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Abstract. The bulk viscosity is introduced into the frame of ordinary Friedmannian cosmology 
(under highly idealized assumption of the constant coefficient of bulk viscosity). Explicit solutions are 
given for the viscous flat universe filled with the dust-substratum and for the viscous radiative universe. 
The problem, how does the introduction of viscosity affect the appearance of singularity, is briefly 
discussed. 

1. Introduction 

The role of the bulk viscosity in the cosmic evolution - especially at its early states - 
seems to be significant. From the macroscopic point of view the existence of  bulk 
viscosity is equivalent to the existence of  slow processes of restoring equilibrium states 
(Landau and Lifshitz, 1959). The general criterion for vanishing bulk viscosity was 
given by Weinberg (1971). It appears that vanishing bulk viscosity for a general 
imperfect fluid is rather an exception than a rule. As stressed by Anderson (1969) and 
Israel and Vardalas (1970), the bulk viscosity does not vanish for a simple gas at the 
temperatures between the extreme relativistic and non-relativistic limits. Weinberg 
( 1971) also points out that bulk viscosity may be of importance when considering a fluid 
composed of a mixture of highly relativistic and non-relativistic particles. 

One of us (Klimek, 1971) has paid attention to a different, let us say theoretical, 
role of  viscosity in cosmology. As it is well known, in many hydrodynamical questions 
singular points appear with density and pressure of  considered fluid tending to infinity. 
A very effective way of avoiding these kinds of  singularities consists in introducing 
a viscosity term into hydrodynamicai equations. A one-dimensional model of  such 
processes was considered by Hopf  (1950). One may also introduce the so-called 
generalized solutions in which singular points are contained (Ro~denstwienski and 
Yanienko, 1968). Olejnik (1957) has shown that under certain assumptions the gener- 
alized solutions may be obtained by the introduction of a viscous term and then by 
tending with it to zero. In such a case the viscous term itself may be considered as a 
mathematical trick only. The analogy between hydrodynamics and perfect fluid 
cosmology is evident. It is interesting to find out how do the cosmological solutions 
of field equations of General Relativity behave after introducing viscosity into them. 
Will the initial singularity in cosmology remain when the Friedmann equation is 
enlarged by a viscosity term? 

In the present paper we introduce the viscosity term into the frame of Friedmannian 
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cosmology. For the sake of simplicity we assume the coefficient of bulk viscosity, ~, 
equal to a constant (the shear viscosity term vanishes automatically because of iso- 
tropy). It is of course a great simplification of physical reality. This coefficient is 
de facto  a function of cosmic time (through the dependence on temperature and pres- 
sure); we may suppose, however, that our actual world is described by a series of 
different models (introduced by us) with different values of the coefficient (. We discuss 
also the question, how does the introduction of viscosity affect the singularity problem 
in Friedmannian cosmology. 

2. General Formulae 

In presenting the general formalism for the dissipative processes within the frame of 
Relativistic Cosmology we follow the approach used by Weinberg (1971). The energy- 
momentum tensor for an imperfect fluid has the form 

- -  2 O" = + p)  _ pg.  +  H."H + + 

+ ( H ~ u ~ ,  (2.1) 

where H ~ = g " ~ -  u~u ~ and q, ( are, respectively, the coefficients of shear and bulk 
viscosity, other symbols have their usual meanings. 

Applying (2.1) to the Robertson-Walker metric 

ds 2 = c 2 dt  2 - R 2 (t) dr2 + r2 d02 + r2 sin2 0 d92  
1 + kr2/4 (2.2) 

we obtain 

T g =  c2~, 

7~= - p + for i = k ,  (2.3) 

0 for i # k ,  

i, k run from 1 to 3. The shear viscosity disappears on the strength of isotropy. The 
only effect of  dissipative processes is to add a 3(R/R-term to the macroscopic pressure p. 

The field equations with the above forms of metric and energy-momentum tensor are: 

kc  2 + R2 
~ Q C  2 = - -  A + 3 r , (2.4a) 

2R R  + f~2 + kc  2 _~ 

~p = A - c2R2 + 2a ~ ,  (2.4b) 

where a = { (z .  
The Equations (2.4), when A =p = 0, are formally identical with those of Hoyle's 

steady-state cosmology (see Hoyle, 1958). In Hoyle's version, however, the a-term is 
responsible for the 'creation field' and causes non-vanishing of the divergence of the 
energy-momentum tensor. In our case, on account of dissipation 

dE = T dS  - p dV,  (2.5) 
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which gives 

_ dR 3 
d E  6c~ [~2R P 

d t  z d t  

The particles conservation law 

. . . . .  o.  (2.6) 

d (nR3) 0, (2.7) 
dt 

(where n is equal to the value of the particle current No as measured in a co-moving 
frame of reference, in which the 4-vector of velocity has the same space-time direction 
as the particle current) remains unaffected by the dissipative terms (see Weinberg, 
1971). 

3. Viscous Dust Universes with k = 0 

The field Equation (2.4b), with the equation of state for the dust universe: p = 0 ,  
condition of flatness: k = 0, and system of units: c = x = 1, takes the form 

2 R i ~  + R 2  _ 2c~RR - A R  2 = 0. (3.1) 

This equation constitues a counterpart of the known Friedmann equation for non- 
viscous universes. After the substitution 

u = k / R  

(3.1) reduces to simple equation of the first order 

A 
ft = - ~ u  z + ~u + - .  (3.2) 

2 

Denoting by u~ and u 2 the solutions of a = 0 we get 

where/~ = ~/~2 + 3A. 
The singular points of the Equation (3.1) are determined by the relations 

k k 
- -  ~ U l ~  ~ ~ U 2 . 
R R 

(3.3) 

The general solution of the Equation (3.1), according to the values of ul and u2, 
is of the form 

(A) A > 0  (ul>0,  u2<0):  

R = e ~,/3 ( q e  at/z + e z e - P t / z )  z/3 = e ~t/3 I ( c h ( B t / 2 ) )  2/3 (II) 
| e  ~`/3 (TIT) 

(IV) 
with/~ > ~. 
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(B)  A = 0 (u 1 > u 2 = 0 )  : 

as in case (A) but fi = ct. 

All non-static solutions of this class (just like those of class (A)), when t goes to 
infinity, change asymptotically into the de Sitter's stationary universe. In view of  this, 
Hoyle (1958) has interpreted solutions of class (B) (with A = 0 )  as describing a sta- 
tionary expanding universe with a constant rate of continuous creation of  matter. 
To the steady-state cosmology, however, the a-term was introduced a p r i o r i  in order 
to satisfy certain philosophical assumptions. In our context the introduction of  the 
a-term has a clear physical meaning. 

(C) A < 0; there are three sub-cases: 

(1) A>A~=- �89  (u~>u2>0): 

as in case (A) but fl < a. 

(2) a = a ~  (u~=u2>0): 

{t12/3 R = e ~'/3 (c~ + c2 t )  2/3 = e "t/3 (I) 
(H) 

* complex): (3) A < A~ (ul = u2 

I-. I/~1 q2/3 
R = LSm ,o)J 

As is well known, all ordinary Friedmannian world models are iso-entropic. There 
is no heat flow in these models from one portion of  the substratum to another. The 
only mechanism by which an entropy increase is possible in a homogeneous and 
isotropic model must be due to a suitable composition of  the substratum. Still Tolman 
(1934) had found that a way of  increasing entropy in a series of  irreversible expansions 
and contractions of  the universe, leads in consequence to an increasingly greater 
(without limitation) Rma,~ in the subsequent cycles of  oscillation. The above case (C3) 
may serve as an example of Tolman universes (although Tolman originally considered 
only closed universes with A = 0). 

Graphs (Figure 1) represent the above solutions. Among them some are non- 
physical solutions, because the condition ~ f> 0 was not imposed on the Equation (2.4a). 
After imposing this condition, it appeared that only in class (A) solutions were found 
with negative density (marked on the graphs by a dashed line). The existence of  regions 
with non-physical conditions (0 <0)  follows from the highly idealized assumption: 
a = const. It  is certain that for ~ ~ 0 we should have: ~ ~ 0. Examples can easily be 
given to show that assuming a to be a function with such assymptotic properties, leads 
to solutions physical everywhere (0/> 0). 

4.  R a d i a t i v e  V i s c o u s  U n i v e r s e s  

The field Equations (2.4) with the usual equation for the radiation-filled universe: 
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Fig. 1. Viscous dust universes with k = 0. 

A ~  

cLc2,cg I l 

c ~  
A <A~( 

P = ~0 take the form 

R ~  + jR2 _ c~Rk - ~ A R  2 + k = O. 

I f  we substitute 

X = �89 2 , 

Equation (4.1) reduces to the simple form 

- cc2 - - }AX  + k = O. 

Hence, we obtain the general solution of (4.1) as 

3k 
R 2 = c l e  t~ .4- c 2  e r ~  ~ 2 - ~  

where 

O91= �89 ~ _  ~ 2 + ~  

(4.1) 

(4.2) 

(4.3) 
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The course of  the function R: (t)  depends on the values of  A and on constants 
c 1 and c 2 : 

(A) A > 0  then: m ~ > 0 > m l .  
(B) A = 0 in this case the immediate integration o f  (4.1) gives 

2k 
R 2 ( t )  = c l e  ~t + - -  t + c2 .  

o~ 

(C) A < 0 three sub-classes appear: 

( 1 )  a > a. = - ~ - ~ : :  

then co 2 > c o ~ > 0 .  

(2) a = a,: 
8k 

R :  (t)  = e ~'/2 ( q  + c:~) ct 2 

%: 
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(3) A < A~ (co 1 = co* complex): 

091 = 1 ( ~  __ i(.o), (.02 = 1 (0~ -']- if.O) 

co = ( _  c~ 2 _ 1 7 ) 1 / z  

RZ(t)=e~/2 q s i n 2 t + C z C ~  + 7 "  

The above solutions are represented by graphs (Figure 2). Domains of  solutions for 
which 0 < 0, are marked by dashed lines. The remark concerning non-physical regions 
of the solutions, made for dust universes, is also valid here. 

5. Viscous Universes and the Singularity Problem 

The introduction of the viscosity term into the equations of Friedmannian cosmology 
does not exclude automatically the appearence of  singularities. Within the discussed 
classes of  models singular as well as non-singular solutions appear. We may enrich 
our exemplicative material by the following lemma: 

With k =  +1 and A~<0, Equation (3.1) has no solution positive everywhere and 
continuous for t ~ ( -  ~ ,  ~ ) .  

Indeed, if at a certain point t o :/~ (t)  = 0, then from (3.1), 

AR 2 - 1 
( t o )  - < 0 ;  

2R 

so that at the point t o there is a maximum. The function R (t), however, cannot tend 
at _ oo to a positive constant. In this case, 

lim /~=  lira R = O ;  
t~___m t~--+m 

and from (3.1) we have 

- A R  2 -  1 = 0 .  

which is a contradiction. If  R (t) were a monotonic function, then at _+ ~ it should 
tend to a constant and the above argument is still valid. 

Above issues are in accordance with the known Hawking-Penrose (1970) theorem 
about singularities. In all viscous non-singular solutions the so-called energy condition 
of this theorem is broken (except for the static solution, in which there are no conjugate 
points). Although our results are only provisional (~ = const!) they lead to some tenta- 
tive conclusions. As it is well known, the Hawking-Penrose theorem was proved only 
for A~<0. Hawking and Penrose, however, have put forward a hypothesis that the 
theorem is valid also for positive values of the cosmological constant. Among our 
viscous models none is found to be opposed to this hypothesis. Moreover, when 
considering the ordering of  our solutions, we note that the greater the value of  A, the 
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stronger is the tendency not to fulfill the conditions of the Hawking-Penrose theorem 
and, consequently, to avoid singularities. 

Let us note that, on removing the non-physical part of a given solution, one obtains 
a geodesically incomplete space-time, which in the sense of  certain theorems about 
singularities (see Geroch, 1967), is understood as a singularity. It is not, however, a 
'true' singularity. 
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