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Abstract. Robertson-Walker cosmological model with bulk viscosity is investigated with equation of state 
p = (y - 1). The cosmological solution of the model is obtained with the help of the special law of variation 
for Hubble's deceleration parameter. Some physical consequences of the solution is studied pertaining to 
two extreme cases of the equation of state. 

1. Introduction 

The investigation of cosmological problems in Einstein's theory usually deals with the 

energy-momentum tensor of matter as that due to the perfect fluid. Therefore, Berman 
(1983) considered a special law of variation for Hubble's parameter in involutionary 

models with perfect fluid as material source which leads to constant value of the 

deceleration parameter. Such a realistic matter source necessiates to take into account 

dis sipation process due to viscosity. Murphy (1973) constructed isotropic homogeneous 

spatially-flat cosmological model with a fluid containing bulk viscosity alone because 

the shear viscosity cannot exist due to assumption of isotropy. He observed that the 
Big Bang singularity of finite past may be avoided by introduction of bulk viscosity. The 

assumption between viscosity coefficient and matter density considered by Murphy 
(1973) may not be acceptable near high density as studied by Santosh etaL (1985). 

Santosh et al. (1985) derived exact solutions for isotropic homogeneous cosmological 
model with bulk viscous fluid considering the bulk viscous coefficient as power function 

of mass density. 
In the present investigation we extended the work of Murphy (1973) by considering 

the speciallaw of variation for Hubble's parameter (Berman, 1983) and solved Einstein's 

field equation in Section 2 when the Universe is filled with bulk-viscous fluid. In 

Section 3 and 4 the physical behaviour of the solution in connection with the extreme 
situation of the equation of state is studied. 

2. Einstein's Field Equations and Their Solution 

Here we considered the space-time described by the isotropic homogeneous R.W. 
metric 

ds2 at2 Q2(t) I dr2 ] = - - -  + r 2 d02 + r 2 sin e 0 d~p 2 (1) 
1 - Kr 2 
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where K is the curvature index which can take the values ( -  1, 0, + 1) and Q(t) 
represents the radius of the Universe. 

The most general expression for Einstein's relativistic cosmological field equations 
may be given by 

G U=-R o.+Ag U= - k T  o, (2) 

where T,~ is the energy-momentum tensor due to bulk-viscous fluid defined in the form 

r,j = - gu, (3) 

where 

= p - t/Ue; i, (4) 

U'U~ = 1 (5) 

and e is the energy density; p, the pressure; q, the bulk-viscous coefficient; and U,., the 
four-velocity vector of the distribution. Hereafter the semi-colon denotes covariant 
differentiation. 

We consider here the special law of variation for Hubble's parameter (Berman, 1983) 
a s  

H = D Q - ' ,  (6) 

where H is the Hubble parameter defined by 

H = Q4 , (7) 
Q 

where D and m are constants and the suffix 4 stands for d/dt. 
If we use Equations (6) and (7) we obtain 

Q = [m(At + B)] 1/m , (8) 

where A and B are taken to be positive constants of integration. 
The deceleration parameter is defined by 

Q44Q q (9) 

For special law (6), Equation (9) yields 

q = (m - 1). (10) 

For the metric (1), Equation (4) leads to 

= p  - 3 H. (11) 

In a co-moving coordinate system, Equation (5) implies that 

U, = ~ .  (12) 
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Now with the aid of Equations (3)-(5) and metric (1) the surviving field equations (2) 
take the explicit forms 

_ _  2Q44 K Q2+  + - - - A =  -kfi  (13) 
Q2 Q Q2 

and 

3K 3Q~ 
Q2 Q2 + A =  - k a .  (14) 

The Bianchi identity for the bulk-viscous fluid in the space-time (1) leads to 

'~4 q- 3H(e + fi) = 0, 

which, being obtainable from Equations (13) and (14), is redundant. 
If we use (8) in Equations (13) and (14), we obtain 

(15) 

~ [  A 2 ( 3 - 2 m )  K ] 

fi = a {m(At  + B)} 2 {m(At  + B)} 2/m , (16) 

1 [  3K 3A2 1 
= - A (17) 

k { r e ( A t + B ) }  2/m + {m(At  + B)} 2 " 

Now restricting the distribution with the barotropic equation of state - i.e., 

P = ( 2 -  1)e, 0 < r < 2 .  (18) 

We obtain the explicit form of the physical quantities p and t/as 

p = ( 7 _  1 ) ~ = 7 - 1 [  3K 3A2 1 
k {re(At + B ) }  2/m + {re(At + B)} 2 A , (19) 

1 F K(37 - 2 )  

tt = 3~L{m~ + B ~  2/m + 
A2(3y - 2m) AT].  

(20) 
J {m(m + a)} 2 

The solution obtained - i.e., Equations (8), (17), (19), and (20) - leads to an expanding 
model of the Universe. As the age of the Universe increases the radius of the Universe 
increases. At t = 0, we have a non-zero radius and e,p, and t/are finite. Thus the model 
avoids singularity at t = 0, which supports the analysis of Murphy (1973) that the 
introduction of bulk viscous fluid avoids the initial singularity. At the initial epoch the 
radius of the Universe is finite and, hence, the viscous fluid is confined to a spherical 
ball with a constant viscosity coefficient. 

Moreover, we find that the mass density, pressure, and viscosity of the fluid decrease 
with the increase of the age of the Universe. Thus it indicates that the early universe 
being filled with hot dense gaseous matter with large viscosity becomes hotter during 
evolution. 
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1 It may also be verified here that  when ? = 2 and m = 1, we obtain - p  = 5~. Thus this 

situation with constant  viscosity coefficient is analogous to Einstein's static universe 

without cosmological constant.  

Hawking-Penrose Energy Condition 

By use of Einstein's equatiot~, the Hawkiong-Penrose  energy condition R~ U~U j <--0 

leads to a viscous analogue of the gravitational mass  density - i.e., a = (e + 3fi) -> 2A/k 
(McCrea,  1951). The other energy condition used by Murphy (1973) - i.e., (fi + e) > 0 
- is automatically satisfied for flat and closed elliptical model, i.e., for K -- 0, + 1. For 

open hyperbolic model  (K = - 1), the second energy condition is satisfied for 

t = m {(m+2)/2(m+ 1)}A(m- 1)-, _ B /A .  

If  the spatial curvature K = 0, the model  does not  reduce to the de Sitter modal as in 

the case studied earlier by us (Mohanty  and Pradhan,  1990). 

3. False  Vacuum Mode l  (i.e., y = 0) 

I f  we consider ~, = 0, the distribution reduces to a special case with equation of  state 

p + e = 0 which is referred to in the literature as 'degenerate vacuum'  or 'false vacuum'  

or 'p vacuum' .  This problem in non-viscous anisotropic case has already been studied 

by Mohanty  and Pat tanaik  (1989). 
However,  in this case the physical quantities take the explicit forms 

~(= -P)  = re(At + B)} 2/m + {m(At + B)} 2 A (21) 

and 

- 2 [ K ~ mA--2 ] (22) 

= ~ {re(At + B)} 2/m + {re(At + B)}2J" 

This model  corresponds to a realistic physical situation when 1/-> 0. This is only true 

when the Hubble  parameter  H < 0. 
However ,  this situation does not yield any solution for a spatially-fiat space (i.e., for 

K -- 0) as in case of  exponential dependence of scale factor on time, studied earlier by 

Mohanty  and Pradhan (1990). 

4. Stiff-Fluid Mode l  (i.e., y = 2) 

I f  we take y = 2, the distribution reduces to a bulk-viscous stiff-fluid model  (Barrow, 
1978; Zeldovich, 1962) where the density cure pressure and bulk-viscous coefficient 
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take the forms 

and 

p = ~ =  
1~ 3K 3A 2 ] 

k L - { m ( A t + B ) }  2/m + {m(At  + B)} 2 A (23) 

2 [{ 2K 

11 = 3fill  m ( A t  ~ B ) }  2/'~ + 

A2(3 - m) A]"  
(24) 

J {m(At  + B)} 2 

Since r/> 0, we obtain m < 3 for the case A = 0 = K, where the equality corresponds 
to the non-viscous case already studied by Roy and Verma (1987) for flat space. In this 
case q _< 2 which is in partial agreement with the experimental value qo = 1.0 + 0.5 
(Adler et al., 1975). This model indicates that the Universe starts expanding from the 
initial state at t = 0 without any Big Bang singularity and at infinite future (i,e., t-~ o9) 
there is a singularity which may correspond to big crunch. It may be mentioned here 
that the introduction of viscosity avoids the occurrence of 'Big Bang' singularity, which 
agrees with the work already studied by Murphy (1973). 
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