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Abstract. The paper deals with the restricted photogravitational 2+2 body problem when the primaries
are oblate spheroids. A study of the effect of the oblateness on the equilibrium positions and on the
areas of the permissible motion of the minor bodies, is also made.

1. Introduction

In our previous article (Kalvouridis and Mavraganis, 1995), we have presented
the photogravitational 2+2 body problem by considering spherical primaries F;,
i = 1,2. The study of this model was based on the assumptions that one of the
minor bodies, is so big that the radiation pressure acted upon it by the primaries be
negligible compared with the gravitation and that the other minor body, say .S, is
so small to be acted by both the gravitational attractions of all other bodies and the
radiation pressure of the primaries.

On the other hand it is known that the shape of the planets, mainly the more
massive, differs from the spherical one and thus the oblateness in these cases
couldn’t be neglected. For example the polar and equatorial radii of Saturn are
60.400 and 54.600 km and those of Jupiter are 71.400 and 67.000 km respectively.
Therefore it is important to investigate in what degree the oblateness affects the
dynamical behaviour of the system.

We will assume hereafter that the equatorial planes of the primaries coincide
with the plane of their motion. In the subsequent, we extract the equations of
motion of the minor bodies Sj, ¢ = 1,2 and we study numerically the influence
of the primaries’ oblatenesses on the location of the equilibrium points and on the
areas of the permissible motion of the small bodies. Some of the results obtained
are exposed in tables and diagrams.

2. Equations and Integral of Motion

Among the existing formulas which describe the gravitational potential created
by an oblate spheroid, that proposed by Mac Cuskey (1963, p. 164) approximates
satisfactory and in a rather simple way, the behaviour of the natural bodies. If we
denote R;e, R;p, @ = 1,2 the dimensionless equatorial and polar radii of the bodies
F;,i=1,2, and by,
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I = %(Rzze - R%p)? 1=1,2

their oblatenesses, then the gravitational potentials of the primaries, according to
Mac Cuskey’s analysis, will be expressed with the general formula,
M; I, 3 ,

Vi= - - g

=z
ri 2} 237

1=1,2

where M;, i = 1,2 are their reduced masses,
M1=1—u and M2=u

For the planar case (z = 0) the Lagrangian expressed in the synodic coordinate
system Ozyz, takes the form,

L(zi, yi, &5, %) = ), B (@i — wu)® + (i + ')

e AN

In this expression, p; are the reduced masses of S;, ¢ = 1,2, 755, 4,j = 1,2, are the
distances between a primary and a minor body,
r1i = [(z; — p)* + 931"/
, 1=1,2
rai = [(@i + 1= p)* +y5]'/2

p is the distance between the bodies S;,

= [(z2 — 21)* + (32 — 1)}/

and g; are the radiation pressure parameters of both primaries on the smaller minor
body 5, with

qizl_ﬁiv

where (3; are the ratios of the radiation to gravitational forces. Here we assume that
both ratios 3; are very small. The symbol w* denotes the mean motion of the oblate
primaries,

3 2 I 1/2
* __ [,,2 = __'L_

where wp = 1 is the mean motion of the spherical bodies.

The system is autonomous with four degrees of freedom and it is characterized
by seven parameters, that is the mass parameters p, 1, p2, the two radiation
parameters ¢; and the two oblatenesses /;.

From (1.1) we easily come to the differential equations of motion,
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Shift of the equilibrium locations of Sy near LY (z; > 2¥, I = 0)

Table Ia
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L pu 01 0.01 0.001 0.0001 0.00001 0.000001
10™' 0.1283710° 0.1381010° 0.10001 10° 0.65216 10™! 0.40515 10~! 0.24478 10!
1072 0.5783010~"' 0.12318 10° 0.99165 10~! 0.65179 10~! 0.40513 10~! 0.24477 10~}
1073 0.10449 10~" 0.71483 10~! 0.92038 10~ 0.64842 10~ 0.40499 10~ 0.24476 10!
10™* 0.11609 102 0.20470 10! 0.62796 10~ 0.61891 10~ 0.40374 10~ 0.24470 10!
1073 0.11745 1073 0.29154 1072 0.25534 10~' 047358 10~' 0.39261 10~! 0.24425 10!
Table Ib
Shift of the equilibtium locations of Sy near L (z; < zf, I = 0)
L p 01 0.01 0.001 0.0001 0.00001 0.000001
1071 0.1283310° 0.1380310° 0.99928 10! 0.65123 10~ 0.40421 10~ 0.24382 10~!
1072 0.57816 107! 0.1231410° 0.99092 10! 0.65092 10! 0.40420 10~! 0.24383 10!
10~ 0.10446 10~' 0.71465 10! 0.91991 10~ 0.64767 10~ 0.40411 10~ 0.24383 10™!
10™* 0.1160510~? 0.20463 10~! 0.62774 10! 0.61839 10~' 0.40297 10~ 0.24381 10!
10~° 0.11742 1073 0.29141 1072 0.25522 10~! 0.4733210~! 0.39204 107! 0.24345 10!
.. ) 1 0T*
Z; — WY = —
pi 0z;
L or 1=1,2 2.2)
Ui + 2wz, = —
pi O0y;
where,

Z'U’J{ Wk +y?) + ; }+quz(

2
M; I
+/£2 Z I:;z-z— + ——3.—:| .

=1

27z,

Iz

2’";1 >

(2.3)

The function T* does not depend explicitly on time, so the system (2.2) has a

Jacobi integral,

I o,
5 2 milE] +97) =
=1

— C, where C is a constant.

3. Equilibrium Positions of the Minor Bodies S;

2.4)

The equilibrium positions of the minor bodies .S;, are the solutions of the algebraic

system,
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Table IIa
Shift of the equilibrium locations of S near LY (z1 > =¥, I = 0)

L, p 01 0.01 0.001 0.0001 0.00001 0.000001

107! 0.2143710° 0.4798510° 0.74496 10° 0.88080 10° 0.94455 10° 0.97421 10°
1072 0.73058 1071 0.22446 10° 0.5375910° 0.78039 10° 0.89776 10° 0.95249 10°
107% 0.13334 107! 0.83890 107! 0.2236210° 0.5715210° 0.79732 10° 0.90570 10°
10™* 0.15158 1072 0.22149 10" 0.77449 10~! 0.23544 10" 0.58829 10° 0.80526 10°
10~° 0.15388 10~ 0.32121 1072 0.26763 10~! 0.64460 10~! 0.24877 10° 0.59621 10°

Table ITb
Shift of the equilibrium locations of Sy near LY (z; < zF’, I = 0)

L uw 01 0.01 0.001 0.0001 0.00001 0.000001

107! 02143710 0.47989 10° 0.74502 10° 0.88089 10°  0.94463 10° 0.97431 10°
1072 0.73069 10~ 0.22447 10° 0.53763 10° 0.78046 10°  0.89784 10° 0.95258 10"
10™3 0.13337 10~ 0.83902 107! 0.2236210° 0.57156 10°  0.79739 10° ©.90579 10°
107% 0.15162 1072 0.22156 10~! 0.77460 10~! 0.23543 10~ 0.58833 10° 0.80533 10°
107° 0.15391 10~ 0.32134 102 0.26773 10~ 0.64466 10~! 0.24876 10° 0.59626 10°

orT —0
6mi .
, i=1,2. (3.1)
ot _
Oyi -

For the numerical investigation, we have followed the process which has been
described analytically in our paper mentioned in the introduction. For the spher-
ical case there are 14 equilibrium positions which are distributed near the five
‘Lagrangian’ points of the restricted 3-body photogravitational problem. Six of
them lie on both sides of each collinear point and the rest of them are located close
to the triangular Lagrangian points L, and L, in equal pairs, on two approximately
orthogonal directions.

Table Illa
Shift of the equilibrium locations of S near L (z1 > =¥, I1 = 0)

L p 01 0.01 0.001 0.0001 0.00001 0.000001

107! 0.2554810° 0.60107 10 0.8119110° 091268 10° 0.95951 10° 0.98124 10°
102 044353 107! 0.2625010° 0.60298 10° 0.81223 10° 0.91272 10° 0.95952 10°
10~% 0.48267 1072 0.45414 10~' 0.2631410° 0.60317 10° 0.81226 10° 0.91272 10°
104 0.48703 102 0.49394 10~2 0.45511 10~" 0.26320 10° 0.60319 10° 0.81226 10°
105 0.48747 10~* 0.49838 10~> 0.49498 10~2 0.45521 10~ 0.26321 10° 0.60319 10°
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Table I1Ib
Shift of the equilibrium locations of Sy near L (z1 < ¥, I; = 0)

L p 01 0.01 0.001 0.0001 0.00001 0.000001

107! 0.2554410°  0.60098 10° 0.8118010° 0.9125510° 0.95938 10° 0.98111 10°
1072 0.44346 10! 0.26246 10° 0.60290 10° 0.8121210° 0.91259 10° 0.95938 10°
1072 0.48260 1072 0.45408 10~ 0.2631010°  0.60309 10° 0.81215 10° 0.91260 10°
107 0.48696 1073 0.49387 1072 0.45505 10~ 0.2631710° 0.60310 10° 0.81215 10"
107° 0.48740 10~* 0.49831 1073 0.49491 10~% 0.45514 10" 0.26317 10° 0.60311 10"

Table IVa
Shift of the equilibrium locations of §; near L (z; > zf', I, = 0)

I p 01 0.01 0.001 0.0001 0.00001 0.000001

1071 0.24364 107! 0.10566 10! 0.49178 1072 0.22919 1072 0.10647 1072 0.49296 10~°
1072 0.27243 1072 0.11872 1072 0.55704 1073 0.26086 10~> 0.12148 10~* 0.56312 10~*
107% 0.27573107% 0.12023 107% 0.56468 10™% 0.26460 10™* 0.12326 10~* 0.57145 107>
107* 0.27607 10~* 0.12038 10~* 0.56546 107 0.26498 10~° 0.12344 10~° 0.57230 10~°
107° 0.27610107° 0.12040 10~° 0.56554 10~° 0.26502 10~° 0.12346 10~° 0.57239 10~

We have solved Equations (3.1) for various system configurations. The results
show that the oblateness doesn’t affect at all the number and the arrangement of
the equilibrium locations, or their stability. It only resumes a slight shift toward
the more massive and the more oblate primary. This shift can be considered as
the sum of two small displacements. The first is accomplished together with the
lagrangian points L, as if they constitute a rigid system. The second is a much
smaller relative displacement, in which the equilibria of the minor bodies come
closer to their neighbour lagrangian point LY.

For all our applications we considered systems with constant p; = 10720,
po = 1075, 8 = 7.5 1075, B, = 10~* and variable mass parameter ;4 and
oblatenesses I;, ¢ = 1,2. In the Tables I through VI we give the dimensionless
shifts (in absolute values) of the collinear equilibrium positions of the body S}

Table IVb
Shift of the equilibrium locations of Sy near L (¢ < &', I, = 0)

I p 01 0.01 0.001 0.0001 0.00001 0.000001

107" 0.24371 107! 0.10573 107! 0.49246 102 0.22988 1072 0.10716 10~* 0.49984 103
1072 0.27251 1072 0.11880 1072 0.55781 10~% 0.26164 10~% 0.12227 10~> 0.57097 10~*
107% 0.27581 1073 0.12031 1073 0.56546 10~ 0.26539 10~* 0.12406 10~* 0.57942 1073
10™* 0.27615 107* 0.12046 10~* 0.56624 1075 0.26577 10~° 0.12424 10~° 0.58028 10~¢
1075 0.27618 107> 0.12048 10~ 0.56632 10~ 0.26581 10~% 0.12426 10~° 0.58037 10~
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Table Va
Shift of the equilibrium locations of S) near L} (x1 > 3, I, = 0)

I p 0Ol 0.01 0.001 0.0001 0.00001 0.000001

107! 0.26752 107 0.11075 10~! 0.50337 1072 0.23225 10~ 0.10768 10~% 0.50107 1073
1072 0.33648 1072 0.13043 102 0.58247 103 0.26696 10~ 0.12343 10~3 0.57361 10~*
10™% 0.34616 1073 0.13289 10~% 0.59206 10~* 0.27113 10~* 0.12531 10~* 0.58226 10~°
10™* 034717 10™* 0.1331510™* 0.59305 107> 0.27155 1075 0.12550 10~° 0.58314 10™°
107% 0.34727 107° 0.13317 1077 0.59315107% 0.27159 10~° 0.12552 10~ 0.58323 10’

Table Vb
Shift of the equilibrium locations of Sy near L (21 < 2, I, = 0)

I p 01 0.01 0.001 0.0001 0.00001 0.000001

107! 0.26744 107 0.11067 107! 0.50267 1072 0.23156 1072 0.10699 10~% 0.49417 103
1072 0.33637 1072 0.13035 10~% 0.58165 10™% 0.26616 107> 0.12264 10~3 0.56571 10~*
1073 0.34605 10~ 0.13281 10~ 0.59124 10™* 0.27031 10~* 0.12450 10™* 0.57424 10~°
107* 0.34706 10~* 0.13306 10~* 0.59222 1073 0.27074 107> 0.12469 10~° 0.57511 10~°
107° 0.34716 107° 0.13309 10~° 0.5923210~°% 0.27078 10~° 0.12471 10~% 0.57520 107’

from the corresponding locations of the spherical case (the shifts of the body 5S>
are quite similar).

4. Areas of the Permissible Motion

The usefulness of the Jacobi integral in clarifying certain general properties of
the relative motion of a small body by the construction and investigation of zero-
velocity curves in every problem of celestial dynamics was pointed out by many
investigators in the past. Here we will confine our interest to the motions where
both bodies S;, ¢ = 1, 2 start moving from the z-axis, i.e. with the initial conditions

zio £ 0, yio =0, i0 =0, g0 #0,1=1,2,

Table VIa
Shift of the equilibrium locations of S near L} (z1 > zf, I, = 0)

L p 01 0.01 0.001 0.0001 0.00001 0.000001

10~! 0.41549 1072 0.36644 10~° 0.31942 10™* 0.11021 1075 0.44025 10~> 0.47309 10~
1072 0.52428 102 0.44863 10~* 0.39344 1075 0.96473 1077 0.49884 10~* 0.53907 10~¢
10~ 0.53844 10~* 0.45892 10> 0.4027210~% 094253 107% 0.50604 10~7 0.54717 107’
10™% 0.53990 10~° 0.45998 10~% 0.40368 10~7 0.94009 10~° 0.50634 10~% 0.54795 1073
10~5 0.54005 10~° 0.46008 10~7 0.40376 10~% 0.94229 107° 0.50659 10~* 0.54797 10~°
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Table VIb
Shift of the equilibrium locations of Sy near LY (z1 < zf, I, = 0)

I p 01 0.01 0.001 0.0001 0.00001 0.000001

10™" 0.41660 1072 0.37648 10~° 0.41887 10~* 0.88327 107> 0.55313 10> 0.52029 1073
10~% 0.52559 10~% 0.4601510~* 0.5071910~° 0.10396 10~° 0.63712 10~% 0.59688 10~°
10™? 0.53978 10~* 0.47062 10~° 0.51817 10~ 0.10588 10~° 0.64689 10~7 0.60574 1077
10™* 0.54124 10~° 0.47169 10~°% 0.51931 1077 0.10608 10~7 0.64832 1078 0.60670 1078
107% 0.54139 107% 0.47179 1077 0.51940 10~% 0.10607 10™% 0.64824 10™° 0.60685 10~°

C 1073
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1.578925
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-1.1471 -1.1489 -1.1467 -1.1465

Figure 1. The permitted areas of motion of Sy close to LY. Mass parameter z# = 0.01. Oblateness
parameters: I; = 107%, I, = 0.

while their center of mass, rests on a Lagrangian collinear equilibrium (z%, 7).
Since in all cases the coordinates of S, ¢ = 1,2 satisfy the relation of their mass
center 7, = (Z¢, Ye)»

2 2
> ;= (Z m) T,
=1 i=1

the integral of motion takes the form,

2
Z“Z(x o + Vi) = f(@10;C) >0,

which it is used to determine the region of the plane Ozxy, within the body S is
permitted to move. Obviously there exist associate regions for the body 5.

The Figures 1, 2 and 3 show the limit-curves (zero-velocity curves) which
separate the areas of the permissible motion of S, from those where the motion
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Figure 2. The permitted areas of motion of S close to LY. Mass parameter p« = 0.01. Oblateness
parameters: I; = 1074, I = 0.
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Figure 3. The permitted areas of motion of S close to L1 . Mass parameter 2 = 0.01. Oblateness
parameters: [; = 104, L =0.

is not allowed (dark areas). The discontinuities which appear, correspond to the
positions of the collinear equilibria of the restricted photogravitational three-body
problem LY, i = 1,2,3 and the extrema indicate the locations of the equilibrium
points of the minor Sy. Here we note once again that the two minor bodies are
assumed to be very close together and so according to Whipple (1984), only a very
small area surrounding each ‘Lagrangian’ equilibrium must be considered.
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5. Conclusions

From a careful inspection of the material exposed in the Tables I through VI we can
conclude that for those systems where the oblate body is the less massive primary
P, (that is I} = 0), the absolute displacements of the equilibrium locations are
meaningful even for u = 107 and I, = 107>, But for I, < 10~ they are almost
zero. For those systems where the oblate body is the more massive primary P; (that
is I, = 0) the for i < 1072 and I; < 10 the displacements become ignorable.

Obviously the zero-velocity curves are getting shifted in a similar way towards
the more massive and the more oblate body.

When speaking of our planetary system, we note that if we consider as the
primaries the Sun () and a planet (P,) then we will account that I; = 0 and
I, # 0, but if we consider as the primaries a planet and its natural satellite, then
will have I, = 0 and I; # 0. For the systems of the first group y < 0.001 and
I, < 210713, so it is out of the question to speak of a noticeable influence of the
oblateness. For the systems of the second group ¢ < 0.01 and I; < 0.004 and
there are some cases where the oblateness effect although very small must be taken
into account.
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