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Abstract. The object of the present paper is to investigate the influence of initial stress on the waves 
propagation in a generalized thermoelastic granular medium subjected to the boundary conditions that the 
outer surface is traction free. In addition, it is subjected to temperature boundary conditions. The wave 
velocity equation for the generalized thermoelastic granular medium Rayleigh wave under the influence of 
initial stress has been obtained. 1he classical result has been derived as a limiting case similar to one which 
was obtained by Ewing et al. (1957). 

1. Introduction 

The dynamical problem in granular medium of a generalized thermoelastic waves has 
been studied in recent time. This study has been necessitated by its possible application 
in soil mechanics, geophysical prospecting, mining engineering, etc. The theoretical 
outline of the development of the subject from the mid-thirties was given by Paria (1960). 
The frequency equation of Rayleigh waves in a granular over a granular half-space was 
given by Bhattacharyya (1965). The present paper focusses on the study of the Rayleigh 
waves with the models which can be used to investigate related research with the Earth. 
In general, the surface stratum of the Earth is granular and the base is the generalized 
thermoelastic solid under large initial stresses due to many causes. Such as weight of 
the substratum, gravity, creep, and inelastic deformation under temperature inside the 
Earth. 

The granular medium under consideration is a discontinuous one and is composed 
of numerous large or small grains. Unlike a continuous body, each element or grain 
translates and also rotates about its centre of gravity. This motion is the characteristic 
of the medium and has an important effect upon the equation of motion to produce 
internal friction. It was assumed that the medium contains so many grains that they will 
never be separated from each other during the deformation and each grain has perfect 
generalized thermoelasticity. 

The initial stresses present in the medium also have considerable effect in the 
propagation of waves (Biot, 1965). 

This paper is devoted to the study of the effect of granular body and also of the initial 
stress in the propagation of Rayleigh waves. Furthermore, a friction coefficient is 
introduced for the boundary conditions between the granular and generalized thermo- 
elasticity. The frequency equation has been derived in the form of fourth-order determi- 
nant. The roots of this equation are in general complex and the imaginary part of an 
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appropriate root measures the attenuation of the waves. It is noted that the frequency 
equation of Rayleigh waves contains the term which involving the initial stress and so 
the frequency equation of Rayleigh waves changes with respect to this initial stress. 
When the initial stress vanishes, the derived frequency equation reduces to that one 

obtained in classical generalized thermoelasticity granular medium. 

2. Formulat ion  of  the Problem 

The dynamical problem of a generalized thermoelastic granular medium in an infinite 
cylinder of radius R under initial compressive stress P along the r-direction subjected 
to certain boundary conditions is studied. The state of deformation in the granular 
medium is described by the displacement vector U -- (u~, 0, u~) of the centre of gravity 
of a grain and the rotation vector { = (~, r/, ~) of the grain about its centre of gravity. 

The dynamic equations of motion in the absence of body forces can be written (cf. 
Oshima, 1954) as 

~ 2 n  
//72U + (2 + /~)7(7" U) + F7  0{ p7  A to yT(T + z~r) + p - -  

3t Ot a 
(1) 

- F  6{ - -  + M V 2 ( {  + 7 / x  u) = 0 ; (2) 
0t 

and the generalized heat conduction equation is 

K V 2 T  = pce(~I" + ~T)  + ~(32 + 2#)To7.  (fi + ~ii), (3) 

where �9 represents the time lag needed to establish steady-state heat conduction in an 
element of volume when a temperature gradient is suddenly imposed on that element, 
and will be called the relaxation time. T is the temperature change about the equilibrium 
temperature To; p, the density of the medium; 2 and #, Lam6's constants; M, the third 
elastic constant; F, the coefficient of friction; e, the coefficient volume expansion; ce, 
the specific heat per unit mass at constant strain; K, the thermal conductivity 
y = e(32 + 2#); and ~o = (0, e) o, 0), the rotation vector. 

The stress tensors are non-symmetric: i.e., 

Zijr and M , j # M j e ;  

r~j can be expressed as the sum of synametric and anti-symmetric tensors 

�9 ,j = s , j  + s ; , ,  (4) 

where 

i 1 
s, j  = ~(~,:i- 5 3 ,  (5) 

S o = �89 + zj~), (6) 

~rr, Zrz, ZOO, Vzz, and ~o~, ... are components of the resultant force acting on a surface 
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element. Also, M ~ ,  Mro  , etc., are the components of the resultant couple acting on a 
surface element. 

The symmetric tensor S,. 7 = S/~ is related to the symmetric strain tensor 

I 
e~: = e/: = ~(ui../ + u~ : ) .  (7) 

The components of stress in a generalized thermoelastic in an infinite cylinder are 
given by Blot (1965). 

OU r Obl z bt r ~1 
= - - + ( 2 + p )  ( T +  ~ T ) ,  S.. ( 2 + 2 # + p )  ~rr + ( 2 + p )  Oz r x o 

Soo (2 + 2# +p)  u~ 0u~ 0u~ ? = __+ (/].+p) - - +  (J .+p)  - - - - -  
r Or ~z xo  

( r  + ~r), (s) 

S~ (2 + 2#) 0u~ (~/"/r b/r '~ = - - + 2 - - + 2  ( T +  zT) ,  
Oz Or r x o 

S ~ = # \ O z  + O r / '  

where x o is the isothermal compressibility. 
The anti-symmetric stress S o. are given by 

S ' ,  - F O t l  0~ 
= - -  , S" o = - F - -  , 

Ot Ot 

S b , = - F - - 0 ~  and S:r = S 'oo= S"  z = O ," 
Ot 

(9) 

where F is the coefficient of friction between the individual and t is the time. 
The stress couple M~j is given by 

M~: = Myi j . 

The non-symmetric strain tensor ?;: is defined as 

(lo) 

7~r - - - -  , ~ z z  = - -  , ~ o o = -  , 
Or Oz r 

o E 
~o = ~ (COo + ~), ~zr az 

~rO 
1 

(coo + ~) + (COo + ~), 
c3r r 

(11) 

? r z = - -  , ? o r = O ,  
Or 
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Equations (1) and (2) now yield six equations 

( 2 + 2 # + p )  ~ + 2  /~+ - 
Z X 0 OF 

(T + zT) - 

_ F O_ ( On] _ a %  
OI \~Z/ Ot 2 ' 

(12) 

= 0 ,  (13) 

- - - -  # -  ~r (rco~ (2 + 2#) & r x o & 
- -  - ( y  + ,~r) + 

F 02 02u z 
+ - - - -  ( r r / ) = p - -  , (14) 

r & at Ot 2 

( o 2  1 a 1 a 2 
- F  0 4 + M  + + ~ = 0  (15) 

a t  \ a r  2 r ar r 2 ~ z  2j ' 

_F  a]'/ ( 02 1 0  1 a s )  ( aUr auz~ 
- -  + M + + ~ / +  = 0 ( 1 6 )  
at \ & 2  r ar r 2 @z 0rfl ' 

+ M + - - -  + ~ = 0 ; ( 1 7 )  
@t r (?r 

where 

( A Ou r u r @u= 1 Ou r = - - + - - + - -  , COo= 
Or r & 2 \ & 

By use of Helmholtz's theorem (cf. Morse and Feshbach, 1953) and introducing the 
potential ~ and 0 by the equation 

U = grad~ + curl(0, 0, 0). (18) 

From Equations (12), (14), and (18) we get the equations 

72 @ p 02q) y(T + z T )  
- + , ( 1 9 )  

( 2 + 2 / ~ + P )  &2 Xo(2 + 2#  + P)  

72 ~ p a2~ 7(T + zT) 
- + , (20)  

(,~ + 2/~) at 2 Xo(). + 2#) 

1 1 n + ~ P  at 2 # + g P  at 
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Vz0 _ p 320 F &/ , (22) 
# _ � 8 9  &2 /~- �89  3t 

respectively. 
These equations differ in form and in number from those of the classical theory where 

there is no initial stress. This is due to the fact that longitudinal and shear wave velocities 
are not the same in all directions when the medium is subjected to non-hydrostatic initial 
stress. Since the initial stress has been taken in the direction of r only, the velocity of 
body waves will be different in r- and z-directions. In the absence of P, Equations (19), 
(20), (21), and (22) have been reduced to two equations only (19), (22). Now Equations 
(19) and (20) represent the compressive wave along the r- and z-directions, respectively, 
and Equations (21) and (22) represent the shear wave along those directions, respec- 
tively. Equation (19) represents the longitudinal wave in the direction of r with velocity 

C 1 : ()" + 2/~ + P )  ''2 
P 

Equation (22) represents the velocity &the shear wave in the direction ofr  with velocity 

c 2 : ( # - P / 2 ]  '/2 -p- -/ 

Equation (20) represents the longitudinal wave in the direction of z with velocity 

'gl = ( '~+  2/2~ 1/2 

\ P / 

and Equation (21) represents the shear wave in the direction of z with velocity 

0~2 = ((1"1+ P/2))1/2 
" 7 / 

In the following discussion compressional and distortional waves along the r-axis are 
only considered. These waves are represented by Equations (19) and (22), and the 
generalized heat conduction equation is given by 

e| (23) kV2T  : pce(T + rT) + ~(32 + 2#)To V2 ~tt + Z 3t 2 / .  

Assuming a simple harmonic time-dependent factor exp(iwt), Equations (15)-(17) 
and (19)-(23)yield a set of differential equations for {e iw', ,le sw~, ~e iw*, ~e  iwt, Oe ~'', and 
Tei'',  i.e., 

( 3 ~  1 3 1 S~2) - iwF{ + M + + { = 0 (24) 
r @r r 2 
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1 8 1 82"~ 
- i w F r / + M (  82 + + ) x  

\ ar 2 r ar r 2 ~z 2 

1 04, 4' a24'~ 
x r/+ 824'+ + = 0 (25) 

8r 2 r 8r r 2 8z2., I ' 

1 8 82 ) 
- iwF~ + M (  S2 + -  --  + ~ = 0 ,  (26) 

" k a r  2 r a r  ~ z  2 " 

/92 ?T(1 + iwz) 
V 2 0 =  - - -  0+ , (27) 

c~ xopc ~ 

p_~2 _ i#F__~ (28) 
v~O=-c2  =4' f,c~ ' 

?G V 2 T -  pCeiW T(1 + iwz) + - -  V20(iw(1 + iw~)). 
k k 

(29) 

If we eliminate T between Equations (27) and (29) by substituting Equation (27) into 
Equation (29) we get 

[c~ pceiwz ] iW3DCeTJI~ 
V40 + (1 + e~) 720 - 0,  (30) 

k kcf  

where 
?2 

~= l + i w z .  
D2C2CeXo 

Also, t/can be eliminated by use of Equations (28) and (25). Finally we get the equation 

of 4' as 

( 1 )  2 popc~F-Ma)=pl(1) iw3pF4' 
72  - ~5 O - L iwFM - pc~M _] V2 - ~ 4' - iwFM + ;c22 M = O . 

(31) 

3. Solution of the Problem 

General solution of Equations (24), (26), (30), and (31) can be found. Inversion of 
Hankel transform has been introduced as 

O(r, z, w) : ~ O(r/, z, W)Jo(r/r)r / dr/. (32) 

0 
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I f  we substitute from Equation (32) into Equation (29) we get 

- - ~ Z  2 r / 2  ~2z2 d o -  ~12 k ( 1 + a t )  + 

+ (  t]2 --~202) do iw3pce~kc 2 

The indicial equation governing Equation (33) is 

do = O. (33) 

f 4 = I w ~  pceiwr k (1 + 8"c)] f2 [w3pCe~--O" kc21 (34) 

I f  e = 0, then the roots of  Equation (34) take the form 

w 2 pc e w 2"c pceiw 
f l  * z -  and f2 . 2 -  , (35) 

c~ k k 

W 2 pCeiW3~[w2k - pcew2c2kz - pCeiwc2k] 
f ?  - e ,  (36)  

C 2 (w2k - pCeW2C?) 2 q.- D2c2c2w 2 

f2 DCelWg ~192c2c?w2"d3[w2k2- DCeW2c?N'E- ~CefWC~k~ 
2 _ + - - - - -  . . . . . . . .  8. (37) 

k k (W 2k2 -- pCeW2c2kg) 2 - p2C2eW2C2k2 J 

Moreover,  let us set 

~2 = r/2 __fj2 Re(~j)~--O and j =  1 ,2 .  

Hence,  the solution of Equation (33) is of the form 

d0(r, z, w) = ; [A(r/) e r + B(r/) e -  e2z + i~,,]jo(r/r)r/dr/. 

0 

( 3 8 )  

Similarly we can obtain the indicial equation governing Equation (31) which takes the 
form 

iw3pF [ f  WDC2]y~- mw2D~ ,~2 _[_ = O. (39) 
2 4 ~c [- iwFM + pc22 M d iwFM + pc22 M 

For  F = 0, the roots of  Equation (39) are 

W 2 
;~;~2 _ , ,~2 . 2  = o .  ( 4 0 )  c~ 
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Also, for F ~ 1, taking only the first-order terms, then the roots of Equation (39) can 
be found in the form 

)2  = ~ 14)2 _ [iwpc2 + iw3pM + (iwpc2 + iw3pM + c2 F, 

= _ + + + ipw3M + 2pc2iw)pc~]F. (41) 
2Mpc 2 

Putting 62 = r/2 - 22, Re(hi) >_ 0 and j = 1, 2, hence, the solution of Equation (31) is 

o o  

~O(r, z, t) = I [c(~) e - 62~ + ,wt + D(r/) e - 6~ + "~]J(t/r) t/dr/.  (42) 

0 

Also, the solution of Equations (24) and (26) can be found as 

-- ; E(rl) e-  r dr/, (43) 

0 

= f G(tl) e-r 
0 

(44) 

where 

iwf ~2 = ~ + _ _  

M 

Also, the temperature deviation T, can be obtained by substituting Equation (38) into 
Equation (27) 

T(r, z, t) = px~~ ; [A(r/) (w 2 - c2 f 2 ) e  -~:+iw` + 
7z 

0 

+ B(~) (w 2 - c2J; 2) e-  r dr/. (45) 

By substituting Equation (42) into Equation (28) to obtain the value of t/(r, z, t) which 
can be written as 

o o  

q(r,z , t )= pc2 c(r/) r / 2 - 6 2 -  e-alZ+'wt + 
iwF 

0 

] + DO1) 112 _ 52 _ ~22 e-a2z+'wt J~ (46) 
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The stress zr~, '~rz, and a secondary stress couple M ~ ,  M~z , M~o are given by 

"c~ = (2 + P)V2~  + 21* - -  - 2tz (T  + v T ) ,  
ar: ar & x o 

( ~2(~  {~2~1 -~ (~2~1 4;- -- F 

v~==ll 2 aT~zz &2 ar 2 r & ~ t '  

M ~ =  MT~,= M ~3~ 
& 

M~ = MT~ = M c~ 
& 

az ~ / - 2 \ O r a z  2 + - + 3 r =  r Or 
(47) 

Substituting from Equations (38), (42), (43), (44), (45), and (46) into Equations (21) and 
(47) the components of displacement and stress can be deduced as 

U r = - i I [ A ( r t ) e - r 1 6 2  

0 

_ [b~cO1)e-a,z+twt + 02D(~l)e-&Z+iWt]rul(w)]drl ,  

U~=-f[[A(~)~,e-~'~+~'+B(~)~e-~2~+~w']nJo(~r ) - 
0 

- [c(r/) e - a,~ + ,w, + D(rl ) e - a~z + ,w,] ~12Jo(rlr)] d~l, 

0 

+ 2/lr]2r Jl(rlr) - 2#q3J~ - p(w2 - c 2 f 2 ) ]  e-r 

+ B(~I) I*Ido(W) (2 + P) ({22 - q2) + 2#r12r Jl(W) - 

- 2#~/3Jo(~/r) - p(w 2 - c2f22)1 e-~2z+iw,+ 
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4. Frequency Equation 

In this section frequency equation for the boundary conditions which specify that the 
outer surface of the cylinder is traction-free is obtained: i.e., 

(i) %. = 0 

( i i )  ~,.= = 0 

(iii) Mr,. = 0 (49) 

0,1) at,= = 0 

(v) 34=0=0 at r = R ,  

and the temperature boundary condition is 

a T  
- 0  at r = R .  (50) 

Or 

Boundary conditions (iii) and (iv) give, respectively, G(t/) = F(r/) = 0 and by eliminating 
constants A(~) ,  B(rl), C(tl), and D(t/) by substituting Equations (45) and (48) into the 
boundary conditions (49) and (50), the frequency equation is given in a form of fourth 
order determinant as 

where 

Fi 1 t12 113 174 

115 !26 t17 Fig = 0 

' 0 0 /79 //10 

o 11ll HI2 0 

111 = [1~Jo(l~R) (}~ q- P) (~2 _ ~2) q_ 2/2t72 j I ( r l R  ) - 

R 

C 2 f2 ] - ]  - 2 ~ n 3 j o ( ~ R )  - p ( w  ~ - ~ ,  , j ,  

r 2pr/2 
112 =/~Jo(r tR)  (,~ + P)(~2 _ ~2) + 

k R 
J , ( ~ R )  - 

- 21~q3Jo(t lR)  - p ( w  2 - c2 f~2)1  , 

n 3 = 2 # t l t 3 1 [ t l J o ( r l R ) - i  J l ( r IR)] ,  

(51)  
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n4=2#r132IrIJo(rlR)-i Jl(r /R)] ,  

r/5 = ~ l r / 2 J l ( t l R ) ,  

n 6 = ~ 2 r / 2 J I ( r / R )  , 

nv = _ a2 + . 2 +  Pc A . 2 _  a21 _ t l J l ( t lR ) ,  
t,t 

[ _( ns= _ a2 + tl2 + P c2 t12_ ~2_ nj,(ttR) ' 
# 

_ I j l ( r i R ) ) _ g ) l r l 3 j l ( r l R )  - 

? pc22 ~, ~12- a 2 -  J~(qR) , 
iwF 

nm = [~ (~rl2(Jo(tIR) - ~ Jl(rIR)) - ~ 2 ~ 3 J l ( ~ R )  - 

1 a 2  _ _ J , ( n R )  , 
iwF 2 

n i l  = ( w  2 - c2f2),  h i 2  = (w 2 - c2f22). 

The transcendental equation (51), in the determinant form, represents the required 
wave velocity equation of granular generalized thermoelastic medium under initial stress 
P. It can be seen that Equation (51) has complex roots. The real part gives the velocity 
and the imaginary part gives the attenuation due to the granular nature of the medium. 
However, if the coupling factor ~ and the coefficient of friction F are assumed to be 
small, approximate solution to this equation can be found. It is clear from this frequency 
equation (51) that the phase velocity depends on initial stress in granular generalized 
thermoelastic medium. Also, Equation (51) is the frequency equation for Rayleigh waves 
in granular generalized thermoelastic medium under initial stress. 

The frequency equation (51) contains the coefficient of friction and initial stress, but 
in absence of initial stress, the frequency equation of granular generalized thermoelastic 
medium in infinite cylinder has an expression similar to that which have been obtained 
by Elnaggar and Abd-Alla (1991). Also, if the granular rotations are ignored, the 
frequency equation, for Rayleigh waves of a generalized thermoelastic medium has 
formula which is similar to that which have been obtained by Elnaggar and Abd-Alla 
(1987). In addition, in absence of initial stress and no coupling between the temperature 
and the strain fields (i.e., P = 0) and ~ vanish, one can get the frequency equation of a 
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granular generalized thermoelastic medium similar to that obtained by Oshima (1954) 
and Bhattacharya (1965). Then Equation (51) take, the form: 

where 

/71 

/% 

0 

F/t1 

122 ;~3 Y/4 

/76 /'/7 Iq8 = 0 , 

0 n 9 n m 

n~2 0 0 

F / ~ & ( ~ R ) ~ ( g ~  - ~ )  + "~2mL J ~ ( , T R )  - 
{_ R 

- 2 # , r  - p(w ~ - c?A*~)], 

n2 = [qjo(qR)2(r/2 _ q2) + 2#r/_~ 2 J , ( ~ R )  - 
L R 

- 2#rl3Jo(r/R) - p ( w  2 - c ( f * a ) l  , 

n 3 = 2#611r/Jo(r/R)-  1 J , ( r /R)] ,  

I~ 4 ~- 2#~ ~Jo(~R)  - ~ J~(rlR , j  

n 5 = ~1 r ] 2 J l ( r ] R ) ,  /76 = ~ q 2 J l ( q R ) ,  

nT= _[~2+ 2~2_ ~2 _,2]  r/j,(rtR), 
c~_l 

,~ ; - 6~ + 2 ~  ~ - a~ - ~ J ~ ( ~ R ) ,  
2 

+ - a e  - = , 

(52) 
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] + t12 (~2 _ j a ( t l R ) t  1 , 
w F  

= W 2 2 ~ 2  = W 2 / , 2 / ' ~ 2  
H 1 1 -- C l f l  t112 - -  ~ l J 2  ' 

c2 _ 2 + 2 #  c~ = ~- 

P P 

(53) 

It  is clear that  Equat ion (53) is the familiar frequency equation of  Rayleigh waves of  

a granular  general ized thermoelast ic  medium. Also,  if the initial stress and granular  

rotat ions vanish,  the frequency equation should reduce to the classical  frequency 

equation as obta ined by Ewing (1957). 
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