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Abstract. The phonon excitation spectrum of Coulomb lattice in the neutron star crusts is studied 
by solving Dyson's equation for phonons. It is shown that a strong renormalization of the phonon 
spectrum occurs at densities p _> p8/4 for the crustal matter compositions with spherical nuclei, which 
imply relatively small nuclear mass numbers and charges. It is shown that, the lattice becomes unstable 
against density fluctuations above a critical density of the order of ,-~ ps/3, where ps ~ 2.6 x 1014 g 
cm -3 is the nuclear saturation density. The neutron quasiparticle spectrum and the virtual mass of a 
nucleus are briefly discussed. 

1. Introduction 

The ground state configuration and the equation of state of matter in the crusts of 
neutron stars for densities above the neutron drip density have been extensively 
studied in the late 60's and early 70's. The basic approaches and results were 
established in the pioneering works by Bethe, B6rner and Sato (1970), Baym, 
Bethe and Pethick (1971), Buchler and Barkat (1971), Arponen (1972), Ravenhall, 
Bennett and Pethick (1972), Negele and Vautherin (1973), Sahakian (1974) and a 
comprehensive description of the subject now can be found in the book by Shapiro 
and Teukolsky (1983). According to the standard picture the matter in the density 
range 4 • 1013 _< p _< 1014 g cm -3 is composed of neutron rich nuclei, relativistic 
electrons, and free neutron gas. The Fermi energies of fermions are of the order 1 - 
20 MeV, while the typical interior temperatures are 1 - 10 keV, therefore the system 
is effectively at zero temperature. At the temperatures below the Lindemann melting 
temperature the nuclei are arranged in a bcc Coulomb lattice, while the low density 
neutron gas feels the intervening space between nuclear clusters. Because of weak 
screening the relativistic electrons are distributed almost uniformly. With increasing 
density neutron rich nuclei with larger mass numbers become successively stable 
in the t-equilibrated matter. The bound nucleons merge into the continuum state 
at densities close to the nuclear saturation density ps "~ 2.6 • 1014 g cm -3, when 
the adjacent nuclei come in Contact. Though the equation of state of the matter was 
fairly good established in these studies, the ground state composition was subject 
to modification depending on the details of the form of the total energy functional 
adopted. Approaches based on the liquid-drop model of the nucleus (Bethe et al., 
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1970; Baym et al., 1971; Buchler and Barkat, 1971; Arponen, 1971; Ravenhall 
et aL, 1972), used extrapolations from the semi-empirical mass formula of the 
Bethe-Weizsaecker type with corrections for the surface and Coulomb energies. 
The Hartree-Fock calculations of the finite nuclei by Negele and Vautherin (1973) 
allowed also for the nuclear shell effects. The total energy functional was commonly 
supplemented by a parametrization of the bul l  neutron matter energy following 
from a certain many-body calculation. 

It turned out that, the differences in the treatment of the nuclear surface energy 
within the differential Thomas-Fermi theory give rise to large differences in the 
parameters of the stable nuclei, like the mass number, charge, and the surface 
thickness. Since the Coulomb energy of a unit cell is coupled to the surface energy 
by a purely geometrical condition, these differences affected the predictions for 
Coulomb term of the total energy functional as well. For these reasons we shall 
further consider three different compositions, namely those of Baym et al. (1971, 
hereafter BBP), Arponen (1972, hereafter An), and Negele and Vautherin (1973, 
hereafter NV). The nuclei implied by the two latest compositions, in contrast to 
the first one, have considerably smaller mass numbers and charges, and resemble 
large laboratory nuclei. We shall see that, the coupling of the neutron liquid to 
the phonon modes of the nuclear lattice, which was commonly neglected in the 
previous studies, has different impact on these three compositions. 

In the present paper it will be shown that the excitation spectrum of phonons 
can be strongly modified by the neutron-phonon coupling for models of matter 
composition in the neutron star's inner crusts with not very large nuclei. This 
modification can lead to a lattice instability under definite conditions. 

It should be stressed that, the recent developments showed that in the high 
density region of the crust the nuclei might not be of the spherical shape, but rather 
they can assume peculiar and geometrically extended forms (Lorenz, Ravenhall and 
Pethick, 1993; Oyamatsu, 1993). These structures can support phonon modes which 
considerably differ from the phonon spectrum of a three-dimensional Coulomb 
crystal. Therefore, we will restrict here to the compositions with spherical nuclei 
and extend our results to nonspherical case in a subsequent study. 

2. Formal  Theory 

The total Hamiltonian of the system in the second quantized form reads: 

H = Ho + Hnph + Hnn, 

where 

Ho =  o(k)aLak  +  o(q)b,Ssbks, 
ka  q<qD 

is the Hamiltonian of the noninteracting system, 

(1) 

(2) 
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Hnph = ~ ia(q)a~+q ak~,(bqs + b+qs), (3) 
k,~,q,s 

describes the neutron-phonon interaction, and 

Hnn = ~ (k' + p , k  - palVIk, pa)a~,+pa~_pakaak, a (4) 
k'kp~ 

describes the neutron-neutron interaction due to the nuclear force. Here a~ and 
ak~ are the creation and destruction operators of a neutron with wave vector ~ and 
spin or, e0(k) is the free particle energy, b~s and bqs are the creation and destruction 
operators of a phonon with wave vector q and polarization s, w0 (q) being the unper- 
turbed phonon frequency, the sum over the wave numbers of phonons is restricted 
to the Debye wavelength qD, V is the two-body neutron-neutron interaction due to 
the direct nuclear force. Neutron-phonon interaction, Equation (3), is treated in it's 
simplest form by utilizing the well-known Fr6hlich Hamiltonian (Fr6hlich, 1952). 
The coupling constant, a(q), in this model is given as 

q ) 1/2 
rnA(q), (5) 

a ( q ) =  2M*NAcs 
where M* is the actual mass of nucleus including it's virtual mass, NA is the number 
of nuclei in the given volume, and FnA(q) is the transition matrix for neutron- 
nucleus scattering as a function of momentum transfer q. We consider an isotropic 
crystal in which the phonon frequencies are separated into one longitudinal and two 
transverse modes and restrict to the normal processes only. In this case the neutrons 
interact only with longitudinally polarized phonons and the sum over phonon 
polarizations should be dropped. A linear acoustic phonon spectrum, wo(q) = Csq, 
where Cs is the nonrenormalized sound velocity is assumed. The unperturbed 
neutron quasiparticle spectrum is assumed to have the form eo(k) --- k2/2mu, 
where mn is the bare mass of the neutron. The unperturbed longitudinal phonon 
frequency is assumed to be the plasma frequency modified by the screening of 
relativistic electrons: 

"47.cZ2e2nA q2 ] 1/2 
wo(q) = M* q2 _ ~ 2  F J , (6) 

where Z is the nuclear charge, kTv is the relativistic Thomas-Fermi screening 
length, and nA is the density of the nuclei. 

In this work we shall apply the zero-temperature Green's functions formalism 
to the ground state of the system described by the Hamiltonian (1). Particularly, the 
neutron-phonon part of the interaction in the inner crust of a neutron star will be 
treated in a close analogy to the approach of Migdat (1958) to a strongly interacting 
electron-phonon system in metals at zero temperature, (see also Abrikosov, Gorkov, 
Dzyaloshinski, 1963). The Green's functions of neutrons and phonons can be 
introduced in terms of time-ordered products of creation and distraction operators 
in the standard way 
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G(ka, t ) = - i ( T a k ~ ( t ) a ~ ( O ) )  , D(q, t )=- i (Tbq( t )b~(O)) .  (7) 

Respective Dyson's equations in the momentum representation are 

G(k, 4) = G(~ 4) + G(~ e) [E,~ph (k, 4) + Enn(k, 4)]G(k, 4), (8) 

D(q,02) = D(~ + D(~ (9) 

where G (~ and D (~ are the Green's functions of noninteracting neutrons and 
phonons, 

G( ~ c) = 1 (lO) 
e - 4~ + i6sign(k - kEn)' 

02~ (1i) D(~ = 02 2 - w~(q)' 

G and D are the full Green's functions of neutrons and phonons respectively. The 
self energy operators, Enph due to the neutron-phonon interaction, En~ due to the 
direct nuclear interaction, and the polarization operator H are explicitly given by 
expressions: 

@ 
E,~ph(k) = ig~phg~ f G(k - q)D(q)F,wh(k - q, k; q ) - -  

f d4 q End(k) = -2 i  G(q)Fnn(k,q;k,q) (27r)4, 

d4q 
(27r)4 , (12) 

(13) 

f dk 4 
II(q) = --2i9~ph9nn G ( k ) G ( k  - q)F, ,pn(k ,k  - q;q) (27r)4 , (14) 

where four-momenta k -= (k, e) and q - (q, w) are introduced. Here Fnph(k, q) is 
the neutron-phonon interaction vertex function and the effective coupling constant 
is g~ph = [a2(q)/wo(q)] U2. Vertex g,~ schematically takes into account neutron- 
neutron correlations, owing to the nuclear component of the interaction. At the 
densities of interest it is determined by the pion exchange mechanism. The self 
energy E,~n is given in the ladder approximation, where F~n is the transition matrix 
in the particle-particle channel. 

2.1. VERTEX FUNCTIONS AND NEUTRON QUASIPARTICLE SPECTRUM 

The excitation spectrum of the neutron liquid is given by the poles of the retarded 
Green's function, which is the solution of the Dyson's Equation (8). If one neglects 
for a moment the neutron-phonon interaction the full retarded Green's function is 
given as 
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1 
G(ek )  = c (k )  - e (k)  - H~n(e(k)) + i6 '  (15) 

and the quasiparticle energies are thus defined as 

k 2 
ek = 2m + E,n(e(k) )  - v F ( p  -- PF) ,  (16) 

where VFn --  k F / m *  is the quasiparticle velocity on the Fermi surface and 

m n  = 1 +  

is the neutron quasiparticle effective mass due to the nuclear interaction and kF is 
the Fermi momentum. Further evaluation requires the solution of the nonrelativistic 
version of the Bethe-Salpeter equation for the scattering amplitude ~nn .  We will 
not consider this problem here, (see e.g. Sedrakian et al., 1994), but note that 
for the realistic neutron-neutron interactions the effective mass varies in a range 
0.6 < m ~ / m , ~  < 0.8 for the densities of interest. 

When the neutron-phonon interaction is switched on, neutron quasiparticle 
spectrum is further renormalized. In the low frequency limit, w << w o ,  the real 
part of the neutron self-energy Y]nph acquires the simple form ~ p h  = --,~w, where 

-- ~o/(1 - 2)~o), (Abrikosov et al., 1963). Therefore the neutron quasiparticle 
spectrum takes the form 

VFn (17) 
C(]r "" ~)Fn(k -- k F ) ,  (dFn --  1 + .~' 

which shows that, the quasiparticle velocity on the Fermi surface is reduced due 
to the neutron-phonon interaction. This modification of quasiparticle spectrum can 

** = (1 + A)m*. be accounted for by defining a neutron quasiparticle mass m n 
Let us turn to the vertex functions. It can be proved that Migdal's theorem is 

valid for the present system; (for the relevant parameters see the next section). 
According to this theorem the first order correction to the vertex function F(k, q) 
is of the order of g)~ow~ where 

 2(q) 
-  0(q) ( 1 8 )  

is the dimensionless neutron-phonon coupling constant, (the FrShlich parameter), 
with U(eFn) = m * k F n / 2 7 r  2 being the density of states of neutrons on the Fermi 
surface per direction of spin. Therefore, the neutron-phonon vertex function can 
be replaced by a contact interaction, 

when the parameter )~owo(q)/eF is small compared with unity. The remaining 
vertex gnn, treated as a constant, schematically takes into account neutron-neutron 
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correlations. This type of correlations were estimated on the basis of the Migdal's 
(1978) theory of finite Fermi systems, (see also Voskresensky, 1993). Because the 
phenomenological constants, (Landau-Migdal parameters), are not firmly known 
for pure neutron matter, this estimates led to values in the range 0.4 < gnn < 1. We 
shah further adopt the value gn,~ = 1. Numerical results given in the next section 
can be appropriately scaled for other values of gnn. 

In closing of this section let us consider the hydrodynamically generated vir- 
tual mass of a nucleus immersed in the neutron liquid. We model the nucleus as 
an absolutely solid sphere of radius RN, and assume that the neutron liquid is 
incompressible. A nucleus, subject to oscillations in the neutron fluid, will acquire 
a virtual mass due to the hydrodynamical interaction with the ambient fluid. In 
other words, in the reference frame moving with the nucleus, the neutron flow 
past the nucleus will induce a backflow of neutron fluid. The kinetic energy of 
the backflow will contribute to the energy of the system and can effectively be 
incorporated in the energy functional by introducing the virtual mass. The solution 
of the Laplas equation Ar  = 0, with the boundary condition assuming liquid at 
rest at the infinity, (i.e. r >> TIN), is r = A .  V(1 / r ) .  For the sphere of radius 
RN A = (1/2)TI3u, where u is the macroscopic fluid velocity. Then the neutron 
fluid energy is E = (pu/2)[47rA.u-  (47r/3)R3N u2] = (27r/3)pnR3N �9 (u 2/2). The 
coefficient of u2/2 can be identified as the virtual mass of the nucleus, which turns 
out to be equal to the half of the neutron fluid mass displaced by the nucleus. The 
hydrodynamical correction to the bare mass of the nucleus, M, can be expressed 
through the ratio M * / M  = I + (pn/2ps), where we have assumed that the nucle- 
on density in the nucleus is roughly equal to the saturation density of the nuclear 
matter. 

2.2. PHONON SPECTRUM AND LATTICE INSTABILITY 

To find the phonon dispersion relation we have to evaluate the polarization function, 
Equation (14). To this end, note that the neutron-phonon interaction affects only 
a narrow momentum and frequency ranges, Ik - k v l  < wo/vv,~ and r < WD, 
while the integration in Equation (14) involves much broader range of variables. 
Therefore G(k, w) can be approximately replaced by G(~ w), the corrections 
being small, of the order of Aocao(q)/evn. Then the evaluation of the polarization 
function is straightforward. In the limit of small energy transfer w << qvFn, one 
finds 

q . z T r ~ t ~ Z f C F u  -- q) , (19) f 

where 

[ 1 - x  21 l + x  
f ( x ) = ! + [  2x J i n  1 - x  

is the Lindhard function. From the Dyson Equation (9) it follows that 
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w2(q) (20) 
D(q ,w)  = w 2 _  w2(q)[ 1 + II(q,w)] 

where the renormalized phonon spectrum is given by the real part of the pole of 
the D(q,  w) function 

w2(q) = w02(q)[1 + Re II(q, w)], (21) 

whereas it's imaginary part describes the damping of the phonon modes due to 
the neutron-phonon interaction. Using the fact that in the interval 0 < x < 1 the 
f (x )  function can be approximated as f (x )  = 2 - x 2, the relation (21) in the limit 
x << 1 reduces to 

w(q) = wo(q)v/-1- 2A0. (22) 

It can be seen that the renormalization of the phonon spectrum is most important 
in the long wave length limit, q ~ 0. Particularly, from Equation (22) it follows 
that the phonon frequencies are pure imaginary in this limit when A0 > 0.5, 
therefore any density fluctuation in the system will grow exponentially leading to 
a lattice instability. Introducing the energies of neutron-nucleus interaction, ~nA = 
I PnA (q ) lv / -~ ,  and Coulomb interaction between nuclei, ~Coul. = 47rZ2e2/(q2 q_ 

k~F ), the condition for the onset of lattice instability, A >_ 0.5, can be written in a 
more transparent way 

~2 A ~Zn 4 
> - (23) 

~Coul. eFn nA -- 3 ' 

where nn is the density of the neutron liquid. If the energy density scales are mea- 
sured in the units of the Fermi energy density of the neutron liquid, eFnnn, the con- 
dition (23) is the simple statement, that lattice becomes unstable when the ratio of 
the energy density of the Coulomb interaction between nuclei, ~Coul. nA/( s nn), 
to that of neutron-nucleus interaction, ~nAnn/(~.Fnnn), is smaller than 3/4 of the 
energy density of the neutron-nucleus interaction itself. Thus, for a given composi- 
tion, the stability of the lattice is essentially controlled by the ratio of the Coulomb 
energy of the lattice to the energy of the neutron-nucleus interaction. 

3. Estimates 

Next we shall estimate the neutron-nucleus interaction energy. The Born approxi- 
mation can not be applied to neutron-nucleus scattering in the present case, because 
the typical optical potential depth is of the order of 40 MeV, while the neutron Fermi 
energies are less than 20 MeV. The exact amplitude rnA c a n  be calculated by solv- 
ing the appropriate Bethe-Salpeter equation, or alternatively it can be determined 
from the differential neutron-nucleus scattering cross-section extracted from the 
experiment. Here the second alternative will be chosen. The relation of the transi- 
tion matrix, FnA (q), to the differential cross-section is 
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[FnA(q)I 2 { m~ ~2 da.  
= \27rh2 ] --d-~(eFn, O) (24) 

where 0 is the scattering angle and is related to the momentum transfer as q = 
2kF,, sin(0/2). As shown above the instability of the lattice sets on first for the 
small transferred momenta, i.e. in the limit, 0 ---+ 0 ~ Also, because the condition 
q <_ q9 << kFn is fulfilled, it is sufficient to evaluate the scattering cross-section in 
the forward scattering limit (0 + 0~ The parameter values in neutron star crust for 
compositions of BBE NV, and An respectively are given in the table. For an order 
of magnitude estimate we first calculate the neutron-phonon coupling constant Ao c ,  
using a typical constant value of the scattering cross section da/dft  ~ 10 barn/st 
for 0 = 0 ~ An improved differential neutron-nucleus cross-section at 0 = 0 ~ 
as a function of nuclear mass number A was obtained by fitting to a sequence 
of experimental differential scattering cross-sections for neutron scattering from 
elements 91Zr40, 118Sn50, 18~ 2~ 2~ and 232Th90 at the energy 7 MeV 
(Percy and Buck, 1962). The polynomial fit formula used reads 

da 
df~ (x) = (59.973 - 235.827x + 301.665x 2 - 115.805x 3) barn, (25) 

where x = A/Ao, A is the mass number of a nucleus and A0 = 232. The fit 
completely covers the nuclei mass numbers present in the composition of NV. 
It should be stressed that, since the neutron-nucleus interaction is almost charge 
independent, the fact that in neutron stars one finds nuclei with considerable neutron 
excess compared with the laboratory ones, plays negligible role as far as the range of 
the mass numbers fitted are in the same range as those implied by the composition. 
In the energy range 4 _< E _< 20 MeV the cross section increases with increasing 
energy of the incident neutron (Percy and Buck, 1962). In the essential energy range 
of interest the correction to the fit due to the energy dependence of the scattering 
cross-section is less than 10%, therefore we will use the fit at a fixed energy. To 
extend the results for nuclei with A > 232 an extrapolation is needed. Since for 
energies of interest the surface scattering is dominant, the hard sphere scattering 
argument was used in this case to obtain the cross-section by scaling the fit result 
for 2~ by a factor (A/207)2/3; (here A is the mass number of a nucleus under 
consideration). The coupling constant A0 given in the table is calculated using the 
fit for the scattering cross-section. It should be noted that the virtual mass does 
not contribute to the neutron-phonon coupling constant, since Ao ~ (M*c2s) -1- 
(Typically the virtual mass of the nucleus is less than 20% of it's bare mass). As 
noted above, the neutron-neutron correlations can change the value of the constant 
by a factor of 2, however present knowledge of Landau parameters for the neutron 
matter does not allow to draw more definitive conclusions. 

By inspecting the table it can be seen that, there are large differences in the 
numerical values of the neutron-phonon coupling constant for compositions con- 
sidered. The origin of these differences is the very different predictions for the 
nuclear mass numbers and nuclear charges, especially between the composition of 
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Table I 
Density dependence of parameter values and the neutron-phonon coupling in neutron star crust 

r~ A kF,., qD WD eF,~ C8/C )~0 ~ )~0 
(cm -3) (fm -1) (fm -1) (MeV) (MeV) 

3.81e+36 171 0.36 0.07 0.19 2.45 0.06 3.51e-04 5.36e-04 
6.71e+36 191 0.44 0.08 0.21 3.41 0.06 5.36e-04 1.77e-03 
9.15e+36 211 0.49 0.08 0.23 4.07 0.06 1.77e-03 5.10e-03 
4.88e+37 546 0.86 0.12 0.38 10.40 0.06 5.10e-03 1.21e-02 
7.93e+37 991 1.01 0.13 0.44 13.77 0.06 1.21e-02 2.09e-02 
1.05e+38 1635 1.11 0.13 0.47 18.11 0.06 2.09e-02 2.90e-02 

3.73e+36 159 0.45 0.08 0.23 2.60 0.015 0.005 0.002 
5.77e+36 161 0.52 0.09 0.28 3.30 0.015 0.008 0.002 
8.91e+36 164 0.61 0.09 0.28 4.20 0.015 0.010 0.003 
2.04e+37 192 0.82 0.11 0.32 6.50 0.015 0.017 0.010 
4.57e+37 183 1.09 0.11 0.28 10.9 0 . 0 1 3  0.038 0.018 
7.89e+37 232 1.30 0.14 0.27 19.5 0.010 0.112 0.112 

4.42e+36 145 0.48 0.13 0.40 3.08 0.015 0.03 0.01 
8.60e+36 163 0.60 0.15 0.48 4.35 0.016 0.04 0.02 
1.49e+37 185 0.73 0.17 0.54 5.60 0.016 0.06 0.05 
2.37e+37 211 0.85 0.20 0.61 6.88 0.015 0.10 0.11 
3.54e+37 247 0.97 0.23 0.66 8.23 0.015 0.17 0.19 
5.04e+37 277 1.09 0.27 0.70 9.82 0.013 0.37 0.45 
6.89e+37 349 1.21 0.34 0.68 11.8 0.010 1.03 1.46 
7.99e+37 438 1.27 0.38 0.63 13.0 0.008 1.74 2.86 
8.48e+37 482 1.29 0.41 0.60 13.6 0.007 2.44 4.27 

The upper set of parameters corresponds to the composition of BBP, the intermediate one to NV, 
and the lower one to An. 

BPP  and that of  N V  and An. This can be  traced back  to the different treatments of  
the nuclear  surface energy term. While  for composi t ions of  N V  and An the nuclei 
resemble  large laboratory nuclei (A ,-~ 200), with small  nuclear  charge ( Z  < 50) 

and rather small  surface thickness, the nuclei in the composi t ion of  BPP  have  

considerable bigger  mass  numbers  and charges, as well  as much  larger surface 
thickness. 

For  the composi t ion  of  N V  neutron-phonon coupling plays a modera te  role. It  
has a max imal  effect  at the last point  where Ao = 0.112 and it does not change 
the sound veloci ty considerably. For  Arponen ' s  composi t ion the phonon spect rum 
is essentially modif ied already for  densities p 8 / 4  and the lattice becomes  unstable 
against  the density fluctuations at density Ps/3 .  This result indicates that the sys tem 
can be unstable against  phase  transition to a new state with different parameters  
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of the nuclear lattice structure, or it may be unstable against phase separation 
into a pure neutron and nuclear phases. For composition of BBP the neutron- 
phonon coupling is negligible. The different degrees of importance of the neutron- 
phonon coupling for compositions examined can be traced to the different density 
dependence of the Z/A  ratio they imply. 

4. Conclusions 

To conclude, it was shown that the neutron-phonon interaction plays an impor- 
tant role for the Arponen's composition of neutron star crust, leading to a strong 
renormalization of phonon frequencies and to a lattice instability at densities of 
the order of third of nuclear saturation density. This effects plays a moderate role 
for the composition of Negele and Vautherin, which has similar characteristics of 
nuclei as Arponen's composition, but includes the nuclear shell effects. On the 
other hand the neutron-phonon interaction is found negligible for the composition 
of Baym et al. An extension of present results to the case of non-spherical nuclei 
and more precise treatment of the neutron-nucleus interaction will be given in a 
separate work. 
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