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Abstract. We give here the calculation of  density perturbations in a gravitation theory with a scalar 
field non-minimally coupled to gravity, i.e., the Brans-Dicke theory of gravitation. The purpose is 
to show the influence of this scalar field on the dynamic behaviour of density perturbations along 
the eras where the equation of  state for the matter can be put under the form p = ap, where a is a 
constant. We analyse the asymptotic behaviour of this perturbations for the cases c~ = 0, a = - 1, 
a = 1/3 and p = 0. In general, we obtain a decaying and growing modes. In the very important case 
of inflation, a = - 1, there is no density perturbation, as it is well known. In the vacuum phase the 
perturbations on the scalar field and the gravitational field present growing modes at the beginning of 
the expansion and decaying modes at the end of this phase. In the case a = 0 it is possible, for some 
negative values of w, to have an amplification of the perturbations with a superluminal expansion of 
the scale factor. We can also obtain strong growing modes for the density contrast for the case where 
there is a contraction phase which can have physical interest in some primordial era. 

1. Introduction 

The existence of a classical scalar field in Nature has been considered in many 
theories of gravitation that present alternatives to General Relativity. The prototype 
of scalar theories is the Brans-Dicke Theory [1], [2], [3], [4], whose Lagrangian is 
given by: 

S = ~1/d~xv/ .~[r162163 (1) 

It can be expected that the presence of the scalar field leads to different predictions 
with respect to those we obtain in General Relativity. In cosmology, this can 
lead to far reaching consequences, since the standard scenario given by General 
Relativity presents, besides some spectacular success, important drawbacks such 
as the horizon, flatness and structure formation problems [5]. 

However, local physics limits the value of the parameter w: it must be greater than 
500 to account the classical tests. This result has reduced the interest in the Brans- 
Dicke Theory. This situation has changed recently with the proposal of the extended 
inflation [6], [7]; in the de Sitter phase, Brans-Dicke Theory predicts power-law 
inflation instead of exponential; in fact, following D. La and P. Steinhardt, at the 
beginning of inflation the BD solutions (for p = - p )  approaches the Einstein-de 
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Sitter solution. In the second stage of the inflation, both the scalar field and the 
scale factor grow by power law rather than exponential. This feature prevents the 
so-called 'graceful exit' problem. However, in order to work, the parameter must 
be co ~ 24, contradicting observation; nevertheless this constraint follows from 
local conditions. This drawback can be overcome through a generalization of the 
original Brans-Dicke Theory, allowing the parameter co to be a function of the field 
~b itself. 

This revival of Brans-Dicke Theory leads us to ask if the problem of structure 
formation can be modified through the introduction of scalar field. This question 
has been treated in many different situations in the literature [8], [9], [10]. Here, we 
propose to study the evolution of density fluctuation in the traditional Brans-Dicke 
Theory in the different phases of the Universe. Even if we consider co as a constant, 
this analysis can furnish many insights in how the scalar field modifies the main 
conclusions about gravitational instability obtained employing General Relativity. 
In particular we will see that in de Sitter phase, the scenario differs substantially 
from the traditional one. In the other phases, however, the differences are much less 
important. As was mentioned above, the main interest in the presence of the scalar 
field is the possibility that this field accelerates the growth of density perturbations. 

We will work in the Lifschitz-Khalatnikov formalism [11]. The reason is that 
it furnishes essentially the same relevant results we can obtain employing another 
formalism, and also it allows for the choice of synchronous frames where the 
physical interpretation of the concerned quantities are easily done. We must, of 
course, be careful about the presence of unphysical modes [12]. However they can 
be eliminated by performing an infinitesimal coordinate transformation. Taking 
care of the so called residual coordinate freedom, we can be sure to retain just the 
physical modes. 

We will allow for negative values for the parameter co. In fact, a negative co is what 
is predicted by the effective models coming from Kaluza-Klein and Superstring 
theories [13]. 

This paper is organized as follows. In section II we present the background 
solutions of the unperturbed universe in the following phases of its development: 
vacuum, inflation, radiation and incoherent matter. In section III we obtain the 
perturbed equations and their solutions in terms of Bessel functions for that phases. 
In section IV we calculate the asymptotic behaviour of the solutions for t -4 0 and 
t -+ e~. Finally, in section V we discuss the relations between the wavelength )~ 
and the particle-horizon distance H -1 . 

We assume in this article the following notations: the greek indices run from 
zero to three; the latin indices run from one to three; the signature is (+, , , - ) ;  
we use a Robertson-Walker metric with flat space section (k = 0); the scalar 
field q5 is a time function; the energy-momentum is the perfect fluid; we use the 
synchronous gauge which fix the reference frame. 



DENSITY PERTURBATIONS IN THE BRANS-DICKE THEORY 317 

2. Background Solutions 

We assume that background universe is spatially flat, homogeneous and isotropic, 
i.e., it is described by the Robertson-Walker metric: 

d s  2 = dt 2 - a 2 d x  2, (2) 

where the a(t) is a scale factor of the universe, and c = 1. The energy-momentum 
tensor of the background matter takes a perfect fluid form: 

TUU = (p + p)U~U u _ pgUU, (3) 

with an equation of state p = ap.  In these expressions p is a density matter, p is a 
pressure and a is a constant. 

From the Lagrangian density (1), we obtain the field equations: 

co 1 p l R =  87rT,  (~;~;u--~g#uqJ;p~; )+ 

1 (  _guunqb) (4) + 4;.  ;. 

87r 
De  - 3 + 2------~ T" (5) 

Inserting the metric (2), into equations (4) and (5) we obtain the equations of 
motion: 

-3iia -~P~,87r {2+w+3a+3aw\3~_~ w "2 = )+~-~q5 + ~, (6) 

a 3 + 2co p ' I  ( 3o 0 �9 (7) 

The above equations must be supplemented by a conservation equation: 

Tu~;, = 0; (8) 

when # = 0 we have the energy conservation: 

ti + 3~p(1 + a) = 0, (9) 

while, for # = j we get the condition: 

p, i = 0. (10) 

Background solutions can be obtained assuming that the scale factor a(t) and 
the scalar field ~b(t) have a power-law form: 

a(t) c~ t r, ~(t) o( t s. (11) 
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By direct substitution of the above relation in the equations (6), (7), (9) and 
(10), we have: 

- 3 r ( r  - 1) = 8 r c p t Z - s (  2 +w(13+2w + 3a) + 3 a )  +s2(1 + w) - s, (12) 

s 2 + s ( 3 r  - 1) - 3 ~ - 2 w  p t2 - s (1  - 3a), (13) 

+ 3~p(1 + a) = O, (14) 

p , i  = 0. (15) 

In what follows we shall consider the important special cases: vacuum, inflation, 
radiation and incoherent matter. 

2.1. VACUUM (p = 0) 

Here, the universe has no ordinary matter and the energy-momentum tensor is null 
in all space-time. Our background solutions from equations (12), (13) are 

w + 1 -t- V/I + -- ~ 
4 + 3w ' (16) s =  1 - 3 r ,  r =  

3 where w > - ~. 

2.2. INFLATION (a = --1) 

In this scenario we have a drastic expansion of the universe during the early period 
of the Big Bang. In this case, the background solutions are: 

1 
s = 2 ,  r = w + 2 .  (17) 

Strictly speaking, inflation occurs for w >__ �89 

2.3. RADIATION (a  = 1) 

In this era the energy density of the universe was totaly dominated by relativistic 
particles. The solutions are: 

1 
s = O, r = ~.  (18) 

As it is easily seen the above solutions are the same for the General Relativity by 
the same scenario [14]. 
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2.4.  INCOHERENT MATrER ( a  = 0) 

This phase is such that the universe is dominated by nonrelativistic matter with 
negligible pressure�9 The solutions are: 

2 +  2w 
s = 2 - 3 r ,  r - - 4 + 3 w .  (19) 

3. Perturbed Equations 

Our objective here is to calculate the perturbations of the equations (4), (5) and (8), 
and to obtain the exact solutions for the perturbed equations for each scenario of 
the universe. We are interested in the density matter perturbations so that we will 
only use the temporal components of the Einstein's equations since that component 
is directly associated with the scalar modes. Adopting the synchronous gauge, we 
put hou = O. 

In order to derive the perturbed equations, we write the metric tensor as: 

9uu = guu + h~v, (20) 

leading to the Ricci tensor 

/~oo = Roo + 5Roo, (21) 

where 

The energy-momentum tensor is given by 

~oo = TOO + 5TOO = TOO + 5p; (22) 

the energy-momentum tensor trace is 

= T +  5T = T +  5 p -  3@; (23) 

for the d'Alembertian of the scalar field we find 

�9 V2 
a p e  = + aahkk  ib - 2-2jhk r + 3 a - (24) 

Using now the following definitions 
i) hkk  -.---. a2h, 

ii) 5 r 1 6 2  w i t h A < < l ,  
iii) 5p = Ap with A < <  1, 
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we will get the set of perturbed equations: 

l'h+g-]z= ~P(A- )~) (2+w+3wc~+3~ 3 + 2w ( 2 5 )  

~ , + , ~ ( 2 ~ + 3 ~ _ _ ) + , k ( ~ + 3 g ~ )  1.q~ 
a 

1 V z A =  
a 2 

87r A 
- -  - T p ( 1  - 3c~), ( 2 6 )  

(3 2w) + q~ 

A -  (1 + a ) (~h -  ~Uk,k)= 0, (27) 

(1 + oe)(2 - 3 a ) a s u  j + 6UJ(1 + c~) = -a-2aA,jg jk. 
a 

(28) 

Equations (25), (26) are the differential equation for the perturbation h(t) of the 
gravitational field, )~(t) is the scalar field perturbation and A(t), the perturbation 
for ordinary matter. Equations (27) and (28) are the perturbed equations derived 
from the conservation equation (8)�9 With the above set of differential second order 
equations, we will analyse each phase of the universe. 

In what follows, we will suppose that the perturbations have a plane wave 
behaviour: 

A(x,t) = A(t)exp(-iq.x) and h(x,t) = h(t)exp(-iq.x), (29) 

where q is the wavenumber of the perturbations. This planewave expansion is 
justified by the facts that we are in the linear regime and the spatial section is flat. 
The time dependent functions in the right side of the relations (29) are the time 
dependent part of the functions 5r x) and h(t, x) divided by the background 
functions that depend on time only. These redefintions made the equations easier 
to solve. 

3.1. VACUUM (p = 0) 

In the universe without matter there is only perturbations of the metric and scalar 
field. The two coupled linear second-order equation for h(t) and )~(t) are given by: 

1_ h r_ h = + 2 (1 + - 
2 + t  

(30) 

lh (1  - 3r) = ~t + 2~(1 - 3r) + 3~r + t21-~_1q2),. (31) 
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Differentiating (31) and removing Iz and h, we find the following linear third- 
order differential equation for A(t): 

r 2 1 q2 
+A [~2 (16 + 12w)-  ~ ( 2 4  + 18w)~(2 + 2w)+ t--~-r ] + 

+ A (tqT~)= 0. (32) 

In order to solve the above equation, we perform the following substitution: 

t~ 
A = -~, k = tr')  ', x = t p, with p = 1 - r, 

1 - 2r xq 
7=xrng~ with m =  1 - r '  y 1 - r  

We get from equation (32), 

y2gtt  q_ yg t  q_ g(y2 _ 1) = 0, (33) 

i.e., Bessel equation of order 1, where the prime denotes derivatives with respect 
to the conformal time. 

The solutions of (33) are the Bessel and Neumann functions of the first kind: 

g = C1 J1 (Y) h- CzN1 (y). (34) 

The solutions for A(t) and h(t) are given by: 

1 
(C1 J1 (Y) + + A(t) = 7[ f C2Nl(y))dt C3], (35) 

h(t)= f[(1_ l [ 6 r + ~ ] [ f  t l-r(C1Jl(y)+C2Nl(y)) 

4 

+ (1 - 3r)t ~ 

where C1, Cz, C3 and C4 are constants and Jk, JVk means respectively the time 
derivative of Bessel and Neumann functions. 
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3.2. INFLATION ( a  = -1) 

The remarkable feature of this case is that the density contrast is null. This can be 
seen through equations (27)-(28). So, we have two coupled linear second-order 
equation for h(t) and ),(t): 

h + 2 r h t  - 2 ) ' - 4 ( 2 r + 1 ) ) '  
167r 

r.rP),) = 0, (37) (1 + 

t + 

16~ +r,p~) = 0 .  (38) t2(1 

The  resolution method is very similar to the vacuum case. So we find the 
following linear third-order differential equation for ),(t): 

�9 d 1 2 ( 6 r 2 + 6 r - 2 ) ' ~  + )+ 

+ A ( t 2 ~ q Z  + ( 6 r 2 - 4 r -  2)) 
t3 = 0. (39) 

By employing the transformations: 

t; 
A = -(, k = tr3", x = t p with p = 1 - r, 

1 - 7r xq 
3' = zing with m - 

2 ( l - r ) '  Y =  1 - r  

we obtain the Bessel equation of the order k: 

y2g. + y9, + (y2 _ k2)g = 0, (40) 

where 

r + 3  
k - -  

2(1 - r )  

Its solution is 

g(y) = C1Jk(y) -}- C2J-k(Y),  (41) 

where Jk(Y) is the Bessel function of the order k. 
The solutions for A(t) and h(t) are given by: 

l r C l-5" (Ggk(y) C2J-k(y))dt C3] 
A(t) = -i [ ]  t : + + , (42) 



DENSITY PERTURBATIONS IN THE BRANS-DICKE THEORY 323 

h(t) = f [ 1+5~ 

+ t - T  C1 y) + C:J-k(y  + 

( 3 r + 2 ) [  1 ( /  ,-5~ ) 
-[ t - - g  t--~--(C1Jk(y)+C2J-k(y))dt+C3 + 

1[ c , - 5 ~  C2J-k(y))]]+ +T[Jt (ci4(y)+ 

/ j] +[, t5 ~-~5-;q t--r-(Ci&(y)+CaJ_k(y))dt+C3 dt+C4,(43) 

where C1,6"2, C3, C4 are constants. 
In contrast with the vacuum case, r is greater than 1 for w > �89 For r = 1 (w = 

�89 equation (39) becomes an Euler equation and admit the particular power-law 
solution: 

A = t  n, n = - 2 + ~ - q 2 .  (44) 

3.3. RADIATION (ot = 1) 

By considering the background solutions for the perturbed quantities, we have, 
from equations (25)-(28) 

l h = 2 ~  + 3 h + t ~-~ (A -- A), (45) 

+ 3 ) ,  + lq2A = 0, (46) 

2. 4 - 
/X = ~h - ~Ua, j ,  (47) 

5U j + 2t5(7 j = - 1A'j .  (48) 
2 

Taking equation (46) and performing the following transformations: 

1 1 
x = t  p, with p = ~ , A = x m g  with m = - ~  and y = 2 q x ,  

we obtain the differential Bessel equation: 

1[ 
g,, + ~ g , +  Y-~ y 2  2 g = O. (49) 
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The solution for )~(t) is: 

= (c,J  (y) + @ ,  (50) 

where C1 and C2 are constants. 
Now, from equations (45),(47) and the equation (48), we have two coupled 

linear differential second-order equations to solve: 

l h  3"" 3zX 1 
h + 2t ~A - 4t qZA = 0, (51) 

1 -  3 
~h = 2)i + 2-~(/X - ~). (52) 

Subtracting these two equations we have: 

]~ = -3 t f~ -  3~- (q2  - 3 )A  +F(,~), (53) 

where 

P()0 = 4t), - 3)~. t (54) 

With the equation (53) and equation (51), we obtain the differential third-order 
non-homogeneous equation for A(t): 

5 . .  1 2 7 (+~-~A+( .~q  -- 1 kA [ 1 

where 

9r(A) = 1 / b ( A ) +  5-~F(A). (56) 

Performing the transformations: 

a 
A = - -  and k = t 7 ,  

t 

we obtain the following differential second-order non-homogeneous equation: 

3 .  1 2 
;Y + ~ 7  + ~-~q 7 = 5r(),), (57) 

whose solution for A(t) is: 
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3.4. INCOHERENT MATFER (a = O) 

Here, we have the following set of coupled differential equations: 

+ 2 r h t  =-7167r (A-A)( \ J+~g2+c~ 

1. ( 2 -  3r) 

q2 87r(3 + 2w)A, 
+ ~-57r A =  t2 

~SJ + 2"~vJ = o. 

Setting the four-velocity perturbation 5U k null, which, in this case, is allowed 
by one infinitesimal gauge transformation, we have: 

2r z~ (2r - 2) (A - A) = 0, (63) 
(2x-);)+T{ - i ) +  t T  

whose solution is 

A = A + t 2(l-r). (64) 

Substituing (64) in (60), we obtain: 

2 ,  1 6r 2 - 13r + 6 
q- 7,k + ~ q  2A = t2 r (65) 

(59) 

(60) 

(61) 

(62) 

1[/ I A(t)= 7 t~ dla~(~)+C2&l(~)+ 

1 
where z = 2qt ~ / v ~  and W (  1, _!)2 = J~- J -  -I - J l_ J~ ~ the Wronskian constructed 

2 2 2 - -2  

with the Bessel functions. 
Equations (50) ,i,gd (58) are the solutions for scalar field perturbation and for 

density perturbation. 
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Now, perfoming the transformations: 

x = t  p with p = l - r ,  A = xmg with m - 
1 

2(1 - r ) '  

xq 
Y-- 1 - r '  

we obtain the differential second-order non-homogeneous equation: 

[ 6  _13 +6 
y2g" + Yg'+ y 2  2(1 -- r) g = (1 - r) 2 

Its solution is given by: 

9(y) = 6r 2 -  1 3 r + 6  1 ( J - v ( Y )  )dy+  
(1-~)~ J"(u) f V\w(.,-.)] 

(66) 

/ ] (67) 

where u = - m .  
The solutions for )~(t) and A(t)  are: 

A ( t ) =  6 r 2 - 1 3 r + 6 [ j u ( y )  f 21~. .r ( J-u(Y) ~dt+ 
qt�89 t -  \W(u, -zJ)]  

+j_.(y) f 1 ( J.(y) ] t-i~_r \ W ( u  _u) )  dt + 

+ (CiJ.(y) + C2J-u(y))t-�89 , (68) 

z~(t) = 
6r 2 -- 13r + 6 

1 
qt~ 

+J-v(v) f ~-r kw(~,,-~)] ] 

+ (t-~)(clJ~(y) + c2J_~(y)) + t 2(1-r). (69) 

The equations above are the solutions for ),(t) and A(t)  for r r 1. 
On the other hand for r = 1 equations (63)-(65) admits the particular solution 

A = A + C3t -1 + Cte, where 

--1 -4- VZf -- 4q 2 
A = t m, m = (70) 

2 
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4. Asymptotic Behaviour 

In this section we analyse the solutions obtained above by calculating their asymp- 
totic expressions [ 15]. We can readly see that the arguments of the Bessel functions 
found in the last section are indeed the ratio between the physical wavelength 
A I = a/q of the perturbation and the particle-horizon distance H -1. We have, 
then, A I > H -1 when t --+ 0 and A I < H -1 when t -+ co. These relations invert 
when r > 1. 

In what follows, for sake of simplicity, we have eliminated all gauge modes 
appearing in the solutions [16], which are represented by the constant G3, and we 
have chosen null phases for the oscillating terms. 

4.1. VACUUM 

i) t --+ 0 

A(t) _~ Clt 2(l-r) + C2,  (71) 

C (  q2t5_4r ) q_ h(t) ~ 1 - - ;r  2t1-2r + - 2rt-2r 

) + ~ q2t3-zr + 2t -1 + (4 + 2r)t -2 ; (72) 

ii) t --+ oo 

a(t) ~_ t--i-[A1 cos(t l - r )  + A2 sin(tl-r)], (73) 

h(t) r-~ _~ t-T-[A1 sin(t l - r )  + A2 cos(tl-~)], (74) 

with A1 and A2 given by some functions of C1 and C2. We also recall that 

+ I:F 
T =  

4+3co 

4.2. INFLATION 

i) for t --+ 0 

A(t) ----- C1 t2(1-r) + C2t -(l+3r), 

6 6 

i = I  i=1 

(75) 

(76) 
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ii) for t -+ co 

/~(t) = t-2(l+r)[c 1 cos ( t  l - r )  + C 2 s i n ( t l - r ) ] ,  

7 7 
h(t) ~- E AitX' + ~ BitY" 

i=1 i=1 

where Ai, Bi, Ci and Di are constants and the exponents are given by: 

Xl : 2 - 3r, x2 = 7 _ 5r, x3 = 3 _ 3r, 
11 _ ~ ;  X 5 = 5 - -  71", X6 ~___ 7__ 7r ,  X7 ~___ "2" 

Yl = --1 - -4 r ,  Y2 = - 1  - !~r, Y3 = - 3  - 9r, 

X 4 ~--- 3 - ~r, 

Y4 = --3 -- ~ r  2 7 

(77) 

(78) 

= -  = } 

Zl - 2r, z2 - 3r, z3 - 2r, 

z 4 = - � 8 9  z s = - 2 - 2 r ,  z 6 = - 4 r .  

The constants above are all combinations of C1 and C2. Finally we recall that 

1 
r = w + ~ .  

4.3.  RADIATION 

i) t--+ 0 

A(t) ~_ C, + C2t�89 (79) 

1 
A(t) _ C,t + C2t~; (80) 

ii) t --+ oo 

:~(t) ~_ t- l[c,  sin(t�89 + c2 cos(t~)], (81) 

Ah(t )  ~ C~ sin(t�89 + C;cos(t �89 (82) 

The non-homogeneous part of the equation (55) gives, by a direct inspection, a 
mode that in the asymptotic regime decays with time. 

4.4. INCOHERENT MATTER 

i) t - +  0 

A(t) ~-- C1 + C2 t-1 + A(r, q) t  r - 2 ,  (83) 
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A(t) ,x(t) + t2o- /; 

ii) t --+ oo 

A(t) _~ t ~ 2  [C1 sin(t l - r )  + C2 COs(tl-r)] q- At-T-6r-5 Sin(tl_r) ' 

m (t )  '~ A(t) + t2(1--r)~ 

we recall that 

2 +  2to 
r = 4 + 3 w  

329 

(84) 

(85) 

(86) 

5. Analysis of the Results 

5.1. VACUUM CASE 

In the vacuum case we verify that the exponent of the background solutions is 
always less than unity so that, for t --+ 0, both A(t) and h(t) have growing modes. 
On the other hand for t -+ oo, A(t) and h(t) have only oscillating decaying modes. 
It means that perturbation of the scalar field and the perturbation of gravitational 
field whose wavelengths are greater than particle-horizon are growing perturbation 
in contrast with those having wavelengths smaller than the particle-horizon which 
are all decaying perturbations, as it is an expected result. This result generalizes 
those obtained in [17]. 

5.2. INFLATION CASE 

We have in the present phase three cases: r < 1, r = 1 and r > 1. (The case 
r --- 1 represents the transition between two regime in the same phase: inflationary 
expansion and 'soft expansion'.) 

a) r = 1: this can represents the transition between two regime along the same 
phase: inflationary expansion and 'soft expansion'. From equation (44) we have, 

i) for q < 2, ),(t) has decaying modes, 
ii) for q > 2, A(t) has oscillating modes. 

b) r < 1: there is no inflationary inflation, in spite of the fact that oe = - 1 .  
Moreover, when to < - 1 / 2 ,  we will find an important growth of A(t), but a 
decaying scale factor. For t --+ 0, A(t) has one growing mode and one decaying 
mode, while h(t) has only decaying oscillating mode. For t --+ oo, A(t) has only 
decaying oscillating mode and h(t) shows growing modes. 

c) r > 1: this is the case where there is strictly inflation. The scalar filed grows 
at power t 2 and the scale factor undergoes huge expansion for w > >  1/2. For 
t --+ 0 all modes of A(t) are oscillating decaying and h(t) has gentle grow modes 
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for 1 < r < 2 (1/2 < co < 3/2). For t -+ cxD, ),(t) and h(t) are completely 
decreasing perturbations. 

5.3. RADIATION CASE 

In this case, r = 1/2 and the background evolves as if the scalar field were constant. 
For t --+ 0, ),(t) and A(t) (density perturbation) undergoes gentle growing, as 

1 

t and t~. For t --+ oo both perturbations show only decaying oscillating modes. 
In this radiation case the scalar perturbation gives a decaying contribution to the 
corresponding GR results. 

5.4. INCOHERENT MATrER CASE 

Here, we have also three case r -- 1, r < 1, andr > 1. The behaviour of A(t) is 
the same of )~(t) plus one term in form of power-law. 

a) r = 1: from particular solution from equation (65) we see that 
i) for q < 1/2, ),(t) has decaying modes; 

ii) for q > 1/2, )~(t) has two oscillating modes with decaying amplitude. 
A (t) has a supplementary constant term. 

b) r > 1: in this case for t -+ 0, ),(t) has oscillating modes, one of then with 
growing amplitude. The behaviour of A(t)  shows also a pure decreasing mode. 
For t -+ oe, )~(t) and A(t) have only decaying modes, except for the case r > 2 
( - 3 / 2  < w < -43) .  We note that in this case we have also a superluminal 
expansion of the background. 

c) r < 1: only A(t)  has a growing mode for t -+ 0. ),(t) has only decaying 
oscillating modes and A(t) is still increasing, for t -+ co. In the case of - 4 / 3  < 
co < - 1 we have r < 0 and then A (t) is growing with high power of t. We observe 
that, for this case, we have a contracting universe. So it can be consider of physical 
interest if it can be applied to some primordial phase. 

Our results confirm those obtain in [10], where it is pointed out that the BD 
solution of this case can not leads to a solution of the structure formation problem, 
when we consider values of co imposed by local physics. 

6. Conclusion 

We gave in this paper a general classification of perturbation in BD Theory corre- 
sponding to the phases of the expanding universe where the matter is described by 
equations of statep = c~p with c~ = 0, ~ = - 1 ,  c~ = 1/3 and p = 0. We assumed 
that the background solution for the scalar field and for the scale factor are that of 
'pure' power-law. We have found the exact solutions of the perturbed equations in 
the form of integrals of Bessel functions. The calculation here confirms, in general, 
the very known fact: perturbations at scales larger than particle horizon distance 
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grow up, while for smaller scales the perturbation exhibits an oscillating behav- 
iour. It is not true for incoherent matter where density perturbations can be always 
amplificated. 

In the inflationary phase we can see that the strong expansion of  the universe 
erases the perturbation on the scalar field but the gravitational perturbation is 
growing for scales greater than particle-horizon distance. On the other hand, it is 
very important to emphasize that the perturbations in the density of  the matter 
are null in Brans-Dicke inflation. This recovers the main results from classical 
inflationary scenario. 

The radiation phase do not give an expressive contribution with respect to the 
GR corresponding results. In the incoherent matter the situation is more rich. For 
some negative values of  w we can have a superluminal expansion and at the same 
time a significant amplification of  perturbations. 
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