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Abstract. Bianchi type I, III, V, VI o, and Kantowski-Sachs type models have been investigated in a scalar 
tensor theory developed by Saez and Ballester (1985) and Saez (1985). The dynamical behaviour of the 
models has also been analyzed. 

1. Introduction 

The theories of gravitation involving scalar fields have been extensively studied (Brans 
and Dicke, 1961; Bergmann, 1968; Nordvedt, 1970; Wagoner, 1970). There are two 
different types of gravitational theories involving a classical scalar field q~. For the first 
category, the scalar field has the dimension of the inverse of the gravitational constant 
G. (For example, the Brans-Dicke theory of 1961 and the scalar tetradic theories of 
Saez, 1983.) The theories of the second type involve a dimensionless scalar field. For 
example, one has the BWN theory and in particular Barker's (1978) theory. Recently, 
another theory of the second type has been developed by Saez (1985) and Saez and 
Ballester (1985) which these authors have referred to as the '@coupling'. 

The first set of theories have been extensively studied by Singh and Rai (1983). The 
G-variation has been related with the possible existence of an anti-gravity regime (Linde, 
1980; Pollock, 1982). 

Saez and Ballester (1985) have developed a theory in which the metric is coupled with 
a dimensionless scalar field in a simple manner. This coupling gives a satisfactory 
description of the weak fields. In spite of the dimensionless character of the scalar field, 
an anti-gravity regime appears. This theory suggests a possible way to solve the missing 
matter problem in non-fiat FRW cosmologies. Saez (1985) discussed the initial 
singularity and inflationary universe in this theory. He has shown that there is an 
antigravity regime which could act either at the beginning of the inflationary epoch or 
before. He has also obtained a non-singular FRW model in the case k = 0. 

In this work we have studied the @coupling of gravity for Bianchi class of universes 
of types I, III, V, VI0, and Kantowski-Sachs universe (Ryan and Shapley, 1975). We 
have investigated the dynamical behaviour of these models. 

2. Field Equations 

Saez and Ballester (1985) start with the Lagrangian 

L = R - ~ 4 ' " ( < , ~ '  ' ) ,  
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where R is the scalar curvature; n, an arbitrary exponent; and co, a dimensionless 
coupling constant. The independent variation of the metric tensor go and scalar field 
0 leads, respectively, to the field equations 

1 - " - � 8 9  = , Ro $gu R - cos [0, i0 , j  ~0,k)] zTo. (2.2) 

20r lo ' i ; i  q- HO t '-  l ( 0 ,  k 0 " k  ) = 0 ,  ( 2 . 3 )  

g,j being the metric c; R u, the Ricci tensor; R = gOR u, To., the matter energy-momentum 

tensor. 
The equations of motion 

To;j = 0, (2.4) 

are consequences of the field equations (2.2) and (2.3). 

3. B i a n c h i  T y p e - I  M o d e l  

The Bianchi type-I metric is of the form 

ds 2 = dt 2 - R~ dx 2 - R2 2 dy 2 - R~ dz 2, 

where 

R i=Ri(t ) ,  i =  1 ,2 ,3 .  

The field equations (2.2) and (2.3) reduce to 

(3.1) 

- - +  + -- z ( p - p )  ( 3 . 3 )  

R2 R2 L ' 

R" 3 R3(R1 RRI) 1 - -  + + = Z ( P - P ) ,  (3 .4 )  
R3 R3 \R l  _ 2 

- -  + - -  + - z ( p  + 3 p )  + c o 0 ~  2 ,  ( 3 . 5 )  

Rl R2 R3 2 

+ 2q~ / / +  n q~2 = 0 ,  (3.6) 
V 2 0 

Like in general relativity, T"J; j = 0 leads to 

3i7 
t5 + -7- (p +p)  = 0,  (3.7) 

- - +  + = Z ( P - P )  (3 .2 )  
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where 

V 3 = RIR2R3  (3.8) 

and a dot denotes differentiation with respect to t. 
There are five Equations (3.2)-(3.6) in six unknowns R 1, R 2, R3, p, p, and q~. Hence, 

to solve these equations one can always impose an additional conditions. But it is 
difficult to find a general solution. Therefore, we consider two particular cases - viz., 
vacuum (p = p = 0) - and Zeldovich fluid (p = p). 

C a s e  I. V a c u u m  (p  = p = O) 

In this case Equations (3.2)-(3.6) reduce to the equations: 

/!~'1 /~1( ~2 /~e3) ~ + - -  + = 0 ,  (3.9) 

R,) - - + - -  + = 0 ,  
R 2 R 2 R 3 3 R I I  

(3.10) 

- - + - -  + = 0  
R3 R3 L ' 

(3.11) 

ai R2 R3 
_ _  + __  + __  = ~ e n r  2,  

Rl R 2  R3 
(3.12) 

3~/ /  n q~2 
~ + - - + - -  = 0 .  

v 2~  

If we add Equations (3.9)-(3.11) we get 

Z l+Z ,e2 -~ 
Differentiating (3.8) twice with respect to t, we get 

1~" 1 (R ,~2  3~2 3 ( ~ )  2 

From (3.14) and (3.15) one can obtain 

(3.13) 

(3.14) 

(3.15) 

f2+ 2_ ~/'2 = O, 
V 

(3.16) 

It has the solution 

V 3 = c t  + d ,  (3.17) 

c and d being constants. 
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Now by use of (3.17) in Equations (3.9)-(3.11) one can obtain in a straightforward 
manner the values of Rl, R2, and R 3 given by 

R 1 = rll(Ct + d )  l'/c , (3.18) 

R 2 = nz(Ct + d )  ~2/~' , (3.19) 

R3 = n3(c t  + d )  I~/c , (3.20) 

where hi, n2, n3; l~,/2, l 3 are constants. 
If we use (3.17) in (3.13) and integrating once we get 

~)n/2~) = H4(C t q_ a ) - '  ; (3.21) 

n 4 being a constant of integration. Integration of (3.21) leads to 

2/(n + 2 )  

[n4(n+ 2) l o g { n s ( c t  + d }  , (3.22) 
4'= I_ 2c 

where n 5 is a constant. 
If we use R,, R2, R 3 from Equations (3.18), (3.20) and 

Equation (3.12) we obtain a relation between the constants viz. 
q) from (3.22) in 

( ~ L )  ( @ _  1 ) +  (rt~/2)Q@_ 1 ) +  

+ ( ~ ( " ' ~ ) ( ~ -  1) - o9nff = 0. (3.23) 

The dynamical parameters of the model are: 

= l Z L ~ g , ~  ~ J  ~g22  

~2 = ~(a  + d ) -2 [ ( /?  + 122 + zr - (1112 + t213 + 1,13)] ; 

- scalar of expansion 

/I (l, + / 2 + / 3 )  
0---3 - 

V (ct + d) 

~33 ~3 L g33 gll ) 3 '  
(3.24) 

- Hubble parameter 

// 1 
H =  - 0, 

V 3 

a 2 2 
(a + d)-~[(/? +/22 +/~) - (/,/~ +/4~ +/d~)] ; 

o 3G+/2+/3) 
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- dece le ra t ion  p a r a m e t e r  

- v~'  
q -  ~2  

- the in tegra l  

+,2+3c ,2 , 

i dt '  _ [ ( n lnxn3 ) - l / 3  

V( t ' )  [ _ { 3 c 7 ~  + ~ + / 3 )  } 
t o  

(Ct + d) {3c - (11 -b 12 + [3)/3C}] l 
d t o 

is convergen t .  Therefore ,  the m o d e l  has  a hor i zon .  

The  Ricci  sca la r  is 

R = g~JR U = 2(ct + d ) - 2 [ ( l  ( + l~ + l 2)  - C([ 1 -}- l 2 -t- 13) q- 

+ (1112 + 1213 + 13/1)] �9 

Case II. Zeldovich f luid (p  = p) 

In this case  the field equa t ions  (3 .2 ) - (3 .7 )  r educe  to 

R1 
- - +  + = 0  
R 1 R~ \ R  2 ~ ' 

(3.25) 

(3.26) 

(3.27) 

- -  + ~ -  + = 0 ,  (3.28) 
R2 R2 

- - -  + - -  + = 0 ; (3.29) 
R3 R3 

- + ~ -  + - - 2 Z p  + , (3.30) 
Rl  R2 R3 

- - +  - = 0 ,  
v 2q~ 

(3.3:.) 

+ 6p - / /= o .  (3.32) 
V 

If we fol low the p ro c e s s  s imilar  to the v a c u u m  case ,  f rom E q u a t i o n s  (3 .27) - (3 .29)  and 

(3.8) we get  

V 3 = at + b ,  (3.33) 

where  a and  h are cons t an t s .  
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If  we use it in Equations (3.27)-(3.29) we can easily obtain 

R 1 = m l ( a t  + b)  k , / a ,  

R 2 = m a ( a t  + b)  ~2/~ , (3.34) 

R 3 = m 3 ( a t  + b) k , /"  ; 

where m~, m2, m3; k~, k2, k3 are constants.  
Equations (3.32) and (3.33) give 

p = p =  m 4 ( a t  + b) 2 ,  (3.35) 

where m 4 is a constant.  

By use of  (3.33) in (3.31) and integrating once we get 

0~/2  0 = m s ( a t  + b) - I  , (3.36) 

where m5 is a constant.  

Integration o f  (3.36) gives 

4> = (n + 2)m 5 l o g { m 6 ( a t  + b} , (3.37) 
2a 

where m 6 = constant.  

I f  we use R l , R2, R3 from (3.34) and 4~ from (3.37) in (3.30) we get a relation between 

the constants given by 

m:kl ( ~ _  1)Ar" ( ~ 2 ) ( ~ _  I ) - ~ - ( m ~ _ ) ( ~ _  1 )+  

The dynamical parameters are defined as: 

- shear tensor 

where 

+ 2 z m  4 - comg = O. (3.38) 

0.,j = ~ (u i ; j  + u:;i)  + �89 + a /u , )  - k h . ( " k ; ~ ) ,  

0.2 l " = 50.ij~ ~j , h~ /= g~j - u iu  J . 

Scalar of  expansion 0 = uk: ~ : 

- rotation tensor 

1 = - 2 ( " , u :  u ~ u , )  ; w,j 5 ( u , ; j  u / ; , ) - ~  �9 - 

- rotation 

(3.39) 

W 2 = ~wUwU. 



BIANCHI TYPE COSMOLOGICAL MODELS 295 

For the model these parameters are 

G 2 = ~(at + b) -2[ (k l  2 + k 2 -F kZ) - ( k i k  2 + k2k  3 + k3k , ) ] ,  (3.40) 

0 -  (kl + ka + G )  
, w~i = 0 ; 

(at + b) 

- Hubble parameter 

H= O; 
- deceleration parameter 

I 3a 1 - l  
q = (k I + k 2 + k3) 

 klk2+k k3+k3kl  1 
0 .2 l 

p 3 m 4  
[ ( k  2 + k2 2 + k f f )  - ( k l k  2 + k2k  3 + k 3 k l )  ] . 

The integral 

S 
tO 

d t  = L{3.: (k~ + ~ F  (/,//~lm2m3) +k3)}1/3 (at + b)(l/3a){3a-(ki+k2+k3)}] t 
J t  o 

(3.41) 

is convergent and, therefore, the model has a horizon. 

The model is singular at time t = - b / a .  

4. B i a n e h i  T y p e - I I l  U n i v e r s e  

The Bianchi type-III  metric is of  the form 

ds 2 = dt 2 - R 2 dr 2 - R~ [d02 + s inh20d(p2] ,  (4.1) 

where R 1 and R 2 are functions of t  only. The field equations (2.2) and (2.3) can be written 
a s  

k't  2 k l k 2  1 
- -  + - -  - Z ( P - P ) ,  ( 4 .2 )  
R L R I R  2 2 

k: k~ k ik:  1 1 - - + - - + -  - z ( p - p ) ,  (4.3) 
R 2 R~ R 1 R  2 R~ 2 

/~'1 R'~ 1 
- - + 2  - -  Z(P + 3p) + co~bn4; z , (4.4) 
R 1 R 2 2 
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+ 2 0  

T h e  equation T~/; j = 0 leads to 

(R  k-ll 2R2] = 0. (4,6) 
+ (P + P) + R2 / 

\ l 

It is difficult to find a general solution of Equations (4.2)-(4.6). Hence, we consider 
only two physically interesting cases: namely, 

(i) Vacuum (p = p  = 0). 
(ii) Zeldovich fluid (p = p). 

Case I. Vacuum Universe (p = p = O) 

In this case Equations (4.2)-(4.6) reduce to 

R" l 2R ,k  2 + - 0,  (4.7) 
R l R1R2 

R2 k~ R l k  2 1 + - - : +  0, (4.8) 
R 2 R~ R~R a R~ 

R 1 R2 

+ = 0  
R2 / 

We use a transformation of the time coordinate by 

dg = R 2 dr/. 

Furthermore, we use a substitution 

h = R I R  2 . 

Then Equations (4.7)-(4.10) become 

(4.9) 

(4.10) 

(4. I l )  

(4.t2) 

l !  ! l R a R1R2 
+ - 0 ,  

R 1 RIRa  
(4.7a) 

R~ R~R~ 
+ - - -  1 = O, 

R 2 R~R2 

R (  R I R ;  

R1 R~R2 

+ 2 = coq~n~ '2 , 
LR2 R~ J 

(4.8a) 

(4.9a) 
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q~,, + + ~ q~,2 = 0 ,  (4.10a) 

where a prime denotes differentiation with respect to t/. 

From (4.12), (4.7a), and (4.8a) we have 

h "  - h = 0 .  (4.13) 

The solution is 

h = R 1 R  2 = m I sinh(q + m2) , (4.14) 

where m I and m 2 are constants.  
By use of  (4.12) and (4.14) in Equation (4.7a) we can easily obtain 

R 1 = m 4 tanh , (4.15) 

w h e r e  m 3 and m 4 are constants.  
From (4.12), (4.14), and (4.15) we have 

R 2 = ml s inh( t /+  m2) coth . (4.16) 

The use of  (4.14) in (4.10a) and once integration gives 

Integration of  (4.17) gives 

~= f~l (~ +2 2)'og{m6Itanh(ff@)]}l 2/(n+2), (4 .18 )  

where m s and m 6 are constants.  

The use of  R l, R2, and q) in Equation (4.9a) gives a relation between the constants,  

2(m 2 - m  2 ) =  corn 2 .  

The kinematical parameters are 

- shear 

0-2-- 

(4.19) 

3 m~ 
[ 2 m4 2 cosechZ(r/+ m2 ) tanh + 

F 12 + 2m3 cosech(q  + m2) - c o t h ( r / +  m2) ; 
t _ m l  

(4.20) 
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- scalar of expansion 

i ( p T  m 0 = m4 cosech (r/+/712) tanh + 
m l  

+ [2 coth(tt + m2) - (m3/ml)  cosech(tt + me) ] ; 

- Hubble parameter 

I . H =  50, 

- deceleration parameter [ ]_2 
q = - 6 2 coth(r /+ m2) - m3 cosech(r/+ m2) , 

1771 

- (m;) V / f l  + m \7m3/ml 
+ m2) L t a n h / ~ ) J  • 

2 m~3 cosech + - co th  m2) [ 
7 

(0 m2) (0 + 
3 m l  

2 c o t h ( t / +  - m ~  c o s e c h ( t / +  m 2 )  / 
7 

m 2 )  
m 1 J 

The Ricci scalar is 

R=(2m2~(m~-1)cosech4(q+m2)Itanh(~)l 2m3/m' " 
\ m 2 j \ m ;  

(4.21) 

Case H. Zeldovich Fluid (p  = p) 

In this case Equations (4.2)-(4.6) reduce to 

R'l 2k~k~ 
+ - 0 ,  

R~ R~R 2 

k ' ~ - k  ~ k~k~ 1 
_ _ + ' ' 2 +  - - 0 ,  

R 2 R 2 RIR 2 R~ 

R II 2R2 
+ = 2 Z p  + co4~"~b 2 , 

R 1 R2 

+ = 0 ,  

(4.22) 

(4.23) 

(4.24) 

( 4 . 2 5 )  
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fi + 20 + 2 = 0.  (4.26) 

Under the change of the time-coordinate by dt = R 2 dr /Equat ions  (4.22)-(4.26) are 
t rans~rmed into 

Ri' RIR; 
+ - 0 ,  (4.27) 

R1 R1R1 

R~ RIR; 
+ 1 = 0,  (4.28) 

R2 R1R2 

Ri' RIR; + 2 R~ R; 2 _ 2zpR ~ + ~ n ~ , 2  , (4.29) 
RI 81R2 R2 R2 

\RI  R2/ 

p' + 2p(  Ri + 2  R~_~=O. 
\ R 1  R z J  

Now we make the substitution 

h = RIR 2 . 

Then from Equations (4.27) and (4.28) we can obtain 

h" - h = 0 .  

The solution is 

h = RIR 2 = l I s inh(r /+ 12), 

ll, /2 being constants. 
Then from (4.32), (4.34), and (4.27) we can obtain 

.l=,4[tanh( )F' 
13, 14 are constants. 

Now (4.32), (4.34), and (4.35) give 

Ra=(~) s inh ( r /+12) I co th (~J~) l13 /12 ,  

From (4.32), (4.34), and (4.30) we obtain, after integration 

q),/2~, = ( ~ ) c o s e c h ( r / +  12)" 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 
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If we integrate (4,37) once again, we get 

0 = [ (n  ~--2)/5 log {/6 [tanh ( ~ ) ] } ]  , (4,38) 
rl + 12 2/(n + 2) 

where 15, 16 are constants. 
If we use the values of R 1, R2, and q~ in (4,29) we have 

(12. "~ [(co/s 2 + 2l~ - 2/2)] cosecha(t/+/2) • 
P = P = \ 2 ~ U  

' -  / + l \ - 1 ( 2 t 3 / l l  ) 

• ('~ ~- !q/ �9 ( 4 . 3 9 )  

k \ 2 / J  

The conservation equation (4,31) is identically satisfied for p, R~, R 2 given by (4,39), 
(4.35), and (4,36), 

The kinematical parameters are 
- shear 

a2 ( l ~  r /" + ' \q2 ' -~ /" [  l 3 
= \ ~ /  [tanh ~q 2 ' ; ) J_  2 ll cosech(t/+ 12)- 

- COtfi01 + la) cosecha(r/+ !2) ; (4,40) 

- scalar of expansion 

o=(ltT)cosech(~+12)[tanh('121' . a) l t~ /h[2co th( r /+ /2) -  

t~ cosech(,/+ 12) ~ 
J 

Hubble parameter 

H~�89 
- deederation parameter 

q~  =6 2coth(r /+L) - ~  cosech(t/+/2) , 

rotation tensor o) o = 0 identically, 

a a 2X sinha(*l + 12) 

P 

\ l i /  

[ 1 2 t3 cosech(t/+/2) - coth(r/+ 12) , 
Ii 



BIANCHi TYPE COSMOLOGICAL MODELS 301 

+ 1 2 ) [  tanh(r/~-\ 2/Jl2"]T3n~x 

[ ]2 
2 13 cosech( t /+  12) - co th( r /+  I2) 

ll 

2 coth(r~ + 12) - cosech(r/+ l~)/ l 2 
q 

Ii 3 

The Ricci scalar is 

= ( 212"] ([2 _ ]2) c o s e c h 4 ( t / + / 2 )  [tanh(r/+/2)126/h . R \Z~ / 

The model has singularity at time t /= - l 2. 

(4.41) 

5. Kantowski-Sachs Universe 

The Kantowski -Sachs  space-time metric (1966) is of the form 

ds  2 = dt  2 - R 2 dt  2 - R ~ [ d 0 2  + s i n 2 0  d ~ 2 ] ,  (5.1)  

where R 1 and R 2 are functions of t only. In this case the field equations (2.2) and (2.3) 
are  

R'I R l k  2 1 
- - + 2  - Z ( P - P ) ,  (5.2) 
R L R1R 2 2 

k'2 k~ k~kz 1 1 
- -  + + - + - -  = - Z ( #  - P ) ,  ( 5 . 3 )  
R 2 R 2 R I R  2 R~ 2 

i~" 1 R" 2 - 1 
- -  + 2 - X(P + 3p) + ~oqS"q~ 2 , (5.43 
R 1 R 2 2 

+ + = 0 .  (5.5) 
R2 / 

The conservation equation Tu., . /-  0 is satisfied if 

(/~i 2R2"] = 0 .  (5.6) ~+(P+P) &+ R2/ 

As it is difficult to find a general solution we consider only two particular physically 
important cases: viz., (i) vacuum and (ii) Zeldovich fluid. 
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Case I. Vacuum (p = p = O) 

The field equations (5.2)-(5.6) reduce to 

k', 2k,k2 
+ - 0 ,  (5,7) 

RI RaR2 

K~ k~ klk, 1 
- -  + + -- + - -  = o ,  ( 5 . 8 )  
R 2 R 2 R I R  2 R 2 

k'~ 2R 2 
+ = coq~" q~ 2 , (5.9) 

R1 R2 

Under  the 

the form 

( k l  2k2~ n ~b 2 
R1 + R2:+2  =0. (5.10) 

t ransformat ion for t ime-coordinate d t =  R 2 dr/, Equations (5.7)-(5.10) take 

R~' R I R  i 
+ - 0,  (5.11) 

R1 R1R2 

__RJ + R~R; + 1 = 0 ,  ( 5 . 1 2 )  

R2 R l R 2  

R ;  R~R;  

R1 R l R 2  

(.?]= (5.13) 

where a prime 

h"  

where 
h = R l R 2  .- 

The general solution of  (5.15) is 

h = R1R 2 = c I s in( r /+  c2) ; 

ca, c2 being constants.  
F rom (5.11), (5.16), and (5.17) we can easily obtain 

R1 = c4 tan 

(R; R:] n e,2 
+ qS' + + _ = 0 ,  (5.14) 

\ R  1 R2,] 

denotes differentiation with respect  to t/. F rom (5.11) and (5.12) we have 

+ h = 0,  (5.15) 

( 5 . 1 6 )  

(5.17) 

(5.18) 

c3, c4 being constants.  
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F r o m  (5 .16)- (5 .18)  we have  

R 2 = Cl sin(r/ + c2) cot  . (5.19) 

I f  we use (5.18) and  (5.19) in (5.14) and  integrating once  we get 

~b"/2 ~b ' = (CcxS) cosec  (r/ + c2) , (5.20) 

where  c 5 as a constant .  

I f  we integrate (5.20) once  again, we have  

q} = [ ( n @  2) (~15) log {C6 Itan ( ~ ) 1 } 1 2 / ( n  + 2) , (5.21) 

c 6 is another  constant .  
N o w  plugging the values o f R  1, Re, and  ~ in Equa t ion  (5.13) we get a relation between 

the cons tants .  

2(c 2 - Cl) = COc 2 . (5.22) 

Therefore,  

(i) when  

c0>~0, 

(ii) when  

CO<0, 

[C3i ~ iCl , 

Ic3] < icl 

The  dynamica l  parameters  are: 

- shear  

2 2 I (~2C2)]2C3/C 1 
a2 = . c4 c o s e c 2 ( r / + c 2  ) tan  

3 k k C l /  

+ I 2 c3 

c I 
12 } c o s e c ( r / +  c2) - c o t ( r / +  c2) ; 

- scalar o f  expans ion  

0 = c4 c o s e c ( r / +  c2) tan + 
\ c ~ /  

+ [2 cot(r/+ c2) -c3 cosec  (r/-1- c2)1 ; 
c I 

+ 

(5.23) 
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- Hubble parameter 
1 , H = 5 0 ,  

- deceleration parameter 

q = 6 [2 cot(t/ + c2 ) _ ~3 cosec(t/+ c2)| -2-1 
C 1 J 

~ - 2 (ccl) c~ ( t / 3  
V / t /+  c N-]r 

+ c 2 ) [ t a n / ~ ) J  • 

I 12 2 c3 cosec(r/+ c2) - cot(r/+ c2) 
C 1 

2 cot(t/+ c2) - cosec(t/ c2) | 
-I 

C3 + 
ct _1 

The Ricci scalar is 

=( 2c2" ] c2) [tan R \ c l  4 j (c2 - c2) c o s e c 4 ( t / +  (~2c~2)12c3/c', (5.24) 

Case H. Zeldovich Fluid (p = p) 

The field equations reduce, in this case, to 

R 1  Rlk2 + - 0 ,  
Rl R1R2 

e'2 k2  e l k 2  1 - - +  + + - - = 0 ,  
R 2 R 2 RtR2 R~ 

(5.25) 

(5.26) 

K I 2R2 _ + 2Zp + (I)0 n 0 2 , 
Rl R2 

(k, 2k2) . 02 
~ + 0  E +  + =o. R 2/I  2~  

The conservation becomes 

R1 2k2~ 

(5.27) 

(5.27') 

(5.28) 
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The transformation dt = R 2 dr/changes Equations (5.25)-(5.28) into 

R~ ' R;R; 
+ 0, 

R 1 R~R2 
(5.29) 

R~ RIR;  
+ + 1 = 0 ,  

R2 RIR2 

R~ RIR;  

R1 R1R2 

+ 

p' +2p Rt + = 0 ,  
R2 / 

where a prime denotes differentiation with respect to r/. 
From (5.29) and (5.30) we can obtain 

h " + h = O ,  

where 

+ 2 L-R22 \ R 2 /  _1 

h = RIR 2 . 

The solution of (5.34) is 

h = RIR 2 = k 1 sin(r/+ k2), 

where k~, k 2 are constants. 
By use of (5.35) and (5.36) in (5.29) we can easily obtain 

RI = k a [ t a n ( ~ ) ]  k3/k' , 

where k3, k 4 are constants. 
From (5.35)-(5.37) we have 

R 2 = ( ~ ) s i n ( r / + k z ) [ c o t ( ~ ) ]  k~/k'. 

If we use (5.36) in (5.32) and integrating once, we get 

~b"/2 q5 ' = (k~)  cosec(r/+ k2), 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 



306 T. SINGH AND A. K. AGRAWAL 

If we integrate it once again, we have 

q)= [ ( ~ - ) (  k5 ] log ~'k 6 [tan ( r / ~ ) 1 } ] 2 / ( " + 2 7  
\kl/  ( 

where k 5, k 6 a r e  constants. 
If we use the values of R l, R2, and q~ in Equation (5.31) we get 

p=p= (cok2 + 2k2 - 2 k 2 ) k 2  c o s e c 4 ( r / +  k 2 )  x 

2k~ 

• Itan (~] ~ k2)12k3/kl " 

Equation (5.33) is identically satisfied by the values of R 1, R 2, and p. 
The dynamical parameters are: 

- Equation (5.42) shear 

a2 = 1 (k42"] cosec2(r / 
3 \kl~/ 

+  2,Itan( )l 2k3j   

X 2 k3 
kl 

2 

cosec(~ + k 2 )  - cot(r/+ k 2 )  ; 

- the scalar of expansion 

O=(~)cosec(r/+k2)[tan(~2)]k3/k' x 

x [ 2 c o t ( r / + k 2 ) -  k3- cosec(r/+k2)];  
kl 

- Hubble parameter 
1 H=50. 

- deceleration parameter 

q = 2 [2 cot(r/ + k2) k3 12 - - -  cosec(r/+ k2) , 
kl 

(5.40) 

(5.41) 

(5.42) 

a 2 _ 2Z sin2(r/+ k2) [ 2  k~ 
/ kl 

3 co + 2 - 2  
k, kl/ \kl/  J 

2 

c o s e c ( r /  + k 2 )  - cot(r/+ k 2 )  , 
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+ 2'Itan( U x 

• 
I 2 k3 

kl 
cosec(~ + k2) - cot(q + k2)l 2 

2 cot(~ k2) - c o s e c ( ~  + k2)| k3 2 
+ 

kl 3 

The Ricci scalar is 

N ~2k2(k2--k2)lcosec4(yl+ k2) U t a n ( ~ ) l  2k3/k' 
k k? 

6. Bianehi Type-V Universe 

The Bianchi type-V metric is of the form 
2a2x 2 ds  2 = dt  2 - R12 d x  2 - e -  (R 2 dy  2 + R 2 d z 2 ) ,  

where R,, R2,  R 3 are functions 
The field equations (2.2) and 

of t only and a = const. 
(2.3) can be written as 

R', /~,(/}2 2 _~333 ) 2a 2 1 - -  + + - z ( o - p ) ,  
RI R, 2 

R'2 /~2 ( k  it R 3 ) 2 a 2 1  - -  + + - z ( p - p ) ,  
g 2 

/~'3 /~3 ( /~ I  R 2 ) 2 a 2  1 
- -  + + z ( p  - p ) ,  R3 Rg\R] L R 2 2 

k'l  e'2 k'3 1 _ _ q _ _ _ +  

R 1 R 2 R 3 2 

k ~  k ~  2 k ,  
- - +  - 0 ,  
R2 R3 R 1 

} + 3  q~// n q~2 + - -  = 0 ,  
V 2q~ 

The conservation equation T~ = 0 leads to 

p+(p+p)  __3i/= 0, 
V 

(5.43) 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 
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where 

V 3 = R I R 2 R 3 .  (6~9) 

NOw we consider the two cases corresponding to vacuum and Zeldovich fluid. 

Case I. Vacuum Universe (p = p = O) 

In this case the equations reduce to 

R'l k l ( k 2  R3)  2a2 
= O, (6.10) 

R'2 R 2 ( R ~  k~33 ) 2a2 
+ - -  + - - -  = 0 ,  ( 6 . 1 1 )  

R 2 R 2 R~ 

- -  + - -  + - - -  = 0 ,  ( 6 . 1 2 )  

R3 R3 R~ 

R2 k3 2R, 
+ - , (6.13) 

/~2 R3 RI 

3q~// n 42 + + - -  = 0 ,  (6.14) 
v 2 0 

Since it has been possible to get a general solution of Equations (6.10)-(6.14) we make 
a simple illustrative investigation of these equations. 

We assume 

R 1 = t m , R 2 = t p-" , R 3 = t p3 , 4) = qbo tL , (6.15) 

where Pl,  P2, P3, ~Po, and L are constants. 
Inserting R~, R 2, R 3, and q~ in Equations (6.10)-(6.14) we find they are satisfied only 

when p~ = P2 = P3 = 1 and further (i) L = 0 or (ii) n = - 2.  L = 0 leads to q) = const., 
i.e., general relativity. When n = - 2, the equations become inconsistent. 

Hence, there are no solutions of Equations (6.2)-(6.8) in the vacuum case. 

Case H. Zeldovich Fluid (p = p) 

The equations are 

R-~l+--  + - - - = 0 ,  R1 R~ 
(6.16) 

R" 2 /~2 ( k 3  k ~ l l ) 2 a 2  - - + - -  + - - - = 0 ~  
R2 R2 \R3 R~ 

(6.17) 
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- -  + + - - -  = 0 ,  ( 6 . 1 8 )  

R3 23 R~ 

El R2 R3 - - + - - + - - =  - 2 Z p +  ~.~2 (6.19) 
Rl R2 R3 

h3 k, 
- - + - - = 2  - -  , (6.20) 
R 2 R 3 R~ 

. ,b + ~ + - -  = O. (6.21) 
V 24' 

The conservation equation is 

// 
+ 6p -- = 0,  (6.22) 

V 

Since we have not been able to find a general solution of Equations (6.16)-(6.22), we 
shall try a simple illustrative solution. We assume that 

R1 = t  p ' ,  R 2 - - t  p~, R 3 = t  m,  ~p=~bo tL; (6.23) 

where Pl, P2, P3, ~Po, and L are constants. 
Then Equations (6.16)-(6.21) are satisfied when 

P ~ = P 2 = P 3 =  1, ( n + 2 ) L =  - 4 ,  (6.24) 

and 
W~)6' + 2L2t - 6 

p = (6.25) 
2Z 

By use o f p f r o m  (6.25) and R1, R2, R3 from (623) Equation (6.22) is satisfied identically. 
The dynamical parameters are shear a = 0, rotation 09 = 0, scalar of expansion 

O = t - 3 ;  

- Hubble parameter 

H = t  - t  ' 

- deceleration parameter 

q = 0 .  

The integral 

i dt' rlt,21c =~ 
V(to) t~.  ~,'=,o, 

t o  

is finite and, therefore, a horizon exists in this model. 
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The Ricci scalar  R is zero. At  t = 0, the mat ter  densi ty p is infinite. Hence,  the m o d e l  

has a singular origin at t = 0 and for t > 0 the expansion slows down continuously.  

7 .  B i a n e h i  T y p e - V I  o U n i v e r s e  

The Bianchi  type-VI o metric is of  the form 

ds 2 . . . .  dt  2 R Z  d x  2 R ~  e -  2a2X d y 2  R3  e 2  2a2x d z 2  , (7.1) 

where R ~, R 2, R 3 a r e  functions of  t only and a = const.  

The field equations (2.2) and (2.3) lead to 

R'I a~l (R22 R333 ) 2a4 1 
- -  + + - Z ( P  - P ) ,  ( 7 . 2 )  
Rl R~1 R2 2 

- -  + - -  + = Z ( P - P )  ( 7 . 3 )  
R2R2  ' 

- -  + + = Z(P  - P )  ( 7 . 4 )  

R2 R3 

R2 R3 
(7.5) 

K1 K2 R3 1 
- -  + - -  + - Z (P  + 3p)  + ~ r  ( 7 . 6 )  
R l R 2 R 3 2 

n 42 + + - -  = O. (7.7) 
v 2q~ 

The conservat ion  equation T~/;.: is satisfied when 

~ + 3 ( p + p )  - - / / = 0 ,  (7.8) 
V 

where V 3 = R 1 R 2 R 3 .  

Since it has not  been possible  to find a general  solution of  Equat ions  (7 .2)-(7 .7)  we 

a t tempt  an illustrative solution in two cases:  viz., ( i )vacuum and ( i i )Ze ldovich  fluid. 

C a s e  I .  V a c u u m  Un i ve r se  ( p  = p = O) 

We assume that  

R ,  = t p' , R 2 = t "2 , R 3 = t p3 , ~ = q~o tL , (7.9) 

where Pl ,  P2, P3, q)o, L are constants .  
I f  we use (7.9) in Equat ions  (7.2)-(7.8)  with p = p = 0, we find that  they are satisfied 
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only when a = 0 which reduces the metric (7.1) to the Bianchi type-I  metric (3. l) already 

considered. Hence,  there are no solutions of  Bianchi type-VI o in this case. 

Case H. ZeMovich Fluid (p = p) 

In this case Equations (7.2)-(7.8) reduce to 

/~1 k l  (/~22 /~3) 2a4 - -  + + - O ,  ( 7 . 1 0 )  

Rl) 
- -  + + = 0 ( 7 . 1 1 )  

R2 L ' 

- -  + + = 0 ,  ( 7 . 1 2 )  
R3 R3 \ R I  R2 

R2 R3 
(7.13) 

_ _ + _ _ + _ _ =  _ 2 Z  p+ ~4),~2, ( 7 . 1 4 )  
R1 R2 R3 

+ 3 4/~  n ,b ~ - -  + - -  = 0 ,  ( 7 . 1 5 )  
V 24) 

// 
/5 + 6p v = o ,  (7.16) 

UsingR1,R2, R3,and 4 ) f f o m ( 7 . 9 ) w e f i n d t h a t t h e  Equa t ions(7 .10) - (7 .15)aresa t i s f ied  
when 

Pl = 1, P2 = 0 ,  P3 = 0 ,  n = - 2 .  (7.17) 

Then p is given by 

WL ~ 
p - (7.18) 

t 2 

Using (7.9), (7.17), and (7.18), the Equation (7.16) is satisfied identically. 
The dynamical  parameters  are 
- shear 

1 0 -2 = m �9 
3t 2 ' 
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- ro ta t ion  

o ) = 0 ;  

- scalar  o f  expans ion  

1 

3t 

- dece le ra t ion  p a r a m e t e r  q = 2 

a 2 1 

p 3 W L  2 

- H u b b l e  p a r a m e t e r  

a 2 1 

0 3t  

1 1 
H -  - 0 .  

3t 3 
(7.19) 

T h e  integral  

i dC 1 [/ '4]~, =to 
v(c) 3 

tO 

is convergen t ,  There fore ,  the  m o d e l  has  a ho r i zon .  

T h e  Ricc i  sca lar  is 

(7.20) 

2a 4 
R -- - -  . (7.21) 

l 2 

A t  t = 0, p ~ ~ .  There fore ,  the m o d e l  has  a s ingular  origin at t = 0 and  for t > 0 the  

e x p a n s i o n  shows  d o w n  con t inuous ly ,  
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