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Abstract. Bianchi type L, III, V, VI, and Kantowski—Sachs type models have been investigated in a scalar
tensor theory developed by Saez and Ballester (1985) and Saez (1985). The dynamical behaviour of the
models has also been analyzed.

1. Introduction

The theories of gravitation involving scalar fields have been extensively studied (Brans
and Dicke, 1961; Bergmann, 1968; Nordvedt, 1970; Wagoner, 1970). There are two
different types of gravitational theories involving a classical scalar field ¢. For the first
category, the scalar field has the dimension of the inverse of the gravitational constant
G. (For example, the Brans—Dicke theory of 1961 and the scalar tetradic theories of
Saez, 1983.) The theories of the second type involve a dimensionless scalar field. For
example, one has the BWN theory and in particular Barker’s (1978) theory. Recently,
another theory of the second type has been developed by Saez (1985) and Saez and
Ballester (1985) which these authors have referred to as the ‘¢-coupling’.

The first set of theories have been extensively studied by Singh and Rai (1983). The
G-variation has been related with the possible existence of an anti-gravity regime (Linde,
1980; Pollock, 1982).

Saez and Ballester (1985) have developed a theory in which the metric is coupled with
a dimensionless scalar field in a simple manner. This coupling gives a satisfactory
description of the weak fields. In spite of the dimensionless character of the scalar field,
an anti-gravity regime appears. This theory suggests a possible way to solve the missing
matter problem in non-flat FRW cosmologies. Saez (1985) discussed the initial
singularity and inflationary universe in this theory. He has shown that there is an
antigravity regime which could act either at the beginning of the inflationary epoch or
before. He has also obtained a non-singular FRW miodel in the case k = 0.

In this work we have studied the ¢-coupling of gravity for Bianchi class of universes
of types I, 1L, V, VI, and Kantowski-Sachs universe (Ryan and Shapley, 1975). We
have investigated the dynamical behaviour of these models.

2. Field Equations
Saez and Ballester (1985) start with the Lagrangian

L=R-wp"($6. @.1)
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where R is the scalar curvature; n, an arbitrary exponent; and «, a dimensionless
coupling constant. The independent variation of the metric tensor g,; and scalar field
¢ leads, respectively, to the field equations

Rij - %gin - w¢”[¢,i¢,1 2g11(¢ kqb k)] = xT, i (2.2)

20"¢ "+ ng" " ¢ ") =0, (2.3)

g, being the metric ¢; R, the Ricci tensor; R = g* R, T, the matter energy-momentum
tensor

The equations of motion

TV =0, 2.4)

I]’ Ij’

are consequences of the field equations (2.2) and (2.3).

3. Bianchi Type-1 Model

The Bianchi type-1 metric is of the form
ds? = dr? — R?dx? — RZdy* ~ R5dz?, 3.1

where
R, =R(), i=123.
The field equations (2.2) and (2.3) reduce to

R, R,(R, R 1
R, R/ \R, R, 2
R, R, (R, R 1
A2+2<J+73>zx(p—p), (3.3)
R, R,\R, R; 2
R, R,(R, R, 1

242 (— + )') ~2p-p), (3.4)
R, R3 R, 2
R.l R.z R'3 1 [2
A2 S —— y(p+3p)+ w9, (3.5)
R, R, R, 2 e

b+ 2¢ + — ¢ = (3.6)
PRV o ¥

Like in general relativity, T9 ; = 0 leads to

.3V
p+7(p+p)=0, (3.7)
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where
V3 = R,R,yR, (3.8)

and a dot denotes differentiation with respect to ¢.

There are five Equations (3.2)—(3.6) in six unknowns R, R,, Rs, p, p, and ¢. Hence,
to solve these equations one can always impose an additional conditions. But it is
difficult to find a general solution. Therefore, we consider two particular cases — viz.,
vacuum (p = p = 0) — and Zeldovich fluid (p = p).

Case I. Vacuum (p=p = 0)
In this case Equations (3.2)-(3.6) reduce to the equations:

. R
BA(E R 69
R, R,\R, R,
.s . . R
&4_&(&4__1):0’ (310)
R2 R2 R3 Rl
&+&<&+§3>=0, (3.11)
R3 R3 R2 R2
By Bo Ry gnge, (.12)
Ry R, R,

o — 92=10. (3.13)
ARV

If we add Equations (3.9)-(3.11) we get

R, RR,
7+ —_— =
LD

0. 3.14
1 RlRZ ( )

Differentiating (3.8) twice with respect to ¢, we get
3 R1>2 3 <V>
o == =3 . 3.15
Le-(z) -5 615
From (3.14) and (3.15) one can obtain
2 .
V+— V=0, (3.16)
v

It has the solution
Vi=ct+d, (3.17)

¢ and d being constants.
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Now by use of (3.17) in Equations (3.9)-(3.11) one can obtain in a straightforward

manner the values of R, R,, and R; given by
R, =n(ct + d)"',
R, = ny(ct + d)?/,
Ry = ny(ct + d)e,

where n(, n,, ns; 1}, I, I; are constants.
If we use (3.17) in (3.13) and integrating once we get

¢ = nyler+ )
n, being a constant of integration. Integration of (3.21) leads to

o= [n4(n +2)

2/(n + 2)
log {ns(ct + d}J ,
2c

where ns is a constant.

(3.18)
(3.19)
(3.20)

(3.21)

(3.22)

If we use Ry, R,, Ry from Equations (3.18), (3.20) and ¢ from (3.22) in

Equation (3.12) we obtain a relation between the constants viz.

() ()
()

The dynamical parameters of the model are:

(3.23)

o2 = i I:{gu,zt _ g22.4}2 " {g22,4 _ g33,4}2 n {g33,4 _ 811,4}2:| )
12 & 822 822 833 833 &n

o? = %(C[ +d) IR+ B+ ) - (LW + Liy + L))
— scalar of expansion

gy _(Girbhil)
Vv (ct +d)

— Hubble parameter

Vol
H=—=-9,

vV 3
ﬁ=~—~£—*4a+w‘ﬂﬁ+@+@%ﬂ¢+h@+um-
0 3, +L+1L) - ’

(3.24)
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— deceleration parameter

~-VV [ 3¢ }
g=—5—=|——7—=-1
G L+ L+15)

~ the integral

t

J‘ de’ =|: (nlnzns)—m (ct + d){3c~(11 +12+13)/3c}i|t
V') L{3c¢-(+1L+04L)}

to
fa

is convergent. Therefore, the model has a horizon.
The Ricci scalar is

R=gVR,=2(ct+d) [t + G +5)—cly + L, + Iy) +
+ L+ L+ 51)].

Case I1. Zeldovich fluid (p = p)
In this case the field equations (3.2)-(3.7) reduce to

LT
R

R3 3 Rl Rz

R, R, R .
‘J+;+‘3=—2Xp+w¢”¢z,
Rl R2 R3

VS 2
¢+ 30 ;+§%¢ =0,

14
p+6p —=0.
|4

293

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

3.3y

(3.32)

If we follow the process similar to the vacuum case, from Equations (3.27)-(3.29) and

(3.8) we get
V3i=ai+bh,

where ¢ and b are constants.

(3.33)
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If we use it in Equations (3.27)—(3.29) we can easily obtain
R, = m(at + by,
R, = my(at + b)y<2/v, (3.34)
R; = my(at + b)<'*

where m,, m,, ms; k,, k,, k; are constants.
Equations (3.32) and (3.33) give

p=p=mylar+b)"?, (3.35)

where m, is a constant.
By use of (3.33) in (3.31) and integrating once we get

¢ = mg(at + b) "', (3.36)

where m; is a constant.
Integration of (3.36) gives

¢ = [("—;azl”ﬁ log {mg(at + b}]wm, (3.37)

where m, = constant.
If we use R;, R, R, from (3.34) and ¢ from (3.37) in (3.30) we get a relation between
the constants given by

) () (2

+2ymy — wmZ =0. (3.3%)

The dynamical parameters are defined as:
~ shear tensor
. - 1
Gy = 5y + 1y ) + 20y + ) = shy (W54, (3.39)
where

2_1 J — —
0” =30,0", hy = gy — ;.

Scalar of expansion 0 = u*. ,:
— rotation tensor

Wi = %(ui;j — Uy D é(uzuj - l:ljui) >

— rotation
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For the model these parameters are
o2 = Nat + b) "2 [(k2 + kZ + k2) — (ki ko + koky + ksk )], (3.40)

Hz(kl +ky + ks)
(at + b)

w.=0;

i >
~ Hubble parameter
H=10;

— deceleration parameter

el
g=|—"-—-— .
(k) + &y + k3)

gf:%m+by4[wf+k§+k@—4k¢2+kﬁ3+kﬁ0]
g ° (e + Ky + k3) ’
62

1
= 51;/1— [(k12 + kzz + kéq) - (klkz + k2k3 + k3k1)] :
P 4

The integral

4

J ﬂ_ - l: (mlmzm3)7 3 (a{ + b)(l/3a) {3a — (4 +k3+k3)}j|1 (3.41)
Viey L{3a-(ky+k,+k3)}

o
Io

is convergent and, therefore, the model has a horizon.

The model is singular at time ¢ = — b/a.

4. Bianchi Type-III Universe
The Bianchi type-III metric is of the form
ds? = dr* - R2dr? - R3[d6? + sinh?0 d¢?], (4.1)

where R, and R, are functions of s only. The field equations (2.2) and (2.3) can be written

as

R, 2R,R,
. 2

1
=—zlp-»), (4.2)
R, RR, 2

K2+§§+R£2_l, 1

—= =~ xlo-p), (4.3)
R, R3 RR, R 2

R, R, 1 .

—+2 ==——y(p+3p)+ wp"P?, (4.4)
3 R, 5 M "¢
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. . (R, Rz) no,
+dl—+2=]+— ¢?=0, 4.5
¢ ¢<Rl R, 2¢¢ (4.5)
The equation 77, = 0 leads to
R, 2R,
+(p+ —+ — 0. 4.6
peoen (i R2> +6)

It is difficult to find a general solution of Equations (4.2)—(4.6). Hence, we consider
only two physically interesting cases: namely,

(1) Vacuum {p = p = Q).

(ii) Zeldovich fluid (p = p).

Case I. Vacuum Universe (p =p = 0)
In this case Equations (4.2)-(4.6) reduce to

2R,R
&+—‘“2=0, 4.7)
R, RR,

2 RR, 1
R R RiRy 1 (4.8)
R, R} RR, R3
R, R, )
s Rl perd2, (4.9)
g 7R, "¢

2R, noo.

Ty 2290, 4.10)

¢+ ¢<] Rz) 2¢¢ (

We use a transformation of the time coordinate by

de = R, dy. @.11)
Furthermore, we use a substitution

h=R,R,. (4.12)
Then Equations (4.7)-(4.10) become

B RIR,

-0, (4.72)
Ry RiR,
R; +MZ_1=0, (4.8a)
R, RR;
" ’ ¢ 174 12
R{ RiR; + 2[& _ 1_22_]2 w¢ g2, (4.92)
R, RR; R, R3
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9" + (%) + % ¢'2=0, (4.10a)

where a prime denotes differentiation with respect to #.
From (4.12), (4.7a), and (4.8a) we have

h" —h=0. 4.13)
The solution is
h = R,R, =m, sinh(n + m,), (4.14)

where m, and m, are constants.
By use of (4.12) and (4.14) in Equation (4.7a) we can easily obtain

LEVL
R, =m, [tanh (%ﬂiﬂ , 4.15)

where m; and m, are constants.
From (4.12), (4.14), and (4.15) we have

3 [hy
R, = <ﬁ> sinh (5 + m,) [coth (’7 * ’”Zﬂ . (4.16)
my 2

The use of (4.14) in (4.10a) and once integration gives

s

PP = ( )cosech(q + my). (4.17)

m,

Integration of (4.17) gives

T R
my\ 2 2

where m5 and m, are constants.
The use of R, R,, and ¢ in Equation (4.9a) gives a relation between the constants,

2(m3 — m?) = om?. 4.19)

The kinematical parameters are
— shear

. 2m /try
o2 = % P4 cosech?(n + m,) [tanh (%@) ] '

+
| —
[\

2
s cosech(y + my,) — coth(n + mz)} ; (4.20)

my
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— scalar of expansion
0= Ha cosech(y + m,) [tanh <M>]m3/’ﬂl +
m, 2
+ [2 coth(n + my) — (ms/m;) cosech(y + m,)] ;
— Hubble parameter
H= % ;
— deceleration parameter

-2
qg= - [2 coth(n + m,) - ™ cosech(#n + mz):| ,

m,

2 msz/my
L 2 (%) cosech(n + m,) |:tanh (M)J X
0 3\m, 2

[2 e cosech (n + m,) — coth(n + mz)}

m,

X

|:2 coth(n + m,) — s cosech(n + mz)]

my

The Ricci scalar is

) 2 2 2mz/m
R = ( m4) (r_n% - ) cosech*(n + m,) |:tanh (’7 * mz)] .
mi ) \mj 2

Case II. Zeldovich Fluid (p = p)

In this case Equations (4.2)—(4.6) reduce to
Ry 2R.R;
Rl RlRZ

0,

K, R RR 1

R2 R% RIRZ R%

il

R, 2R

+2=2yp+ wp" P2,
&R "¢
. (R, 2R :
b g(mede)e 420,
R, R,/ 2¢

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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R R
ﬁ+2p(;‘+2 J>=0. (4.26)

1 2

Under the change of the time-coordinate by df = R, dn Equations (4.22)-(4.26) are
transformed into

RN RIR/
Ly 229, (4.27)
R, RR,
RN RIRI
fa  Rifa oy, (4.28)
R, RR,
" ’ ! " 12
Rl _R1R2 +2 R2 _RZ — _ZXPR%+ w¢lz¢/2’ (429)
Rl R1R2 RZ RZ
R, R,
¢” +¢’ <_l.+_ 2>+£ ¢’2:0’ (430)
R, R, 2¢
R/ R/
p'+2p<—l+2i)=0‘ 4.31)
R, R,

Now we make the substitution

h=RR,. (4.32)
Then from Equations (4.27) and (4.28) we can obtain
h" —h=0. (4.33)

The solution is
h=R(R, =1 sinh(n+ 1), (4.34)

I;, I, being constants.
Then from (4.32), (4.34), and (4.27) we can obtain

I3/4
R =1, [tanh (” ; 12)] (4.35)

I5, I, are constants.
Now (4.32), (4.34), and (4.35) give

I3/l
R, = (?) sinh (7 + 1,) |:coth <1;—l%>} , (4.36)
4

From (4.32), (4.34), and (4.30) we obtain, after integration

PP = <53> cosech(y + ). 4.37)

1
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If we integrate (4.37) once again, we get

T ot |

where /s, /5 are constants.
If we use the values of R, R,, and ¢ in (4.29) we have

1? .
p=p= (5;—4) [(wlZ + 217 - 213)] cosech?(n + 1,) X

1

‘ @hs/h)
X [tanh (-ﬂ;—lzﬂ . (4.39)

The conservation equation (4.31) is identically satisfied for p, R, R, given by (4.39),
(4.35), and (4.36).

The kinematical parameters are

~ shear

2 = _ 2(3/f,
62 = (l‘L) [tanh <M>} [2 1—3 cosech(y + L) —
317 2 /. h

12
~ coth(y + 12)] cosech?(n + 1) ; (4.40)

- scalar of expansion

13/0
0= <j“) cosech(y + 1) [tanh (17 ; lz)jl [2 coth(n + L) -
1

l .
- f cosech (1 + 12)] :
1 i

— Hubble parameter
H=30;
- deceleration parameter

- l -2
g= -6 [2 coth(n + 1) - 1~3 cosech(n + 12)] ,

1

rotation tensor «,; = 0 identically.

2y sinh?*(y + L) |:2 A

(o) 2]

o? g
= cosech(y + L) — coth(y + 12):l ,
0

1
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62 1 l4> ) l: (r; + 12)]3”‘
— = —| 2 )cosech(y + L,)| tanh | ——= X
03 (11 i+ B)| 2/

2
[2 53 cosech(n + I,) - coth(n + 12):]
1

>< -

[2 coth(n + 1) ~ %— cosech (n + Iz)]

1

The Ricci scalar is

2
R = (211 )(l3 ~ 12) cosech*(n + L,) [tanh (n + £,)]2=/" .

The model has singularity at time y = —1,.

5. Kantowski-Sachs Universe

The Kantowski-Sachs space-time metric (1966) is of the form

ds? = dr? — R*dr* ~ R3[d6? + sin>0 d¢?],

301

(4.41)

(5.1)

where R, and R, are functions of z only. In this case the field equations (2.2) and (2.3)

arc

RR, 1
=—x(p-p),

&+R§+R,Rz+i 1

= =-p-p,
R, R2 R, R 2"F
R‘] R’2 -
*+2——~~*x(p+3p)+w 2
R, "R, 2 9%

Ry 2R\, moga
g+ ¢(l R2)+2¢¢> 0.

The conservation equation TV, , = 0 is satisfied if

R, 2R,
+(p+ — + 0.
p+(p p)<RI R)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

As it is difficult to find a general solution we consider only two particular physically

important cases: viz., (i) vacuum and (ii) Zeldovich fluid.
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Case I. Vacuum (p =p = 0)

The field equations (5.2)—(5.6) reduce to
6-_1 + M =0
R, RiR,

>

R, R RR, 1
2 S R

R, R:2 R,R, R?

k]

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

R, 2R :

1 + s (,04)”(1)2 ,

R, R,

&+ '<&+%&)+£ $*=0.

R, R,/ 2¢

Under the transformation for time-coordinate df = R, dy, Equations (5.7)—(5.10) take
the form

R/{ RI'RI

ﬁl + 1432 — 0 ,

Rl RIRZ

RN R/R!

24+ 1241-=0,

R, R|R,

ﬁ~@+2[R£ _ <Rl> :Iz w¢n¢/2,

Rl R1R2 RZ R2

’ RI
¢//+¢/<§_l+ 2>+I’l ¢/2:O’
R, R,/ 2¢

where a prime denotes differentiation with respect to 5. From (5.11) and (5.12) we have

" +h=0,
where

n=R,R,.

The general solution of (5.15) is
h=RR,=c,sin(n+cy);

¢y, ¢, being constants.
From (5.11), (5.16), and (5.17) we can easily obtain

+ cz/cy
R, =c¢, |:tan (%)jl ;

5, C4 being constants.

(5.16)

(5.17)

(5.18)



BIANCHI TYPE COSMOLOGICAL MODELS 303

From (5.16)~(5.18) we have

R, = <ﬁ> sin(n + ¢,) [cot (’7 i Czﬂcz/c‘ . (5.19)
C4 2

If we use (5.18) and (5.19) in (5.14) and integrating once we get

G = <§> cosec (7 + ¢y), (5.20)

Cy

where ¢ 1s a constant.
If we integrate (5.20) once again, we have

I |

¢ is another constant.

Now plugging the values of R, R,, and ¢ in Equation (5.13) we get a relation between
the constants.

2(c? - ¢f) = wel. (5.22)
Therefore,
(1) when
wz0, ez =icl,
(ii) when

w<0, ez <icy].

The dynamical parameters are:

~ shear
2 2 + 2¢3/ey
g?== {<%> cosec?(n + ¢,) [tan (77 02>:| +
3 (\¢ 2

+ [2 G cosec(y + ¢,) — cot(n + 62)]2} ; (5.23)

€y

— scalar of expansion

cs/ey
0= <€f> cosec(n + ¢,) [tan <m)] +
c, 2

+ [2 cot(n + ¢,) — b cosec(n + cz)] ;

€y
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— Hubble parameter
H=10;

— deceleration parameter

~2
g==56 [2 cot(n + ¢,) - £ cosec(y + cz)] ,

€

62 2 04) [ (11 + cz):lc3/c‘
— =2 )cosec(n + ¢,) | tan | ——= X
0 3 (cl e 2

2
[2 i cosec(n + ¢,) — cot(n + cz)]
9

X

[2 cot(n + ¢;) — ‘s cosec(n + cz)}

¢y

The Ricci scalar is

2 2c3/cy
R= (%%4) (c? — c?) cosec*(n + ¢3) [tan (’7 ‘;Cz):l : (5.24)

¢

Case II. Zeldovich Fluid (p = p)

The field equations reduce, in this case, to
.. 5 R
R RiRs (5.25)
Rl R1R2

s
53+5%+&&+—1—=0, (5.26)
R2 Rl RlRZ R%

Ry | 2K,

- -2 "2 5.27
PR AP+ 0" ¢ (5.27)

! 2 Zo$?2=0. 5.27
¢+¢<RI+R2)+2¢¢ 0 ( )

The conservation becomes

i .
p+zp<R~1+—25—2>=0. (5.28)



BIANCH! TYPE COSMOLOGICAL MODELS

The transformation dt = R, dn changes Equations (5.25)—(5.28) into

R, R,R,
Ry +R‘R2+1=o,
R2 R1R2
” D 1" 1\2
R, RR, R, 2

¢//+¢/<&+RZ>+£¢r2=O’
R, Ry 2¢

Ry 2R;
p’+2p(—l+ 2)=O,
R, R,

where a prime denotes differentiation with respect to #.
From (5.29) and (5.30) we can obtain

h +h=0,

where
h=RR,.

The solution of (5.34) is
h=R,R,=k,;sin(n+k,),

where k,, k, are constants.
By use of (5.35) and (5.36) in (5.29) we can easily obtain

kalky
R, =k, [tan (fl_;_k_z):l )

where k5, k, are constants.
From (5.35)—(5.37) we have

k ks fky
R, = (J) sin(y + k) [cot (w)] .
k, 2

If we use (5.36) in (5.32) and integrating once, we get

¢n/2¢' = (%) cosec(y + k,),

]

305

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)
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If we integrate it once again, we have

A

where ks, kg are constants.
If we use the values of R, R,, and ¢ in Equation (5.31) we get

_ (k2 + 27 - 2k2)k3
2%

2ks/ky
X [tan <17—;—kz)} . (5.41)

Equation (5.33) is identically satisfied by the values of R,, R,, and p.
The dynamical parameters are :
- Equation (5.42) shear

: k2> [ (ﬂ - )] o
2 4 2 2
0% =—[—]cosec*(n + k,) ] tan X
3 <k12 (n + k3) 5

2
X [z % cosec(n + k,) — cot(n + kZ):I ; (5.42)

1

cosec*(n + k,) x

— the scalar of expansion

k4> n+ k)]
— Jcosec(n + k )[tan (—— X
(k‘ 2 2

k
X [2 cot(n + ky) — k—3 cosec(y + kz)J ;

1

0

— Hubble parameter
H=1l6.
— deceleration parameter

k 2
q="2 [2 cot(n + ky) — f cosec(y + kz):| ,

I

2 v in2 2
o; _ 2y sin (77 + kz) [2 _IYE COSGC(?’] + k2) - COt(Y] + k2):| s
0

o[o(@) 22 ]
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) (5]
— | cosec(n + k)| tan{ ———= X
<k1 n+ky) )

k 2
[2 k—3 cosec(n + k,) — cot(n + k2)}

1

k
[2 cot{y + k,) — ;3 cosec(n + kz):l

1

The Ricci scalar is

2k2 k2 _ k2 2ks/ky
R = [LI;J} cosec*(n + k,) [tan (%ﬁ):l ) (5.43)
1

6. Bianchi Type-V Universe
The Bianchi type-V metric is of the form
ds? = dr? — R? dx? — e~ 2*(RZdy? + R3 dz?), 6.1)

where R, R,, R; are functions of ¢ only and 2 = const.
The field equations (2.2) and (2.3) can be written as

R, R, (R, R 24 1
-‘+~‘<—%+—3)— == xlp-p), (6.2)
Ry R\R, R, Ry 2
R, R,(R, R 2a% 1
?2+_2<_l+3>__2=gx(p~p), (6.3)
R, R,\R, R, RY 2
R, R,(R, R 2qa% 1
_3‘{‘*3(—1‘1'-’2)_—2:—)((,0"[7), 6.4
R, R;\R, R,/ R} 2
LN S g
—+—=+4+ == - y(p+3p)+ wp" P>, (6.5)
R, R, R, 2 »e

i o o
Ry Ry 2R (6.6)
R, R; R,
.. oV n

+3 -+ — $7=0, 6.7
¢ - 2¢¢ (6.7)

The conservation equation 77, , = 0 leads to

. 3y
p+(p+p)7=0, (6.8)
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where
V3 =R\R,R;. (6.9)

Now we consider the two cases corresponding to vacuum and Zeldovich fluid.

Case I. Vacuum Universe (p = p = ()

In this case the equations reduce to

. .
&+&<§z+&)_%£:o, (6.10)
Rl Rl RZ R3 R%

oo R . R 2

52+—£<ﬁ+—3)~2—"3 0, (6.11)
R2 RZ Rl 3 Rl

aa . 2

R R3<51+§2)-2—=0, (6.12)
R; R;\R, R,/ R}

By Ry 2k, 613
R, R; R

. bl .

G2V 1 4ayg, (6.14)

Since it has been possible to get a general solution of Equations (6.10)-(6.14) we make
a simple illustrative investigation of these equations.
We assume

Ry=t", R,=t", Ry=t7", ¢=g¢o", (6.15)

where p,, p,, p3, ¢, and L are constants.

Inserting R,, R,, R, and ¢ in Equations (6.10)—(6.14) we find they are satisfied only
when p, = p, = p; = 1 and further G) L = 0 or (i) n = ~2-L = 0 leads to ¢ = const.,
i.e., general relativity. When # = - 2, the equations become inconsistent.

Hence, there are no solutions of Equations (6.2)-(6.8) in the vacuum case.

Case I1. Zeldovich Fluid (p = p)

The equations are

.s . . . 2
&+-&<&+5§)—g“—:0, (6.16)
R, R/ \R, R; ?

o ;

5_2..‘.82(5%_;_&)_%“_:0’ (61'])
R, R,\R; R, R?
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. 4 » : 2
5%+5%(&+5£>-2“7=0, (6.18)
Ry R;\R, R, Ry
&+§3+5§=—2X’0+w¢)”¢2, (619)
R, R, R,
Ry Ry Ri (6.20)
R2 R3 Rl
. 3oV .
b2 L geg, (6.21)
Vo 29
The conservation equation is
14
0+ 6p — =0, 6.22)
prbp o (

Since we have not been able to find a general solution of Equations (6.16)-(6.22), we
shall try a simple illustrative solation. We assume that

Ry=1t7", R,=t", Ry=1im, ¢ = Pot™; (6.23)
where p,, p,, Ps, @, and L are constants.
Then Equations (6.16)-(6.21) are satisfied when
pi=py=p3=1, (+2)L=-4, (6.24)
and
~ W¢é1+2L2t—6

y (6.25)

g

By use of pfrom (6.25) and R |, R,, R, from (6.23) Equation (6.22) is satisfied identically.
The dynamical parameters are shear ¢ = 0, rotation w = 0, scalar of expansion

=13,

~ Hubble parameter
H=¢",

— deceleration parameter
g=0.

The integral

dl’ ’ t=p
J T = [%t 2];’==t0’
V(L)

to

is finite and, therefore, a horizon exists in this model.
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The Ricci scalar R is zero. At ¢ = 0, the matter density pis infinite. Hence, the model
has a singular origin at ¢ = 0 and for 7 > 0 the expansion slows down continuously.

7. Bianchi Type-VI, Universe

The Bianchi type-VI, metric is of the form
ds® = dr> - R} dx> -~ R3e™ 2 dy? — R3 2 dz?, (7.1)

where R, R,, R; are functions of ¢ only and a = const.
The field equations (2.2) and (2.3) lead to

R, R, <R2 R3> 20* 1
—+ =+~ — == 2p-p), (7.2)
R, R, \R, R,/ R} 2
R, R,(R, R 1
—2+—2<~3+~’>=—x(p—p), (7.3)
R, R,\R, R, 2
By B (ﬁ + &> . xp—p), (7.4)
R, R,\R, R,/ 2
[y 05
R, Ry’
R, R, R, 1 s
L+ 2+ 2= - = y(p+3p) + wp" 2, (7.6)
R, R, R, 2 e
. 3¢>V n o,
+— (7.7)
¢+ v 2 ¢* =
The conservation equation TV  is satisfied when
_ 14
p+3(p+p);=0, (7.8)

where V> = R,R,R;.

Since it has not been possible to find a general solution of Equations (7.2)~(7.7) we
attempt an illustrative solution in two cases: viz., (i) vacuum and (ii) Zeldovich fluid.
Case I. Vacuum Universe (p = p = 0)

We assume that
R, =1, Ry,=1t", Ry=17, ¢=¢", (7.9)

where p,, ps, Ps, ¢o, L are constants.
If we use (7.9) in Equations (7.2)~(7.8) with p = p = 0, we find that they are satisfied
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only when a = 0 which reduces the metric (7.1) to the Bianchi type-I metric (3.1) already
considered. Hence, there are no solutions of Bianchi type-VI, in this case.

Case I1. Zeldovich Fluid (p = p)
In this case Equations (7.2)—(7.8) reduce to

T ot

5+&(&+&>—i=o, (7.10)

R, R,\R, R,/ R?

5_2+&<&+&>:0, (7.11)

R, R,\R, R,

¢ ko(k R

&+&<&+—'>:0, (7.12)

R; R3;\R; R,

R, R

2= (7.13)

R, R,

R, R, &, -

=S4 = =yt 0§, (7.14)

Rl RZ 3

A I

+3 T—+— ¢2=0, 7.15

¢ - 2¢¢ (7.15)
14

y+6p —=0, 7.16

probp (7.16)

Using R, R,, R5, and ¢ from (7.9) we find that the Equations (7.10)—(7.15) are satisfied
when

P1:17 Pzzoa p3207 1’12—2. (717)
Then p is given by

WL?
p=—-

(7.18)
11

Using (7.9), (7.17), and (7.18), the Equation (7.16) is satisfied identically.
The dynamical parameters are
— shear
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rotation

i

w=20;

scalar of expansion

I
0=—;
3t
~ deceleration parameter g = 2
o> 1 o 1
p 3WL? 0 3
~ Hubble parameter
1
H=—=-1§6
3r 3

The integral
r
dr’ r
J =[],
V') 3
‘o
is convergent. Therefore, the model has a horizon.
The Ricci scalar is

(7.19)

(7.20)

(7.21)

At t =0, p— oo. Therefore, the model has a singular origin at ¢ = 0 and for ¢ > 0 the

expansion shows down continuously.
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