fraction or solubility range. Apparent and partial molal heat capacities, volumes and expansibilities were derived. The concentration dependence of these functions suggest the existence of transitions in some of these systems, in the water-rich region, qualitatively similar to micellization. The large relaxation contribution observed with some of the thermodynamic functions of hydrophobic alcohols and amines suggests a reinforcement of hydrophobic hydration due to strong hydrogen-bonding interactions of the polar groups with water.

KEY WORDS: Heat capacity; density; expansibility; volume; aqueous solutions; 2-propanol; neopentanol; t-amylalcohol

1. INTRODUCTION

The systematic studies carried out in this laboratory of the thermodynamic properties of nonelectrolytes in water have suggested the existence of transitions in aqueous solutions of certain organic molecules. The heat capacity was the principal property investigated for this purpose, since its magnitude is very sensitive to structural changes in solution. The concentration dependence of the apparent or partial molal heat capacity, $\phi_{\rm C}$ or $\overline{C}_{\rm p,2}$, changes according to the nature of the

¹Laboratoire de Thermodynamique et de Cinétique Chimique, Université de Clermont-Ferrand 2, 63170 Aubière, France.

²Dept of Chemistry, Université de Sherbrooke, Sherbrooke, Que. Canada, J1K 2R1.

³To whom correspondence should be addressed.

solute. With aqueous solutions of many liquids, such as dimethylformamide,⁽¹⁾ acetamide,⁽²⁾ dimethylsulfoxide,⁽²⁾ ketones,^(2,3) ethers,^(3,4) esters⁽³⁾ and the lower alkoxyethanols (methyl, ethyl),⁽⁵⁾ ϕ_C decreases monotonically from the value at infinite dilution to that of the pure liquid or to the value at the solubility limit. However, with some hydrophobic solutes such as *tert*-butanol,⁽⁶⁾ (*t*BuOH), 2-*n*-butoxyethanol⁽⁵⁾ and piperidine,⁽⁴⁾ ϕ_C passes through a maximum in the water-rich region and then decreases rapidly to the value of the pure organic liquid. The dramatic change in ϕ_C can be compared to that associated with micellization in the case of surfactants⁽⁷⁾ and is supporting evidence for microheterogeneity in the binary systems.^(8,9)

Alcohols are major components of microemulsions.⁽¹⁰⁾ There could therefore be a relationship between the action of the alcohol in stabilizing the microemulsion and the microheterogeneity of its aqueous solution. Therefore, other solutes which show microheterogeneity in water should also be good cosurfactants for the formation of microemulsions; 2-*n*-butoxyethanol was investigated in this respect⁽¹¹⁾ and was shown to solubilize large quantities of decane even without the addition of surfactants or electrolytes.

Several possible factors can contribute to the microheterogeneity of these solutions, such as the hydrophobic character of the molecule, the tendency for the system to unmix, the geometry of the molecule and the nature of the polar group. In the present study, we will further this investigation by examining other alcohols which are of potential use as cosurfactants in microemulsions, i.e. 2-propanol (2-PrOH) *tert*-amylalcohol (*t*PeOH), neopentanol (*neo*-PeOH), Branched alcohols were preferred to normal ones in view of their higher solubility in water. We will also examine tertiary amines which have a lower critical solution temperature, i.e. triethylamine (Et_3N) and $(MeEt_2N)$, diethylmethylamine and one aminoalcohol. i.e. 2-amino-2-methyl-propanol (AMePrOH). Concurrent studies are also progress on the ternary systems 2-PrOH-H₂O-Benzene. in MeEt₃N-H₃O-Benzene and MeEt₃N-H₂O-Decane.

Heat capacities measured by flow microcalorimetry require the simultaneous determination of the densities. Apparent and partial molal volumes, $\phi_{\rm V}$ and V_2 , can therefore be measured along with the heat capacities, and corresponding expansibilities, $\phi_{\rm E}$ and E_2 , can be derived from the temperature dependence of the volumes.

2. EXPERIMENTAL

Pure (99%) neopentanol (Aldrich Chemicals) was used without further purification. The water content of the solid product was determined by Karl Fischer titration and the molalities of the solutions were corrected accordingly. The limit of miscibility at 25°C was found to be approximately 0.35 mol-kg⁻¹. The *+*PeOH (J. T. Baker Chemical Co.) was dried over molecular sieves. The maximum solution concentration was 1.17 m at 25°C. AMePrOH (Aldrich Chemicals) was used without further purification and the solutions were made up using 0.07 m NaOH as solvent. 2-PrOH (Fisher Scientific. ACS Certified) was distilled from CaO and stored over molecular sieves. Et_aN (Baker) and MeEt₂N (Digni Corp. and Pfaff and Bauer) were distilled and the central fractions were stored in a refrigerator in the dark over 4 x 10⁻⁸ cm molecular sieves. Their purity (99%) was verified by vapor-phase chromatography (carbowax, 10%). Their solutions were prepared as soon as possible after purification with 0.06 m NaOH. All solutions were prepared by weight. The water used was distilled and deionized.

The procedure used for density and heat capacity measurements is the same as in our previous studies⁽¹⁻⁷⁾ and need not be described. However, in the case of AMePrOH, the viscosity of the more concentrated solution became too large for the flow microcalorimeter. Above 0.15 mole fraction the specific heats were measured with a Parr solution calorimeter. Solution homogeneity and temperature monitoring could be maintained successfully up to solute mole fractions of 0.8. At these high concentrations the precision on the difference in specific heat obtained with the solution calorimeter is of the order of 1% which is acceptable. A few points were also obtained with this system using a flow Picker mixing microcalorimeter⁽¹²⁾ which has much larger tubes.

In some of the measurements the densimeter and flow microcalorimeter were placed in series. As a consequence the temperature of the density measurements were then 0.35° K lower than that of the heat capacity measurements. This difference in temperature on the densities makes a negligible error on the calculation of $\phi_{\rm C}$.

3. RESULTS

The apparent molal volumes and heat capacities were calculated in the usual way⁽¹⁻⁷⁾ from the differences in densities and in specific heat capacities. Measurements were made over the whole mole

T/⁰C	d_0^{a}	$c_{p0} = \sigma_0 / d_0^{\ b}$
5	0.999964	4.2019
10	0.999700	4.1919
15	0.999101	4.1855
25	0.997047	4.1793
40	0.992219	4.1783

Table I. Densities and Heat Capacities of Water

 a gm cm⁻³. b JK⁻¹-mol⁻¹.

fraction or solubility range. Neopentanol and AMePrOH were measured at 25°C only, \neq PeOH and 2-PrOH at 10 and 25°C, Et₃N at 5, 15 and 25°C and MeEt₃N at 10, 25 and 40°C. The experimental data for water are given in Table I and for the solutions in Table II.

Here, *m* and x_2 are the molalities and mole fractions, respectively, of the organic solutes, *d* is the density in g-cm⁻³ and $10^{-3}\Delta\sigma/\sigma_0$ is the relative change in the heat capacity per unit volume.

The low concentration data can be fitted with the equation

$$\phi_{\rm Y} = \phi_{\rm Y}^{\rm o} + A_{\rm Y} m \tag{1}$$

where $\phi_{\rm Y}^{\rm o} = \overline{Y}_2^{\rm o}$, the infinite dilution value, Y stands for V, $C_{\rm p}$ or E and *m* is the molality of the solute. The parameters ϕ_Y° and A_Y and the molar value Y° of the pure liquids are given in Tables III-V and compared with available literature values. In general the agreement is excellent, the largest differences being of the order of 0.5 cm³-mol⁻¹. The agreement is not quite so satisfactory with heat capacities, but in the cases where the disagreement is significant, the literature data were extrapolated from relatively high concentrations. The most severe test comes from the direct comparison of $\phi_{\rm V}$ and $\phi_{\rm C}$ of 2-PrOH with those of other authors at 25°C. Brunn and Hvidt⁽¹³⁾ made a thorough investigation of $\phi_{\rm v}$ and Roux et al⁽¹⁵⁾ have independently measured $\phi_{\rm v}$ and ϕ_c . As it will be shown later, their data essentially coincide with ours within the respective uncertainties. We are therefore confident that our accuracy for $\phi_{\rm V}$ and $\phi_{\rm C}$ is of the order of 0.5 cm³-mol⁻¹ and 5 JK⁻¹-mol⁻¹. Our precision for $\phi_{\rm V}$ and $\phi_{\rm C}$ is about an order of magnitude better. It should be noted that the data for the three amine salts were obtained in a slightly alkaline solution (0.06 to 0.07 m). This concentration of NaOH is sufficient to suppress any hydrolysis and should have little effect on the actual values of ϕ_{V} .^(4,17,22)

m	×2	10 ³ 64	•v cm ³ mol ⁻¹	Aø/0	^Ф С JK ⁻¹ mol ⁻¹	m	ײ	10 ³ Cd	*v د m ³ mu] - 1	Ad/ 70	^Ф С _{ЛК} -1 _{то1} -1
		2-PROPANOL	25 ⁰ C				2-AM	11NO-2-METHYL-F	ROPANOL 25	°c	
0.2850 0.6718 0.7615 0.9542 1.5833 1.9991 2.4098 3.3162 4.9523 7.5401 10.2993 20.4664 61.143 172.51	D.0051 D.0119 O.0135 D.0169 D.0277 O.0247 O.0416 D.0553 O.0518 O.0518 O.195 O.1564 O.2592 O.5239 O.7564	- 3.1151 - 6.8464 - 7.7056 - 9.3250 - 14.243 - 17.083 - 19.779 - 25.168 - 35.238 - 35.238 - 50.734 - 67.223 - 100.06 - 161.79 - 192.50	71.495 71.017 71.006 70.771 70.332 70.075 69.922 69.671 69.906 70.641 71.076 73.287 75.131 76.091	4.3632 10.422 11.822 14.807 24.997 31.179 37.168 46.758 44.184 - 3.172 - 5.879 - 0.1905 - 0.3598 - 0.4442	363.19 364.27 364.27 364.12 366.38 366.65 362.82 341.45 291.67 257.25 208.30 175.83 165.47	0.1008 0.2535 0.4333 0.6674 0.9972 1.1656 1.9500 2.2082 2.6039 2.8104 3.1066 3.9992 4.1634 5.1913 5.6681	0.0018 0.0045 0.0047 0.0119 0.0176 0.0206 0.0298 0.0383 0.0448 0.0482 0.0530 0.0698 0.06590 0.06590 0.0655	- 0.2394 - 0.5213 - 0.8299 - 1.1655 - 1.4639 - 1.5496 - 1.6545 - 1.6910 - 1.6546 - 1.5879 - 1.5631 - 1.4861 - 1.3536 - 1.3428 - 1.4604 - 2.1692	91.523 91.229 91.115 90.978 90.726 90.265 90.145 90.024 89.878 89.878 89.878 89.878 89.586 89.586 89.588 89.538 89.538	- 0.4271 - 1.0260 - 1.6865 2.5188 - 3.5948 - 4.1652 5.6079 - 6.3100 - 7.2479 - 8.5244 - 9.3109 - 10.7924 - 16.0617 - 17.4214 - 26.819 - 45.222	363.96 363.20 362.83 362.08 361.45 360.73 360.19 359.14 358.09 357.40 355.82 350.93 349.69 341.96 328.85
		2-PROPANOL	10°C			8.2214 8.7431 30.0991	0.1290 0.1361 0.1539	- 3,4897 - 4,0361 - 5,6481	89.864 89.950 90.194	- 70.33 - 77.93 - 96.60	312.84 308.82 300.02
0.3757 0.7694 1.0820 1.3485 2.0944 2.4667 3.5511 4.2849 5.1724 8.3810 10.9013 20.8551 57,0724 578,41	0.007 0.014 0.019 0.024 0.036 0.043 0.060 0.072 0.085 0.131 0.164 0.273 0.507 0.912	- 0.4050 - 0.7549 - 1.0041 - 1.1943 - 1.6373 - 1.8270 - 2.3128 - 2.6353 - 3.0560 - 4.8178 - 6.150 - 9.682 - 14.91 - 19.80	71.193 70.468 70.108 69.814 69.072 68.786 68.213 68.066 68.112 69.205 70.074 71.709 73.725 75.390	0.7090 1.4193 1.9625 2.4185 3.5471 4.0485 5.2915 5.7257 5.3727 5.3727 5.3727 5.3727 5.3725	379.57 376.82 375.60 374.82 370.72 368.73 363.45 367.59 344.31 277.63 243.78 194.45 163.05 146.59	10.6107* 11.3066 16.7932 23.1464 27.6197* 38.1272 40.8919* 64.2204* 71.9026 124.1066 143.4846* 196.3466 242.756* 811.444	0.1605 0.1692 0.2323 0.2942 0.3322 0.4072 0.4072 0.4242 0.5364 0.5643 0.6910 0.7210 0.7796 0.8139 0.9360	- 7.1349 -14.283 -21.527 -32.824 -45.658 -54.282 -59.367 -67.393	90.401 91.280 92.036 93.040 94.054 94.703 95.071 95.654	-116.0D	295.37 290.59 254.83 245.69 238.43 236.27 231.21
		:-AMYL ALCOHO	. 10 ⁰ C				0	IETHYLMETHYLAN	INE 10°C		
0.07668 0.11355 9.14275 0.1795 0.3350 0.4849 0.6361 0.7851 0.8705 0.9378 1.0311 1.0311 1.1670	0.3014 0.0020 0.0026 0.0032 0.0060 0.0087 0.0113 0.0154 0.0154 0.0166 0.0182 0.0206	- 0.9368 - 1.3690 - 1.7048 - 2.1129 - 3.7229 - 5.1407 - 6.4297 - 7.5007 - 8.1466 - 8.6670 - 9.2944 - 10.183	100.495 100.556 100.297 100.166 99.667 98.927 98.927 98.475 98.342 98.342 98.276 98.108 97.905	2.6312 3.8932 4.9076 6.1237 11.449 16.754 22.161 27.245 30.514 33.369 37.202 42.234	566.09 566.49 565.34 565.34 565.72 569.30 569.39 571.64 574.74 577.67 579.32	0.0692 0.1250 0.1572 0.2335 0.3060 0.3948 0.5700 0.8306 1.0843 1.3483 1.5286 1.7973 2.165 2.520	0.00125 0.00225 0.00283 0.00479 0.00548 0.00706 0.01016 0.01474 0.01916 0.02371 0.02680 0.03136 0.03753 0.04343	- 1.351 - 2.391 - 2.968 - 4.285 - 5.456 - 6.877 - 9.395 - 12.814 - 15.839 - 18.803 - 20.794 - 23.913 - 28.443 - 33.026	106.47 106.20 105.00 105.62 105.32 104.28 103.58 103.58 103.07 102.71 102.57 102.60 102.90 103.36	1.59 2.79 3.57 5.22 6.88 9.01 13.27 20.47 29.20 40.51 49.56 61.77 69.78 66.76	547.81 538.63 539.60 537.22 536.93 538.09 539.06 544.88 555.99 572.64 585.40 572.64 585.40 598.92 594.81 571.62
		L-AMYL ALCOHO	L 25°C			3,174 4,635 10,135	0.05312 0.07706 0.1544	- 40.819 - 59.334 -103.66	105.92	47.67 - 15.75 -169.57	421,83 306,30
0.0957 0.2057 0.2119 0.3297 0.3468 0.3966 0.4854	0.0017 0.0037 0.0038 0.0059 0.0062 0.0071 0.0087	- 1.1900 - 2.4803 - 2.5204 - 3.8468 - 3.9861 - 4.5582 - 5.4345	101.040 100.794 100.633 100.535 100.376 100.431 100.221	2.6773 6.0007 6.1996 9.6601 10.219 11.687 14.231	539.08 544.47 544.24 545.42 545.71 546.52 546.10	23.167 58.099 320.87 Ъ	0.2945 0.5114 0.8525 1	-159.20 -211.53 -258.31 -272.13 JETHYLMETHYLAM	111.44 114.74 118.15 119.29 INE 25 ⁰ C	-337.D -460.4 -572.D9 -611.60	252.23 225.90 204.02 193.78
0.5832 0.6164 0.7338 0.8511 0.9157 0.9931 1.0761 1.1744	0.0104 0.0110 0.0130 0.0151 0.0162 0.0176 0.0190 0.0207 1.0	- 6.4131 - 6.6360 - 7.7117 - 8.8356 - 9.2683 - 10.076 - 10.874 - 11.590 -193.05	100.1117 99.905 99.754 99.738 99.518 99.624 99.663 99.495 109.640	17,835 18,650 22,390 26,901 29,345 32,473 35,897 39,582	552,42 550,51 552,50 558,88 560,80 565,26 569,52 571,86	0.0611 0.0942 0.1432 0.1613 0.2522 0.3225 0.4400 0.5494 0.7181 0.8535	0.00110 0.00169 0.00257 0.00290 0.00452 0.00578 0.00786 0.00980 0.01277 0.01514	- 1.204 - 1.841 - 2.762 - 3.083 - 4.709 - 5.926 - 7.893 - 9.672 - 12.295 - 14.301	107.03 106.93 106.63 106.38 106.38 106.19 105.98 105.79 105.58 105.43	1.11 1.73 2.61 2.97 4.71 6.15 8.58 11.36 15.51 19.33	521.34 522.43 521.39 521.85 522.57 524.17 526.05 531.40 536.19 541.57
		NEOPENTANOL	25 ⁰ C			1.0176	0.01800	- 16.678 - 21.362 - 24.821	105.31 105.45 105.57	24.73 36.12 41.88	550.32 567.60 568.71
0.0499 0.0526 0.0941 0.1181 0.1456 0.1695 0.1695 0.2208 0.2627 0.2290 0.2627 0.2790 0.3145 0.3441	0.00090 0.00095 0.00169 0.00212 0.00262 0.00363 0.00396 0.00471 0.00560 0.00563 0.00616	- 0.6805 - 0.7180 - 1.2793 - 1.5868 - 1.9383 - 2.2457 - 2.5976 - 2.8881 - 3.4284 - 3.6251 - 4.4129	102.173 102.226 102.230 102.093 101.998 101.972 101.864 101.864 101.850 101.619 101.762	0.9338 0.9832 1.7584 2.7394 3.2234 3.7541 4.2245 4.9594 5.2976 5.8157 6.2828	504.21 505.57 504.86 504.03 504.80 506.29 506.22 505.59 506.00 503.19 503.01	1.8550 2.1343 2.3899 3.0746 ^b 6.599 13.045 14.557 23.915 32.370 ^b 48.707 ^b 112.465 ^b 213.343 ^b	0.03234 0.03703 0.04128 0.05248 0.1063 0.1903 0.2076 0.3011 0.3683 0.4674 0.6695 1	- 29.137 - 33.453 - 37.328 - 45.627 - 89.166 -132.375 -142.07 -178.08 -193.43 -217.12 -252.19 -268.45 -290.46	105.96 106.40 106.77 107.25 110.53 112.57 112.97 115.11 115.92 117.49 120.04 121.36 123.35	43,51 40,54 35,77 16,91 - 92,5 -238,0 -234,5 -390,5 -391,5 -443,6 -524,9 -560,5	557.85 539.87 522.59 477.47 359.20 297.00 292.9 260.2 243.4 234.3 218.1 211.3 200.0

 Table II. Densities and Heat Capacities per unit Volume of Some

 Alcohols, Amines and Aminoalcohol in Water

 b Values obtained from Part static calorimeter at 25°C. ^bHeasurements made in wafer and not in a 0.06 N WaOM solution.

|--|

m	×2	10 ³ مة	^{\$} 0 دس ³ mo1 ⁻¹	40/0 ₀	[¢] С JK ⁻¹ mol ⁻¹	n	×2	10 ³ ∆đ	°V cm ³ mol ⁻¹	^∪/°0	°c JK ⁻¹ mo I ⁻¹
	DI	ETHYLMETHYLAM	INE 40 ⁰ C					TRIETHYLAMINE	15 ⁰ C		-
0.0692 0.1250 0.1572 0.2335 0.2344 0.3060 0.3948 0.5700 0.6185 0.8306 0.9243 1.0843 1.0843 1.3237	0.00125 0.00225 0.00283 0.00419 0.00420 0.00548 0.00706 0.01016 0.01102 0.01474 0.01638 0.01916 0.02329 0.02371	- 1.405 - 2.507 - 3.126 - 4.560 - 4.510 - 5.694 - 7.535 - 10.591 - 11.090 - 14.948 - 16.088 - 19.289 - 22.942 - 23.933	108.24 108.12 108.01 107.53 107.68 107.50 106.90 107.50 106.92 107.64 107.59 108.12	1.03 1.86 2.34 3.59 4.82 6.37 9.46 10.19 14.78 16.73 20.63 23.77 22.48	510.89 510.77 510.53 511.04 510.86 513.91 516.17 518.71 516.02 525.57 525.77 534.43 531.15 527.45	0.1290 0.2162 0.4152 0.6018 0.7803 0.9815 1.2355 1.4505 1.6893 1.7672 1.9492 2.9249 6.3677 15.0006	0.00232 0.00388 0.00742 0.01367 0.01367 0.01738 0.02178 0.02547 0.02547 0.02547 0.03993 0.05006 0.1029 0.2128	- 2.373 - 3.831 - 6.938 - 9.885 - 12.021 - 14.911 - 18.971 - 22.713 - 26.873 - 28.136 - 37.313 - 46.955 - B7.921 - 140,731	119.51 119.02 118.37 117.66 117.60 117.60 118.44 119.21 119.97 120.14 120.68 122.68 122.68 128.26	3.55 5.93 11.81 19.17 29.5 51.1 73.4 82.9 89.8 98.2	614.9 613.7 618.1 634.0 662.6 733.3 777.7 776.5 766.7 781.8
1.5286	0.02680	- 27.040 - 30.036	108.40	23.32 24.49	523.13 518.59	331,263	0,8565	-252.547 -261.537	135.92 137.19	-616	219.8
1.7973 2.165	0.03136 0.03753	- 31,921 - 38,479	109.03 109.79	22.06	512.79 503.00			TRIETHYLAMINE	25 ⁰ C		
2.3683 2.520 3.1143 3.8170 4.635	0.04092 0.04343 0.05312 0.06434 0.07706	- 40.899 - 44.632 - 54.315 - 63.010 - 75.769	109.55 110.43 111.28 111.33 112.68	17.99 14.97 5.18 - 5.61 - 22.83	493.71 489.14 470.39 452.57 435.71 269.5	0.12904 0.21618 0.41524 0.60181	0.00232 0.00388 0.00742 0.01073	- 2.451 - 4.018 - 7.265 - 10.110	120,72 120,19 119,48 119,12	3.02 5.15 10.6 18.2	601.2 601.7 608.6 630.5
23.167 58.099 320.87	0.2945 0.5114 0.8525 1	-128.12 0181.96 -233.81 -302.17	115.19 116.90 119.81 125,80	-276.5 -666.7 -631.5	300.7 242.6 192.10	0.05031 0.10879 0.14583 0.19968	0.000905 0.001956 0.00262 0.003584	- 0.972 - 2.062 - 2.781 - 3.697	120.67 120.42 120.63 120.18	1.18 2.58 3.50 4.85	600.56 601.32 604. 603.95
		TRIETHYLAMINE	5 ⁰ C			0.27349 0.33732 0.30906	0.004903 0.00604	- 4.968 - 6.014	119.98	6.79 8.40	606.2 606.44
0.097817 0.21492 0.30532 0.37965 0.502807 0.600520 0.78604 0.37817 0.95664 1.1994 1.3351 1.6117 1.7066 1.9427 2.8819 2.4003 3.6167 6.1202 23.6375 54.813 b	$\begin{array}{c} 0.001759\\ 0.003857\\ 0.005470\\ 0.006793\\ 0.008793\\ 0.01081\\ 0.01211\\ 0.01396\\ 0.01557\\ 0.01557\\ 0.01654\\ 0.02113\\ 0.02349\\ 0.022822\\ 0.02381\\ 0.02381\\ 0.02349\\ 0.02822\\ 0.02381\\ 0.02986\\ 0.05943\\ 0.29866\\ 1\end{array}$	- 1,805 - 3,744 - 5,071 - 6,184 - 7,819 - 9,916 - 9,965 - 11,192 - 13,090 - 13,090 - 15,923 - 17,638 - 21,591 - 23,016 - 26,593 - 40,178 - 33,387 - 49,875 - 76,847 - 160,718 - 199,579 - 262,14	119.35 118.56 118.69 117.91 117.72 116.55 116.63 115.92 115.97 115.63 115.97 115.63 115.97 115.63 118.58 120.51 118.58 120.51 125.32 128.08 130.98 137.15	3.06 6.08 8.92 11.55 15.76 19.7 23.0 35.0 41.2 68.0 93.3 93.3 93.3 93.3 91.4 55.8 91.4 55.8 91.4 55.9 2.62.4 -334.7 -445	632.2 617.9 629.5 629.5 634.6 643.4 655.4 669.6 645.4 669.6 685.5 778.6 775.1 778.6 776.0 776.0 776.0 776.0 542.9 298.3 298.3 298.3 204.4	P 0.32640	1	- 269.80	179.06 138.95	10.58	013.82

bMeasurements made in water and not in a 0.06 N NaOH solution.

It should be mentioned that the amines have a tendency to decompose at high temperature. An estimate of the importance of the decomposition on our measurements was obtained from two sets of data. In the first case, measurements were made at 40°C on a solution of MeEt₂N previously used for the measurements at 10°C and stored at 4°C. Another set of measurements was obtained in the water-rich region at 40°C from a freshly prepared solution kept in the cold until used. It was found that the discrepancy in ϕ_C between both sets of data was of the order of the experimental uncertainty. However, in the case of volumes, the difference was of the order of 0.5 cm³-mol⁻¹, the freshly prepared solution having the lower values.

Thermodynamics of Aqueous Organic Solutions

Solute	T °C	ϕ_V°	A _V	m _{max} ^a	V_2°
	<u> </u>			morkg	
MeOH OH	25	38.25 ⁽¹⁴⁾			40.73 ⁽¹⁶⁾
ЕЮН ОН	25	55.12 ⁽¹⁴⁾			58.68 ⁽¹⁶⁾
2-ргон > он	9.65	71.74	- 1.55	1.05	75.62
	24.65 25 25	71.79 71.91 ⁽¹⁵⁾ 71.71 ⁽¹³⁾	- 1.07	0.95	76.82 76.99 ⁽¹⁵⁾ 76.96 ⁽¹⁵⁾
^{≠BuOH} → OH	25	87.76 ⁽⁶⁾	- 1.89	0.4	94.95 ⁽⁶⁾
<i>пео</i> -РеОН У ОН	24.65	102.32 101.87 ⁽¹⁴⁾	- 2.01	0.2	
4PeOH / ОН	9.65 24.65	100.75 101.15	- 3.22 - 1.93	0.3 0.6	107.76 ⁽¹⁶⁾ 109.64 109.58 ⁽¹⁶⁾
AMePrOH \rightarrow OH	24.65	91.41	- 0.67	1.0	95.85
MeEt ₂ N N	10 25	106.84 107.25 106.77 ⁽¹⁷⁾ 109.4 ⁽¹⁸⁾	- 5.29 - 3.58	0.3 0.25	119.29 123.35
	40	108.43	- 2.66	0.25	125.80
Et_3N	5 15 ^b 25	120.03 119.94 120.87 120.9 ⁽¹⁷⁾ 119.7 ⁽¹⁹⁾	- 6.93 - 3.85 - 3.32	0.35 0.4 0.35	137.15 137.19 138.25 139.93 ⁽¹⁷⁾

 Table III. Apparent Volumes of some Alcohols, Amines and

 Aminoalcohol in Water and Molar Volumes of the Pure Solutes

^aMaximum molality of linear region. ^bMeasured by C. de Visser.

Solute	Т	φ° _C	A _C r	n _{max} ^a	C _{p,2} ^o
	°C	JK ⁻¹ -mol ⁻¹	r	nol-kg ⁻¹	JK ⁻¹ -mol ⁻¹
МеОН	25	158.2(14)	······································		81.1 ⁽¹⁶⁾
EtOH	25	260.3 ⁽¹⁴⁾			111.9(16)
2-PrOH	10	381.1	-5.0	2.1	145.4
	25	362.3 375 ⁽²⁰⁾ 364 ⁽¹⁵⁾ 385 ⁽²¹⁾	2.4	1.5	161.2 153.3 ⁽²⁰⁾ 155 ⁽¹⁵⁾
≁BuOH	25	463.6 ⁽⁶⁾	7.91	1.2	210 ⁽⁶⁾
neo-PeOH	25	503.6 503.5 ⁽¹⁴⁾	10.6	0.23	
⊬PeOH	10	566.6	2.9	0.35	
	25	538.8 563.0 ⁽²¹⁾	19.9	0.65	250.3 ⁽²¹⁾
AMePrOH	25	364.0	-1.9	1.0	229.5
MeEt ₂ N	10	542.2	-19.0	0.3	194
	25	521.3 533.5 ⁽²²⁾ 515 ⁽²³⁾	4.3	0.25	200
	40	510.7 519.6 ⁽²²⁾	0.8	0.25	192
Et ₃ N	5	629.0	-10.0	0.35	200 214 ^(24b)
	15	612.2 ^{<i>b</i>}	13.4	0.45	220 220 ^(24b)
	25	599.7 609 ^(24a)	21.8	0.35	

Table IV. Heat Capacities of Some Alcohols, Amines and Aminoalcohol in Water and the Molar Heat Capacity of the Pure Solutes

^aMaximum molality of linear region. ^bMeasured by C. de Visser.

4. DISCUSSION

Most of the changes occurring in aqueous-organic mixtures are in the water-rich region. Molar excess functions, which are generally favored in a discussion of the properties of binary mixtures, tend to attenuate the changes at both ends of the mixture. Partial and apparent molal quantities do not suffer from this drawback and reflect more readily the characteristic interactions and structural changes in the water-rich region. This is especially so with systems that are not completely miscible with water.

Solute	T°C	$\phi_{\rm E}^{\ oa}$	E2 ^{oa}
2-PrOH	17.5	0.003	0.08
₽PeOH	17.5	0.027	
MeEt ₂ N	17.5 25 32.5	0.027 0.053 0.079	0.27 0.22 0.16
Et ₃ N	10 15 20	-0.009 0.042 0.093	0.004 0.06 0.11

Table V. Expansibility of some Alcohols and Amines in Water and the Molar Expansibility of the Solutes

acm3-K-1-mol-1.

4.1. Volumes

The concentration dependence of $\phi_{\rm v}$ of MeEt₂N, AMePrOH and 2-PrOH is shown over the whole mole fraction range in Fig. 1. The partial molal value \overline{V}_2 can readily be calculated from $\overline{V}_2 = \phi_{\rm V} + x_1 x_2 d\phi_{\rm v}/dx_2$ and is also shown in Fig. 1. These results are typical of most aqueous-organic mixtures; $\overline{V}_2^{\rm o}$ is smaller than the molar volume $V_2^{\rm o}$ and \overline{V}_2 or $\phi_{\rm v}$ goes through a minimum in the water-rich region.⁽²⁵⁾

The trends with the branched alcohols in the water-rich region are shown in more detail in Fig. 2. The larger the hydrophobic character (i.e. number of CH_2 groups) the more negative is the initial slope. It is rather obvious from this figure that the two pentanols fall

Fig. 1. Apparent and partial molal volumes of 2-propanol, diethylmethylamine and 2-amino-2-methyl-propanol in water. For 2-propanol; x Roux *et al*, ⁽¹⁵⁾ o Brunn and Hvidt; ⁽¹³⁾ • present results.

in line with the others. They do not go through a minimum simply because of their solubility limit. The slope A_v of *neo*-PeOH is slightly more negative than that of ϵ PeOH suggesting stronger hydrophobic interactions. This could be expected from the geometry of the molecule. The bulky hydrophobic group being further away, there is less interference of the OH group on hydrophobic hydration.

4.2. Heat Capacities

The concentration dependence of some of the systems that were studied over the whole mole fraction range is shown in Fig. 3. While

Fig. 2. Apparent molal volumes of branched alcohols in water at 25°C. Methanol and ethanol data from Jolicoeur and Lacroix⁽¹⁴⁾ and *tert*-butanol data from de Visser *et al*⁽⁶⁾

 $\phi_{\rm C}$ of most hydrophobic solutes decreases in a rather regular way from infinite dilution to the pure liquid, ^(2,3) these systems behave like other alcohols^(5,6) and some amines; ⁽⁴⁾ $\phi_{\rm C}$ goes through a maximum or hump before decreasing rapidly to the molar heat capacity $C_{\rm p,2}$. This effect increases with the hydrophobic character of the solute. The hydrophobic hydration, as measured by the magnitude of $\phi_{\rm C}^{\circ}$ - $C_{\rm p,2}$ increases in the order

$$AMePrOH < 2$$
- $PrOH < MeEt_2N < Et_3N$

and so does the magnitude of the humps. Presumably, if another CH_2 were added to AMePrOH, a hump would also be observed. The effect is also larger at low temperature with all systems.

The variation of the initial slopes is better seen in Fig. 4 where ϕ_C of the branched alcohols are plotted against m at 25°C. These data appear straightforward. As the size of the hydrophobic group increases, the initial slope A_C increases.⁽¹⁴⁾ However, in actual fact, the situation is not that simple since quite different trends are observed with other systems and A_C varies significantly with temperature. With most

Fig. 3. Apparent molal heat capacities of some amines, alcohol and aminoalcohol in water. For 2-propanol, \triangle Roux *et al*;⁽¹⁵⁾ present results.

systems, $A_{\rm C}$ becomes increasingly more negative as the size or hydrophobic character increases.^(2,3) With many amines, alcohols⁽¹⁾ and alkoxyalcohols⁽⁵⁾ values for $A_{\rm C}$ are negative at low temperature but become positive at high temperature. There are therefore two effects which contribute to the concentration dependence of $\phi_{\rm C}$. The normal hydrophobic interaction between the two solutes leads to a reduction of the overall hydration effect (negative $A_{\rm C}$). Superimposed on this there is a highly cooperative contribution with some systems which leads to the maximum or hump. This effect is related to the shift in equilibrium when the temperature is raised by 1°K. By analogy with kinetics it can be called the relaxation contribution. Jolicoeur *et al.*⁽²⁶⁾ and DeLisi *et al.*⁽²⁷⁾ have shown that association or micellization

Thermodynamics of Aqueous Organic Solutions

processes can lead to such a relaxation contribution. These relaxation effects with alcohols and alkoxyethanols were also observed with ultrasonic absorption, ⁽²⁸⁻³⁰⁾ light scattering, ^(8,31) NMR chemical shifts ^(9,32,33) and relaxations ⁽³⁴⁾ and infrared spectra. ⁽³⁵⁾

Fig. 4. Apparent molal heat capacities of branched alcohols at 25°C. Methanol and ethanol data from Jolicoeur and Lacroix, ⁽¹⁴⁾ tert-butanol data from de Visser et $al^{(6)}$

As in the case of volumes, the two pentanols fall roughly where we would expect them. With *neo*-PeOH a maximum is observed but the solubility limit prevents us from seeing the rapid decrease in $\phi_{\rm C}$ beyond the maximum.

4.3. Expansibilities

The expansibilities ϕ_E are readily obtained from $d\phi_V/dT$ and are shown for some systems in Fig. 5. The infinite dilution ϕ_E^o are much smaller than the molar values E_2^o in agreement with hydrophobic hydration.⁽¹⁾ As in the case of ϕ_C , ϕ_E is a second derivative of the chemical potential. With such systems a positive relaxation contribution to ϕ_E is expected.⁽²⁷⁾ Therefore the maximum in ϕ_E , increasing with hydrophobic character, is not unexpected. It is not obvious however why the maximum in ϕ_E for MeEt₂N should be sharper at 32.5°C than at 17.5°C. It could be that the maximum at 17.5°C is largely masked by the larger difference $\phi_E^o - E_2^o$.

Fig. 5. Apparent molal expansibilities of diethylmethylamine, 2-propanol and *tert*-amylalcohol in water.

4.4. Microheterogeneity

The changes that take place in these aqueous-organic mixtures are better seen from the concentration dependence of $\overline{C}_{p,2}$. These $\overline{C}_{p,2}$, shown for Et₃N and MeEt₂N in Fig. 6, change very rapidly for mole fractions between 0.03 to 0.06 and then tend to the value of the pure liquid solutes, $C_{p,2}^{0}$. The shape of these curves is similar to those of alcohols,⁽⁶⁾ alkoxyethanols,⁽⁵⁾ sodium decanoate and octylamine hydrobromide.⁽²⁷⁾ The two latter systems are well-known ionic

Thermodynamics of Aqueous Organic Solutions

surfactants and the sudden change in $\overline{C}_{p,2}$ is usually associated with the micellization process.

It was shown recently⁽²⁷⁾ that a phase-separation model predicts that the magnitude of the hump in $\phi_{\rm C}$ and $\phi_{\rm E}$ (relaxation term) should be given by

$$\Delta\phi_{\rm C} = (\Delta H)^2 / (RT)^2 \tag{2}$$

and

$$\Delta \phi_{\rm E} = \Delta H \Delta V / (RT)^2 \tag{3}$$

where ΔV and ΔH are the volume and enthalpy of the phase change. This ΔH can be estimated from the partial molal relative enthalpies L_2 . While the enthalpies of mixing of many aqueous organic mixtures have been measured, few data points are normally available in the water-rich It is therefore difficult to estimate ΔH from enthalpies of region. mixing. Some enthalpies of dilution of *F*BuOH in water exist⁽³⁶⁾ and from these a positive ΔH can be derived, leading to a relaxation contribution to $\phi_{\rm C}$. No such ΔH are apparent with aminoalcohols.⁽³⁷⁾ Systematic studies are presently under way to verify the relation between the relaxation contribution to $\phi_{\rm C}$ and the enthalpies. Similarly, the positive values of both ΔV and ΔH would lead to a positive hump for $\phi_{\rm E}$ as observed. The thermodynamic data therefore suggest that something similar to a microphase separation is occuring with some alcohols and amines in water, although these microphases can probably not be called micelles.

Many alcohols, alkoxyethanols and amines have a tendency to undergo phase separation with a lower critical solution temperature (LCST). For example, Et₁N has a LCST at 18.38°C corresponding to an amine concentration of 0.0543 mole fraction^(38,39) and MeEt₂N has a LCST at 49.42°C for an amine mole fraction of 0.098. (40) The thermodynamic properties (G, H, S) have been examined by a number of authors who have related the LCST to the molecular interactions in solution.⁽³⁸⁻⁴⁵⁾ We therefore had expected at the beginning of this study that the microheterogeneity that was observed with the amines could be related to a microphase separation preceeding the macroscopic phase change. However, the changes are all sharper at lower temperature. Also, measurements of Et₃N at 25°C show no anomaly close to the two Therefore, there seems to be no direct relationship phase region. between the observed microheterogeneity and the existence of a LCST. Similar conclusions were reached with alkoxyethanols⁽⁵⁾ and polyethers.⁽³⁾

Fig. 6. Partial molal heat capacities of triethylamine and diethylmethylamine in water.

The question still remains as to why microheterogeneity in aqueous-organic systems is observed mostly with systems that can hydrogen bond with water. The work of Kingston and Symons⁽⁴⁶⁾ offers a plausible explanation. Most of the studies on alcohol-water mixtures strongly suggest the existence of time-average clathrate hydrates in the water-rich region, this structure collapsing when the ratio of alcohol to water exceeds that of clathrates.^(8,9,31-35) Clathrate hydrates of trialkylamines also exist.⁽⁴⁷⁾ Kingston and Symons interpret the low-field chemical shifts of the hydroxy proton in the water-rich region of aqueous solutions of alcohols and Et₃N as the sum of two effects: (1) the increase in the structure of water due to the existence of time-average clathrates, (2) the acid-base type of interactions between the solute and water. The basic nature of alcohols and amines will lead to hydrogen-bonded structures such as

$$W = H = O = H \cdots NR_3$$

which may reinforce the hydrophobic solvation. This acid-base effect is stronger with amines than with alcohols and could account for the larger humps in ϕ_c observed for amines in comparison with alcohols or alkoxyalcohols. The persistence of these humps to much higher temperatures in the case of amines is also consistent with this explanation. Hydrophobic solvation near the alkyl chains decreases rapidly with temperature while the acid-base interactions are much less temperature dependent.⁽⁴⁶⁾

5. CONCLUSION

The concentration dependence of the thermodynamic properties of aqueous alcohol or amine solutions can be interpreted as follows; a) when a basic hydrophobic molecule like an alcohol or amine is added to water at infinite dilution the acid-base interactions with water will reinforce the normal hydrophobic hydration of the alkyl chain (large positive values of $\overline{C_{p,2}^{\circ}} - \overline{C_{p,2}^{\circ}}$ and negative values of $\overline{V_2^{\circ}} - \overline{V_2^{\circ}}$, $\overline{E_2^{\circ}} - \overline{E_2^{\circ}}$ and $\overline{H_2^{\circ}} - \overline{H_2^{\circ}}$). b) As the concentration is increased, hydrophobic interactions between solute molecules will tend to decrease the hydrophobic hydration (positive $B_{\rm H}$ and $B_{\rm E}$ and negative $B_{\rm V}$ and $B_{\rm C}$). Superimposed on this effect there is a relaxation contribution to second The more structured entities have a stronger derivative functions. tendency to collapse with an increase in temperature (positive contribution to both $\phi_{\rm C}$ and $\phi_{\rm F}$). c) As the structure around the solute collapses the solutes will rearrange themselves in a way such as to minimize contacts of the hydrophobic chains with water. The partial molal quantities of the solute are then similar to those of micellar solutes since the polar group still interacts strongly with the water while the hydrophobic part sees only other non-polar chains (strong decrease in $\overline{C}_{p,2}$ and increase in $\overline{V_2}$, $\overline{H_2}$ and $\overline{E_2}$. d) As further solutes are added, they dissolve preferentially with their hydrophobic chains in the microphases and the partial molal quantities remain essentially constant.

The qualitative picture of interactions in aqueous-organic mixtures should apply to all hydrophobic solutes to different degrees but the effects are largely amplified with basic or acidic hydrophobic solutes that can hydrogen bond with water. Also, as described recently by Lumry,⁽⁴⁸⁾ such characteristic changes in thermodynamic functions will be observed with all aqueous systems involving strong fluctuations such as micellization and protein association. Unfortunately, there does not seem to be any simple way of treating quantitatively the thermodynamics of these fluctuating systems at the present time.

ACKNOWLEDGMENT

We are grateful to Dr. C. de Visser for his contribution in the initial part of this project and in particular for the study of Et_3N at 15°C. We would also like to thank the Natural Science and Engineering Council of Canada for financial assistance. One of us (G. R.) is also grateful to the France-Quebec exchange program for the award of a fellowship.

REFERENCES

- 1. C. de Visser, G. Perron, J. E. Desnoyers, W. J. H. Heuvelsland and G. Somsen, J. Chem. Eng. Data 22, 74 (1977).
- 2. O. Kiyohara, G. Perron and J. E. Desnoyers, Can. J. Chem. 53, 3263 (1975).
- 3. G. Roux, G. Perron and J. E. Desnoyers, ibid 56, 2808 (1978).
- 4. O. Kiyohara, G. Perron and J. E. Desnoyers, ibid 53, 2591 (1975).
- 5. G. Roux, G. Perron and J. E. Desnoyers, J. Solution Chem. 7, 639 (1978).
- 6. C. de Visser, G. Perron and J. E. Desnoyers, Can. J. Chem. 55, 856 (1977).
- J. E. Desnoyers, R. DeLisi, C. Ostiguy and G. Perron in *Solution Chemistry of Surfactants*, Vol. 1, K. L. Mittal, ed., (Plenum Press, New York, 1979) p. 221.
- 8. K. Iwasaki and T. Fujiyama, J. Phys. Chem. 81, 1908 (1977).
- 9. N. Muller, J. Magn. Reson. 28, 203 (1977); see also J. Phys. Chem. 83, 2041 (1979).
- 10. L. M. Prince, *Microemulsions, Theory and Practice*, (Academic Press, New York, 1977)
- 11. J. E. Desnoyers, R. Beaudoin, G. Perron and G. Roux, in *Chemistry for Energy*, Vol. 90, M. Tomlinson, ed., (ACS Symp. Ser., 1979), pg. 33.
- 12. M. A. Simard and J. L. Fortier, unpublished data.
- 13. S. G. Bruun and A. Hvidt, Ber. Bunsengen Phys. Chem. 84, 930 (1977).
- 14. C. Jolicoeur and G. Lacroix, Can. J. Chem. 54, 624 (1976).
- 15. A. Roux, J. P. Grolier and E. Wilheim, unpublished data.
- 16. R. C. Wilhoit and B. J. Zwolinski, J. Phys. Chem. Ref. Data 2, 1 (1973).
- 17. S. Cabani, G. Conti and L. Lepori, J. Phys. Chem. 78, 1030 (1974).
- F. Shahidi, P. G. Farrell and J. T. Edward, J. Chem Soc. Faraday Trans. 1 73, 715 (1977).
- 19. B. E. Conway, R. E. Verrall and J. E. Desnoyers, *Trans. Faraday Soc.* 62, 2738 (1966).
- 20. R. Arnaud, L. Avédikian and J. P. Morel, J. Chim. Phys., 45 (1972).
- 21. E. M. Arnett, W. B. Kover and J. V. Carter, J. Am. Chem. Soc. 91, 4028 (1969).
- 22. S. Cabani, G. Conti, A. Martinelli and E. Matteoli, J. Chem. Soc. Faraday Trans. I

646

12, 2112 (1973).

- N. Nichols, T. Sköld, C. Spink, J. Suurkuusk and I. Wadsö, J. Chem. Thermodyn. 8, 1081 (1876).
- 24. (a) A. Bergström and G. Olofsson, J. Solution Chem. 4, 535 (1975).
 (b) J. A. Riddick and W. B. Bunger, "Organic Solvents", in *Techniques of Chemistry*, Vol. 2, A. Weissberger, ed., (Wiley-Interscience, New York, 1970), Chap. 1.
- F. Franks and D. J. Reid in *Water: A Comprehensive Treatise*, Vol. 2, F. Franks, ed., (Plenum Press, New York, 1973), Chap. 5.
- 26. C. Jolicoeur, L. L. Lemelin and R. Lapalme, J. Phys. Chem. 83, 2806 (1979).
- 27. R. DeLisi, G. Perron and J. E. Desnoyers, Can. J. Chem 58, 959 (1980).
- M. J. Blandamer, D. E. Clark, N. J. Hidden and M. C. R. Symons, *Trans. Faraday Soc.* 64, 2691 (1968); see also M. J. Blandamer, N. J. Hidden, M. C. R. Symons and N. C. Treloar, *ibid* 64, 3242 (1968).
- 29. R. J. Fanning and P. Kruus, Can. J. Chem. 48, 2052 (1970).
- 30. K. Tamura, M. Mackawa and T. Yasunaga, J. Phys. Chem. 81, 2122 (1977).
- 31. K. Iwasaki and T. Fujiyama, J. Phys. Chem. 83, 463 (1979).
- 32. R. G. Anderson and M. C. R. Symons, Trans. Faraday Soc. 65, 2550 (1969).
- 33. W. Y. Wen and H. G. Hertz, J. Solution Chem. 1, 17 (1972).
- 34. J. Saunders and J. Van Dinter, in preparation.
- 35. M. J. Blandamer and M. C. R. Symons, *Hydrogen Bonded Solvent Systems*, A. K. Covington and P. Jones, eds., (Taylor and Francis, London, 1968).
- J. E. Desnoyers, G. Perron, L. Avédikian and J. P. Morel, J. Solution Chem. 5, 631 (1976).
- R. Okino, H. Touhara, K. Nakanishi and N. Watanabe, presented at the ACS-CSI Chemical congress, Honolulu, April 1979.
- 38. B. Chu and W. P. Kao, Can. J. Chem. 43, 1803 (1965).
- 39. B. J. Hales, G. L. Bertrand and L. G. Hepler, J. Phys. Chem. 70, 3970 (1966).
- 40. J. L. Copp, Trans. Faraday Soc. 51, 1056 (1955).
- 41. J. L. Copp and D. H. Everett, Faraday Soc. Discussions 15, 174 (1953).
- 42. J. L. Copp and D. H. Everett, Trans. Faraday Soc. 53, 9 (1957).
- 43. G. L. Bertrand, J. W. Larson and L. G. Hepler, J. Phys. Chem. 72, 4194 (1968).
- 44. E. M. Kartzmark, Can. J. Chem. 45, 1089 (1967).
- 45. A. N. Campbell and E. M. Kartzmark, Can. J. Chem. 47, 619 (1969).
- 46. B. Kingston and M. C. R. Symons, J. Chem. Soc. Faraday Trans. 2. 69, 978 (1973).
- 47. M. Falk, Can. J. Chem. 69, 1137 (1971).
- R. Lumry, Bioenergetics and Thermodynamics: Model Systems, NATO Conference, Parma, Italy, May, 1979.