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Abstract. The paper deals with the restricted photogravitational 2+2 body problem when the primaries 
are oblate spheroids. A study of the effect of the oblateness on the equilibrium positions and on the 
areas of the permissible motion of the minor bodies, is also made. 

1. Introduction 

In our previous article (Kalvouridis and Mavraganis, 1995), we have presented 
the photogravitational 2+2 body problem by considering spherical primaries Pi, 
/ = 1,2. The study of this model was based on the assumptions that one of the 
minor bodies, is so big that the radiation pressure acted upon it by the primaries be 
negligible compared with the gravitation and that the other minor body, say $2, is 
so small to be acted by both the gravitational attractions of all other bodies and the 
radiation pressure of the primaries. 

On the other hand it is known that the shape of the planets, mainly the more 
massive, differs from the spherical one and thus the oblateness in these cases 
couldn't  be neglected. For example the polar and equatorial radii of Saturn are 
60.400 and 54.600 km and those of Jupiter are 71.400 and 67.000 km respectively. 
Therefore it is important to investigate in what degree the oblateness affects the 
dynamical behaviour of the system. 

We will assume hereafter that the equatorial planes of the primaries coincide 
with the plane of their motion. In the subsequent, we extract the equations of 
motion of the minor bodies Si, i = 1, 2 and we study numerically the influence 
of the primaries' oblatenesses on the location of the equilibrium points and on the 
areas of the permissible motion of the small bodies. Some of the results obtained 
are exposed in tables and diagrams. 

2. Equations and Integral of Motion 

A m o n g  the existing formulas which describe the gravitational potential created 
by an oblate spheroid, that proposed by Mac Cuskey (1963, p. 164) approximates 
satisfactory and in a rather simple way, the behaviour of the natural bodies. If we 
denote Rie,/~/p, i = 1, 2 the dimensionless equatorial and polar radii of the bodies 
Pi, i = 1, 2, and by, 
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Ii = t'~ (R2. -R2p) ,  i =  1,2 
~ , - - $ e  

their oblatenesses, then the gravitational potentials of the primaries, according to 
Mac Cuskey's analysis, will be expressed with the general formula, 

Vi -- Mi Ii 3Ii z2 
ri 2r~ .3 + g2N_5 , i = 1, 2 2r i 

where Mi, i = 1,  2 are their reduced masses, 

M1 = 1 - #  and M2 =/~.  

For the planar case (z = 0) the Lagrangian expressed in the synodic coordinate 
system Oxyz,  takes the form, 

2 
�9 /~i 

L(Xi'Vi'Xz'Oi) = Z T [(~i --W'W)2 + (Yi + co*Xi) 2] 
i=1 

+ #l~-~'~qi + + # 2 Y ~  Mi + + . (2.1) 
i=1 i=1 P 

In this expression, #i are the reduced masses of &, i = 1, 2, rid, i, j = 1, 2, are the 
distances between a primary and a minor body, 

r .  = [ ( * i  - + v21 /2 
, / = 1 , 2  

/ '2i  ---- [ (Xi + 1 - -  /.t) 2 + y2]1 /2  

p is the distance between the bodies S/, 

/9 = [(X2 - -  X l )  2 "l- (Y2 - -  yl)2] 1/z 

and qi are the radiation pressure parameters of both primaries on the smaller minor 
body ,92, with 

qi = 1 -- fli, 

where/3/are the ratios of the radiation to gravitational forces. Here we assume that 
both ratios/3/are very small. The symbol w* denotes the mean motion Of the oblate 
primaries, 

[ 3 Ii 
= 002+ 2i=  

where w0 = 1 is the mean motion of the spherical bodies. 
The system is autonomous with four degrees of freedom and it is characterized 

by seven parameters, that is the mass parameters /,, #1, #2, the two radiation 
parameters qi and the two oblatenesses Ii. 

From (1.1) we easily come to the differential equations of motion, 
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Table Ia 

Shift of the equilibrium locations of $1 near L~ (Xl > Xl P, I1 = 0) 
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I2 # 0.1 0.01 0.001 0.0001 0.00001 0.000001 

10 -1 0.12837 10 ~ 0.13810 10 ~ 0.10001 10 ~ 0.65216 10 -1 0.40515 10 -1 0.24478 10 -1 

10 -2 0.57830 10 -1 0.12318 10 ~ 0.99165 10 -1 0.65179 10 -1 0.40513 10 -1 0.24477 10 -1 

10 -3 0.10449 10 -1 0.71483 10 -1 0.92038 10 -1 0.64842 10 -1 0.40499 10 -1 0.24476 10 -1 

10 -4 0.11609 10 -2 0.2047010 -1 0.6279610 -1 0.61891 10 -1 0.40374 10 -1 0.2447010 -1 

10 -5 0.11745 10 -3 0.29154 10 -2 0.25534 10 -1 0.47358 10 -1 0.39261 10 -1 0.24425 10 -1 

Table Ib 

Shift of the equilibrium locations of $1 near L~ (Xl < Xl p,  11 = 0) 

12 # 0.1 0.01 0.001 0.0001 0.00001 0.000001 

10 -1 0.12833 10 ~ 0.13803 10 ~ 0.99928 10 -1 0.65123 10 -1 0.40421 10 -1 0.24382 10 -1 

10 - z  0.57816 10 - l  0.12314 10 ~ 0.99092 10 -1 0.65092 10 -1 0.40420 10 -1 0.24383 10 - l  

10 -3 0.10446 10 -z 0.71465 10 -1 0.91991 10 -1 0.64767 10 -1 0.40411 10 -1 0.24383 10 -1 

10 -4 0.1160510 -2 0.20463 10 -1 0.6277410 -1 0.6183910 -1 0.40297 10 -1 0.24381 10 -1 

10 -5 0.11742 10 -3 0.29141 10 -2 0.25522 10 -1 0.47332 10 -1 0.39204 10 -1 0.24345 10 -1 

xi - 2w*yi -- 

~li + 2 w *  x i  - -  

where, 

1 0 T *  

~i Oxi 
, i = l , 2  

1 0'1'* 

#i Oyi 

2 
1 . 2 /  2 

T* = + + 

j = l  

1 l.Z3_j + #~ ~ qi + 

2 p i=1 

(2.2) 

+ m  + . (2 .3)  
/=1 

The function T* does not depend explicitly on time, so the system (2.2) has a 
Jacobi integral, 

1 k # i ( a ?  2 + ~)2) T* - C, where C is aconstant. (2.4) 
2 .  

z = l  

3. Equilibrium Positions of the Minor Bodies Si 

The equilibrium positions of the minor bodies Si,  are the solutions of the algebraic 
system, 
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Table IIa 
Shift of the equilibrium locations of $1 near L2 e (Xl > x~, 11 = 0) 

/2 # 0.1 0.01 0.001 0.0001 0.00001 0.000001 

10 -1 0.21437 10 ~ 0.47985 10 ~ 0.74496 10 ~ 0.88080 10 ~ 
10 -2 0.73058 10 -1 0.22446 10 ~ 0.53759 10 ~ 0.78039 10 ~ 

10 -3  0.13334 10 -1 0.83890 10 -1 0.22362 10 ~ 0.57152 10 ~ 
10 -4 0.15158 10 -2 0.2214910 -1 0.77449 10 -1 0.2354410 -1 

10 -s  0.15388 10 -3  0.32121 10 -2 0.26763 10 -1 0 . 6 4 4 6 0 1 0  -1 

0.94455 10 ~ 0.97421 10 ~ 
0.89776 100 0.95249 100 

0.79732 10 ~ 0.90570 10 ~ 

0.58829 10 ~ 0.80526 10 ~ 

0.24877 10 ~ 0.59621 10 ~ 

Table IIb 

Shift of the equilibrium locations of S1 near L~ (Xl < x2 P, Ii = 0) 

I2 # 0.1 0.01 0.001 0.0001 0.00001 0.000001 

10 -1 0.21437 10 ~ 0.47989 10 ~ 0.74502 10 ~ 0.88089 10 ~ 0.94463 10 ~ 0.97431 10 ~ 
10 -2 0.73069 10 -1 0.22447 10 ~ 0.53763 10 ~ 0.78046 10 ~ 0.89784 10 ~ 0.95258 10 ~ 

10 -3  0.13337 10 -1 0.83902 10 -1 0.22362 10 ~ 0.57156 10 ~ 0.79739 10 ~ 0.90579 10 ~ 
10 -4  0.15162 10 -2 0.22156 10 -1 0.7746010 -1 0.23543 10 -1 0.58833 10 ~ 0.80533 10 ~ 

10 -5 0.15391 10 -3  0.32134 10 -2 0.26773 10 -1 0.64466 10 -1 0.24876 10 ~ 0.59626 10 ~ 

Oxi 

OT* 
=0  

Oy~ 

, i =  1,2.  (3.1) 

For  the n u m e r i c a l  inves t iga t ion ,  we have  fo l lowed  the process  wh ich  has b e e n  

desc r ibed  ana ly t i ca l ly  in  our  paper  m e n t i o n e d  in  the in t roduc t ion .  For  the spher-  

ical  case there are 14 e q u i l i b r i u m  pos i t ions  wh ich  are d is t r ibuted  nea r  the five 

' L a g r a n g i a n '  poin ts  o f  the restr ic ted 3 -body  pho tograv i t a t iona l  p rob lem.  Six of  

t h e m  lie on  bo th  s ides of  each co l l inea r  po in t  and  the rest  o f  t h e m  are loca ted  c lose  

to the t r i angu la r  L a g r a n g i a n  poin ts  L~ and  L~, in  equa l  pairs,  on  two app rox ima te ly  

o r thogona l  d i rec t ions .  

Table IIIa 
Shift of the equilibrium locations of $1 near L~" (Xl > x~', Ii  = 0) 

12 # 0.1 0.01 0.001 0.0001 0.00001 0.000001 

10 -1 0.25548 10 ~ 0.60107 10 ~ 0.81191 10 ~ 0.91268 100 
10 -2 0.44353 10 -1 0.26250 10 ~ 0.60298 10 ~ 0.81223 100 
10 -3 0.48267 10 -2 0.45414 10 -1 0.26314 10 ~ 0.60317 10 ~ 
10 -4  0.48703 10 -3  0.4939410 -2 0.45511 10 -1 0.26320100 
10 -5 0.48747 10 -4 0.49838 10 -3  0.49498 10 -2 0.45521 10 -1 

0.95951 100 0.98124 100 
0.91272 100 0.95952 100 
0.81226 100 0.91272 100 
0.60319 100 0.81226 100 
0.26321 100 0.60319 100 
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Table IIIb 

Shift of the equilibrium locations of $1 near L3 p (xl < x3 p,  11 = 0) 
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h # 0.1 0.01 0.001 0.0001 0.00001 0.000001 

10 -1 0.25544 10 ~ 0.60098 10 ~ 0.81180 10 ~ 0.91255 10 ~ 0.95938 10 ~ 0.98111 10 ~ 

10 -2 0.44346 10 -1 0.26246 10 ~ 0.60290 10 ~ 0.81212 10 ~ 0.91259 10 ~ 0.95938 10 ~ 

10 -3 0.48260 10 -2 0.45408 10 -1 0.26310 10 ~ 0.60309 10 ~ 0.81215 10 o 0.91260 10 ~ 

10 -4 0.48696 10 -3 0.49387 10 -2 0.45505 10 -1 0.26317 10 ~ 0.60310 10 ~ 0.81215 10 ~ 

10 -5 0.4874010 -4 0.49831 10 -3 0.49491 10 -2 0.4551410 -1 0.26317 10 o 0.60311 10 ~ 

Table IVa 

Shift of the equilibrium locations of SI near L~ (xl > x~,  I2 = O) 

11 # 0.1 0.01 0.001 0.0001 0.00001 0.000001 

10 -1 0.24364 10 -1 0.10566 10 - I  0.49178 10 -2 0.22919 10 -2 

10 -2 0.27243 10 -2 0.11872 10 -2 0.55704 10 -3 0.26086 10 -3 

10 -3 0.27573 10 -3 0.12023 10 -3 0.56468 10 -4 0.26460 10 -4 

10 -4  0.27607 10 -4  0.12038 10 -4 0.56546 10 -5 0.26498 10 -5 

10 -5 0.27610 10 -5 0.12040 10 -5 0.56554 10 -6 0.26502 10 -6 

0.10647 10 -2 0.49296 10 -3 

0.12148 10 -3 0.56312 10 -4 

0.12326 10 -4 0.57145 10 -5 

0.12344 I0 -5 0.57230 10 -6 

0.12346 10 -6 0.57239 10 -7 

We have solved Equations (3.1) for various system configurations. The results 
show that the oblateness doesn't affect at all the number and the arrangement of 
the equilibrium locations, or their stability. It only resumes a slight shift toward 
the more massive and the more oblate primary. This shift can be considered as 
the sum of two small displacements. The first is accomplished together with the 
lagrangian points L P, as if they constitute a rigid system. The second is a much 
smaller relative displacement, in which the equilibria of the minor bodies come 
closer to their neighbour lagrangian point L P. 

For all our applications we considered systems with constant #l  = 10 -2~ 
#2 = 10 - t S ,  f l l  = 7 .5  10 - 6 ,  r 2  • 10 - 4  and variable m a s s  parameter # and 

oblatenesses Ii, i = 1,2. In the Tables I through VI we give the dimensionless 
shifts (in absolute values) of  the collinear equilibrium positions of the body St 

Table IVb 

Shift of the equilibrium locations of $1 near L1P (Xl < x~,  12 = 0) 

I~ # 0.1 0.01 0.001 0.0001 0.00001 0.000001 

10 - I  0.24371 10 -1 0.10573 10 -1 0.49246 10 -2 0.22988 10 -2 

10 -2 0.27251 10 -2 0.11880 10 -2 0.55781 10 -3 0.2616410 -3 

10 -3 0.27581 10 -3 0.12031 10 -3 0.56546 10 -4 0.26539 10 -4 

10 -4  0.27615 10 -4 0.12046 10 -4 0.56624 10 -5 0.26577 10 -5 

10 -5 0.27618 10 -5 0.12048 10 -5 0.5663210 -6 0.26581 10 -6 

0.10716 10 -2 0.49984 10 -3 

0.12227 10 -3 0.57097 10 -4 

0.12406 10 .4  0.57942 10 .5  

0.12424 10 -5 0.58028 10 -6 

0.12426 10 -6 0.58037 10 -7 
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Table Va 

Shift of  the equilibrium locations of $1 near L~  (Xl > x~ ,  I2 = 0) 

[1 /z 0.1 0.01 0.001 0.0001 0.00001 0.000001 

10 -1 0.26752 10 -1 0.11075 10 -1 0.50337 10 -2 0.23225 10 -2 0.10768 10 -2  

10 -2  0.33648 10 -2  0.13043 10 -2  0.58247 10 -3 0.26696 10 -3 0.12343 10 -3 

10 -3 0.34616 10 -3 0.13289 10 -3 0.59206 10 -4 0.27113 10 -4  0.12531 10 -4  

10 -4  0.34717 10 -4  0.13315 10 -4  0.59305 10 -5 0.27155 10 -5 0.12550 10 -5 

10 -5 0.34727 10 -5 0.13317 10 -5 0.59315 10 -6  0.27159 10 -6  0.12552 10 -6 

0.50107 10 -3 

0.57361 10 -4  

0.58226 10 -5 

0.58314 10 -6 

0.58323 10 -7 

Table Vb 

Shift of  the equilibrium locations of $1 near L~  (Xl < x~ ,  /2 = O) 

I1 # 0.1 0.01 0.001 0.0001 O.O0001 0.000001 

10 -1 0.26744 10 -1 0.11067 10 -1 0.50267 10 -2 0.23156 10 -2 0.10699 10 -2 0.49417 10 -3 

10 -2  0.33637 10 -2  0.13035 10 -2 0.58165 10 -3 0.26616 10 -3 0 .1226410 -3 0.56571 10 -4  

10 -3 0.34605 10 -3 0.13281 10 -3 0.59124 10 -4  0.27031 10 -4  0.12450 10 -4  0.57424 10 -5 

10 -4  0.34706 10 -4  0.13306 10 -4  0 .5922210 -5 0 .2707410 -5 0.12469 10 -5 0.57511 10 -6 

10 -5 0.34716 10 -5 0.13309 10 -5 0.59232 10 -6 0.27078 10 -6 0.12471 10 -6 0.57520 10 -7 

f rom the corresponding locations of the spherical case (the shifts of the body $2 
are quite similar). 

4. Areas of the Permissible Motion 

The usefulness of the Jacobi integral in clarifying certain general properties of 
the relative motion of a small body by the construction and investigation of zero- 
velocity curves in every problem of celestial dynamics was pointed out by many 
investigators in the past. Here we will confine our interest to the motions where 
both bodies Si, i - 1,2 start moving from the x-axis, i.e. with the initial conditions 

xio r O, Yio = O, ~io = O, ~)io r O, i -= 1,2, 

Table Via 

Shift of the equilibrium locations of $1 near L3 p (Xl > x3 P, I2 = 0) 

I~ # 0.1 0.01 0.001 0.0001 0.00001 0.000001 

10 -1 0.41549 10 -2 0.36644 10 -3 

10 -2  0.52428 10 -3 0.44863 10 -4 

10 -3 0.53844 10 -4  0.45892 10 -5 

10 -4  0.53990 10 -5 0.45998 10 -6  

10 -5 0.54005 10 -6 0.46008 10 -7 

0.31942 10 -4 0.11021 10 -5 

0.39344 10 -5 0.96473 10 -7 

0.40272 10 -6 0.94253 10 -8 

0.40368 10 -7 0.94009 10 -9 

0.40376 10 -8 0.94229 10 -1~ 

0.44025 10 -5 0.47309 10 -5 

0.49884 10 -6  0.53907 10 -6 

0.50604 10 -7 0.54717 10 -7 

0.50634 10 -8 0.54795 10 -8 

0.50659 10 -9  0.54797 10 -9 
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Table VIb 

Shift of the equilibrium locations of S1 near L ~  (x l  < x P ,  12 = 0) 
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11 /z 0.1 0.01 0.001 0.0001 0.00001 0.000001 

10 -1  0 .41660 10 - 2  0 .37648 10 -3  0 .41887 10 - 4  0 .88327 10 -5  0.55313 10 . 5  0 .52029 10 - s  

10 -2  0 .52559 10 -3  0 .46015 i 0  - 4  0.50719 10 -5  0 .10396 10 -5  0 .63712 10 - 6  0 .59688 10 -6  

10 -3  0 .53978 10 - 4  0 .47062 10 -5  0 .51817 10 -6  0.10588 10 -6  0 .64689 10 -7  0 .60574 10 -7  

10 - 4  0 .54124 10 -5  0 .47169 10 - 6  0.51931 10 -7  0.10608 10 -7  0 .64832 10 -8  0 .60670 I0  -8  

10 -5  0 .54139 10 -6  0 .47179 10 -7  0 .51940 10 -8  0 .10607 10 -8  0 .64824 10 -9  0 .60685 10 -9  

t 

- 1.1471 - 1.1469 -1.1467 -1.1465 

L~ P 

i C [lff  tz] 
I 

7 1.578927 
] 

1.578926 

1.578925 

1.578924 

i [.578923 

i L578922 

Figure 1. The permitted areas of motion of $1 close to L~. Mass parameter p = 0.01. Oblateness 
parameters: I1 = 10 - 4 , / 2  = 0. 

X P while their center of mass, rests on a Lagrangian collinear equilibrium ( L, Y~)" 
Since in all cases the coordinates of Si, i = 1, 2 satisfy the relation of their mass 
center r_c = (xc, Yc), 

Z t~ir--i = t~i r--c 
i=1  

the integral of  motion takes the form, 

2 

1 + = f ( x , 0 ;  c )  > 0, 
i = l  

which it is used to determine the region of the plane Oxy, within the body $l is 
permitted to move. Obviously there exist associate regions for the body S2. 

The Figures l, 2 and 3 show the limit-curves (zero-velocity curves) which 
separate the areas of the permissible motion of St, from those where the motion 
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C [10 '12] 

f. i.584937 
~.584936 

I 1::584935 
1:584934 
1,5849.33 

i 1.584932 

. . . . . . . .  : ~  1]I 0 47~ j -0.8484 -0:8482 -0,8480 - . 
t~ P 

Figure 2. The permitted areas of motion of $1 close to L2 P. Mass parameter/~ = 0.01. Oblateness 
parameters: Srl = 10 -4, I2 = 0. 

1,50e~.~5 

1:506~4 

1.5066333 

I=5~6~2 

0038 1.00,I0 1;0042. 1~0044 
L3 P 

Figure 3. The permitted areas of motion of S] close to I,~. Mass parameter # ----- 0.01. Oblateness 
parameters: I1 = 10 -4, -!2 = 0. 

is not  al lowed (dark areas). The discontinuities which appear, correspond to the 
positions of  the collinear equilibria of  the restricted photogravitational three-body 
problem L if, i = 1,2,  3 and the extrema indicate the locations of  the equil ibrium 
points of  the minor  S~. Here we note once again that the two minor  bodies are 
assumed to be very close together and so according to Whipple (1984), only a very 
small area surrounding each 'Lagrangian'  equil ibrium must be considered. 
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5. Conclusions 

From a careful inspection of the material exposed in the Tables I through VI we can 
conclude that for those systems where the oblate body is the less massive primary 
/92 (that is I1 = 0), the absolute displacements of the equilibrium locations are 
meaningful even for # = 10 -5 and 12 = 10 -5. But for 12 < 10 -1~ they are almost 
zero. For those systems where the oblate body is the more massive primary P~ (that 
is 12 = 0) the for # < 10 -2 and I1 < 10 -4 the displacements become ignorable. 

Obviously the zero-velocity curves are getting shifted in a similar way towards 
the more massive and the more oblate body. 

When speaking of our planetary system, we note that if we consider as the 
primaries the Sun (P1) and a planet (P2) then we will account that /1 = 0 and 
I2 ~ 0, but if we consider as the primaries a planet and its natural satellite, then 
will have 12 = 0 and I1 ~ 0. For the systems of the first group # < 0.001 and 
I2 < 2 10 -13, so it is out of the question to speak of a noticeable influence of the 
oblateness. For the systems of the second group # < 0.01 a n d / l  < 0.004 and 
there are some cases where the oblateness effect although very small must be taken 
into account. 

References 

Kalvouridis, T.J. and Mavraganis, A.G.: 1995, Astrophys. Space Sci. 226, 137-148. 
Whipple, A.L.: 1984, Celest. Mech. 33, 271. 


