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Abstract. The shock formation in a gravitating atmosphere is studied by following the general nonlinear 
theory of discontinuity waves. In particular, we perform a discussion on the stability of an isothermal and 
isoentropic atmosphere and we evaluate, when the shock appears, the critical time and the critical height. 
Some numerical results for the solar and terrestrial atmospheres are also given. 

1, Introduction 

The field equations of a compressible perfect fluid in the presence of the gravity are (the 
xl-axis is vertical) 

O,p + ~,(pv ~) = o ,  

~t(po j )  + ~i(pvil) j + p 5  ij) = - p g b  j l  , (1.1) 

Ore + ~i((e + p ) v  i) = - pg" v ; 

where p is the density, v the velocity, p is the pressure, e = p(�89 2 + e) the total energy, 
e is the internal energy, and g the gravity acceleration. As well known, the system (1.1), 
taking into account the Gibbs relation 

P~ do 0 dS = de - p2 

admits of the supplementary entropy law 

Ot(pS ) + Oi(pSv ~) = 0,  (1.2) 

where 0 is the absolute temperature and S the density of the entropy. 
Let us consider the one dimensional problem and, as it is possible for classical 

solutions, interchange the energy equation with the entropy balance. Therefore, we can 
rewrite the system (1.1) in the form 

pt + vpx + pvx = O , 

(PV)t + (P v2 + P)x = - P g ,  (1.3) 

S , +  v S x =  O. 

To the system (1.3), we adjoin the equation of state for an ideal gas, i.e.: 

p = ~ p O  = eS/c"p ~; 7 = Cp/Cv, ~ = Cp - c~ ; 
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where ~ is the gas constant for unit molecular weight dr', cp, and c o are the specific heats 
at constant pressure and constant volume, respectively. 

The system (1.3) is a particular case of the following quasi-linear first order hyperbolic 

system 

u t + A(u)u x = f(u) ,  (1.4) 

where u(x, t) is the R N unknown column vector of the system, A is an N x N matrix 

and f is the R u source vector. In the present case (N = 3), choosing as field 

u =- (p, pv,  S)  r ; (1.5) 

we have 

A -  

0 1 0 

c a - v ~ 2v Ps  

0 0 v 
f = - O  p �9 

(1.6) 

In (1.5) the superscript T indicates the transpose of a matrix. 
The problem of the nonlinear wave propagation in a gravitational atmosphere, which 

arises frequently in astrophysics (Einaudi, 1970; Ulmschneider et al., 1977; Ferraioli 
et al., 1978; Yousaf, 1980; Hariharan, 1987), has been studied by many techniques: in 
particular we wish to quote the method of asymptotic waves (Choquet-Bruhat, 1969) 
which is applied by Anile et al. (1980) to treat the case of an acoustic wave propagating 

in an isothermal atmosphere. 
The aim of this paper is to study the propagation of acceleration waves associated 

to the system (1.3) and, in particular, to evaluate the related critical time (i.e., the instant 
in which starts a shock wave). The plan is as follows. 

In Section 2 we sketch briefly the mathematical theory of discontinuity waves. In 
Sections 3 and 4 we treat, in the most general form, the evolution of discontinuity waves 
and the related stability problem in a gravitational atmosphere. Finally, in the Sections 
5 and 6 we calculate explicitly the critical time and the critical height in the cases of an 

isothermal and an isoentropic atmosphere giving also some numerical results concerning 
the terrestrial and the solar atmosphere. 

2. Discontinuity Waves 

First of all we recall the definition of hyperbolicity for a system of the type (1.4): 

DEF. 2.1 (HYPERBOLICITY) 

The first-order quasilinear system (1.4) is said to be hyperbolic in the t-direction if  the 

eigenvalue probIem (A - 2I)d = 0 admits only real eigenvalues 2 (characteristic velocities) 
and a set o f  linearly independent right eigenvectors. 

For a generic system (1.4) it is possible to consider a particular class of solutions that 
characterize the so-called 'weak discontinuity waves' or, in the language of continuum 
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mechanics, 'acceleration waves'. There exists a moving surface (wave front) F of the 
Cartesian equation ~p(x, t) = 0 that separates the space in two subspaces; ahead the 
wave front we have the known unperturbed field Uo(X, t) and behind the unknown 
perturbed field u(x, t). Both the fields u o and u are supposed regular solutions of (1.4) 
and across the surface F are continuous, but have discontinuous normal derivative: i.e., 

= o ,  = n r o ,  (2.1) 

where the square bracket indicates the jump (for simplicity we indicate briefly with g 
and go the values of a generic quantity g evaluated on F, respectively, for q0--+ 0-  and 
q~-~0 +) 

~ '~  = ( ' ) r  -( ')~o=o+ 

and u~o = c~u/Oqz 
As well known the following results hold (Boillat, 1965): 
(1) The normal velocity 2 = - opt/17~o ] is equal to a characteristic velocity evaluated 

in u o 

2 = 2(Uo). (2.2) 

(2) The jump vector II is proportional to the right eigenvector d (corresponding to 
the eigenvalue 2) evaluated in u o 

n = n d ( u o ) .  (2.3) 

(3) The amplitude 17 satisfies the Bernoulli equation 

dH 
- -  + a(t)FI 2 + b(t)II -= 0.  (2.4) 
dt 

where d/dt indicates the time derivative along the bicharacteristic lines and a(t), b(t) are 
known functions of the time through u o. 

In the case of one-dimensional space dx/dt = 20 is the characteristic line and we have 
(Boillat and Ruggeri, 1979; Ruggeri, 1980, 1989) 

a(t) = q~x(7)," d)o, (2.5) 

{ } b(t)= d((Tl) T - 7 1 )  d t  + ( 7 2 " d ) ( l ' u x ) - 7 ( 1 " f ) ' d  , 
0 

(2.6) 

dcp~ 
- - +  (7~,. Ux)oq~ x = 0,  (2.7) 
dt 

where I indicates the left eigenvector of A that, for the hyperbolicity, it is possible to 
choose such that i. d = 1; 7 = c~/cqu. 
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The solution of (2.4) is 

II(O) exp [ -  f b(~) d~] 

rI ( t )  : o ( 2 . 8 )  
t g 

l + rI(O) f a(Oexp[- f b(,)d#]dr 
0 0 

We recall now that, in the literature, a system (1.4) satisfies the so-called genuine 
nonlinearity if for every eigenvalues 2 we have 

72 (i).d u):~ 0, Vi = 1, 2 . . . . .  N.  (2.9) 

Vice versa, a wave is called exceptional if'* 

7 2 . d -  0. (2.10) 

The exceptional waves are very common in mathematical physics and they play a 
relevant role in several questions of nonlinear wave propagation (see Boillat and Ruggeri, 
1978). 

If the wave is exceptional then the Bernoulli equation become linear because the 
coefficient a(t) vanishes. Therefore, if b(t) > 0 the amplitude decays exponentially as in 
the linear case. 

Vice versa if the wave in consideration satisfies the genuine nonlinearity, there exists 
in general a critical time (tcr) such that the denominator of (2.8) tends to zero and the 
discontinuity becomes unbounded. This instant usually corresponds to the creation of 
a strong discontinuity, i.e., a shock wave and the field itself presents discontinuity across 
the wave front. In particular, if the wave satisfies (2.9) the coefficient a(t) va 0 and we 
can consider it always positive (with an appropriate choice of the right eigenvector). 
Therefore, from (2.8) a positive critical time exists if the initial perturbation 17 (0) satisfies 

# t l  p / I  1 

I I ( 0 ) < - l - l e t  where I I c r = l / [  a ( ~ ) e x p / - l b ( ~ ) d ~ / d ~ - > 0  
/ J  L d A o  o "(2.11) 

This condition says that for the existence of the critical time it is necessary that the initial 
amplitude be negative and, in absolute value, greater than a critical quantity. A qualita- 
tive analysis of the behaviour of the solution of the Bernoulli equation can be read on 
the papers of Chen (1973), Ruggeri (1989). The existence of tcr is a nonlinear 
phenomenon, but in three dimension space, as well known, it is possible to have also 
a critical instant due to geometrical reasons: the caustic case. 

* Of course if the eigenvalue 2 have multiplicity p then the condition is valid for all the corresponding 
eigenvectors d z (I = 1,2 ..... p). 



SHOCK FORMATION IN A GRAVITATING ATMOSPHERE 131 

3. Stability of the Unperturbed Field 

It is possible to consider the problem of discontinuity waves as a nonlinear stability 
problem for the unperturbed field u o in the sense of the following definition (Ruggeri, 
1989): 

D E F .  3.1 (STABILITY WITH RESPECT TO A ,~-WAVE) 

Let Uo(X, t) a regular solution of  (1.4), and we consider perturbations in the class of  
discontinuity waves (piecewise classical C 1 solutions). We said that no(x , t) is stable with 

respect to a discontinuity wave of  velocity 20 = ).(uo(x, t)), if  given a Po > O, there exists a 
P(Po) > O, such that if  the initial perturbation 17(0) satisfies the condition 

I rI(0)l _< eo,  (3.1) 

we have 

117(t) l < P ,  Vt>0, Vx o s R .  (3.2) 

where t is the time along the characteristic cg : dx/dt  = 20 and x o is the point at t = 0 where 
the discontinuity wave starts. 

Moreover, if  

l i r a  117(01 = 0,  (3.3) 

then we have asymptotic stability and if  the inequality (3.1) depends on the solution Uo(X , t) 
we have the so-called conditional stability. 

We observe that this problem corresponds to the stability of the zero solution of the 
Bernoulli equation (2.4). If we look the solution (2.8) and the condition (2.11), it is 
possible to prove the following simple theorem (Ruggeri, 1989): 

THEOREM 3.1 

A regular solution Uo(X, t) of  the hyperbolic system (1.4) is stable with respect to a 2-wave 
if  the corresponding coefficients a(t) and b(t) in the Bernoulli equation, that we suppose 
continuous functions for all t >>- O, are such that 

; E; l [a(~)[exp - b(~)d~ d ~ = K ( x o ) <  + o o ,  VxoeR ; (3.4) 

0 0 

and there exists a constant m such that the integral of  b(t) is bounded from below: i.e., 

i b ( ~ ) d r  V t > 0 ,  Vxo~R.  (3.5) 
0 

Moreover, if  we have also 

f b(t) d t =  + o o ,  Vx o ~ R ,  (3.6) 

0 



132 A. MURACCHINI AND T. RUGGERI 

then the solution is asymptotically stable. The initial perturbation satisfies the condition 

1 
[II(0)l < P o  = inf (3.7) 

xo~R K(xo) 

and, as Po is, therefore, a functional of  Uo(X, t) then we have in any case a conditional 
stability. 

Therefore, for the stability or the instability it is necessary to study the integrability 
conditions (3.4), (3.5), and (3.6). 

4. A c c e l e r a t i o n  W a v e s  in the A t m o s p h e r e  

We study now the evolution of  discontinuity waves associated to the system (1.3) 

following the previous general approach.  

The possible discontinuity waves propagate  with the characteristic velocities 

21 = /) -[- C ,  22 = V -- C, 23 = V ; (4.1) 

where c is the sound velocity: c 2 = Po = (~P/OP)s. 
The contact wave 23 is exceptional and, therefore, does not present  problems.  

For  the acoustic waves 21 and 22 choosing as field (1.5), the corresponding right and 

left eigenvectors are found 

d, --- (1, v + c, 0) r , 11 = __1 (c - v, 1, Ps/C) ; (4.2) 
- 2c 

1 
d 2 -= (1, v - c, 0) r ,  12 = - -  (c + v, - 1, ps/C) ; (4.3) 

2c 

where Ps = (Op/~S)p. 
With the previous choice of  the right eigenvectors, taking into account  (2.3), the 

amplitude I I  represents the jump of  the normal  derivative of  the density and this is 

related with the jump of  the acceleration G through the relations 

II = ~P~o~, G = ~vt~ = - c 2 I I / p o ,  ~h~ = - S o n .  (4.4) 

Let us evaluate now, in the most  general form, the expression of the functions a and 

b appearing in the Bernoulli equation (2.4). 
We perform the calculations for the fastest wave (21 = v + c) only: in fact, observe 

that  the results which we obtain are applicable to the wave with velocity 22 = v - c 

changing c into - c .  
By assuming the static solution with zero velocity (v o = 0) as unperturbed state the 

system (1.3) reduces to the momen tum equation 

Px = cZPx + p s S x  = - g P ,  (4.5) 

with  p = p(p,  S),  c = c(p, S).  
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By choosing a particular law for S(x) or for p(x) we select a solution of Equation (4.5). 
In this section we suppose that the functions p and S are whatever and, in this manner, 

we find the generic expressions of the coefficients of the Bernoulli equation (2.4). 
Instead, in the next sections we shall consider the particular cases of an isothermal 

(0 = constant) and an isentropic (S = constant) atmosphere. 
By some simple calculations, we find first of all (henceforth, we omit, in the right side, 

the suffix 0 referring to the physical quantities in the unperturbed field Uo) 

Z~ d ~  l ~  1 ' 2cl ' P~2)" (4.6) 

(POI ( 1 )  
(Ux)o = , (72)~= cp,-,  c s ; (4.7) 

\Sxl P 

so that 

(V~.Ux)o =-g~(c2P~-+ ~), 
2c \ gp 

(4.8) 

having the following thermodynamic relations 

T- 1 c ~ c 2 
cp- , Cs- , G -  , p s = ( 7  - 1)pO, 0 = - - .  (4.9) 

2p 2c~ ~ - 1 R 7 

By observing that, in this case, duo/dt = 2oUox and subsequently 720 �9 Uox = d In [ 2ok/dt 
we find from (2.7) that 

(px(t) : c~ , (4.10) 
Co(t) 

where c(0) represents the value of c at time t = 0 on the characteristic lines starting at 
X = X  0 . 

By taking into account (4.6), (4.7), (4.9) we have also 

(72.d)o -c (7+1)  (du) =C(Ux)o= 
2p ' dtt o 1 

cSx/ 
(4.11) 

d~176  ~ o= - 2c + 2p/ 4cc + 4p / '  (4.12) 
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(1. Ux)o = - p g  , {7(1-f)" d}o - ?' - 3 g (4.13) 
2c 2 4 c 

Then, finally, (2.5) and (2.6) yield 

( ~ _  cp) c(O ) (3g• 5cp,:'] 
a = , b = - + . (4.14) 

c \ 4c 4p / 

Because the generic coefficients a and b are functions of the variable x it is more 
advantageous, in the actual context, to utilize the Bernoulli equation in x instead of(2.4). 
In fact by observing that dII/dt = (drl/dx) (dx/dt) = (dII/dx)c we can write 

dR - -  + a*(x)II 2 + b*(x)II = 0,  (4.15) 
dx 

where a* = a/c, b* = b/c. The solution of (4.15)is 

I-I(0) exp [ -  i b*(r de ] 

II(x) = xo (4.16) 

t + II(0) ff a ' (~)  exp [ -  ff b ' (~)  d~] d~ 

X o Xo 

with II(0) : 1-I(Xo). 

5. Acceleration Waves in an Isothermal Atmosphere 

We consider as unperturbed field the well-known static isothermal solution with zero- 
velocity of (1.3) 

) v = 0 ~  

with /5 and 0 positive constants*. Moreover observe that, in the present case 
c = c(0) = constant. Then by remembering (4.14) we obtain, for the upwards traveling 
wave with velocity dx/dt = c 

a*(~) - 7 + 1 e ,~,  b*(~) = -~ = constant,  (5.2) 
2t~ 2 

where ~t = g/NO = g7/c 2. 

* H e n c e f o r t h  ~ ind ica tes  the  va lue  o f  a gener ic  q u a n t i t y  ~, a t  x = 0 a n d  ~k(0) is the  va lue  o f  ~ a t  t ime  t = 0 

a long  the  cha rac t e r i s t i c  line s t a r t ing  a t  x = x o.  
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It  is a simple matter  to see that  the stability condition (3.4) is never satisfied and, 

therefore, the isothermal solution (5.1) is unstable with respect  to the upwards  wave. 

In this case, in fact, by evaluating (4.16), we obtain soon that  for an arbitrarily small 
initial acceleration compress ion jump G(0) 

c(o) > o (5.3) 

there exists a critical height xcr > x o for which 

xcr = x o + - in 1 + e -"x~ . (5.4) 
# G(0) ? + 1 

The corresponding critical time is immediately obtained by integrating dx/dt  = c. One 
finds that  

2 (  g , 
tcr = -  In 1 + 

#c G(0) 7 + 1 

with the condition (5.3). 
Then it is possible to establish 

- -  e -~x~ (5.5) 

S T A T E M E N T  5 . 1  

There exists always a critical time (5 .5) for  a compression (G(0) > 0) upwards propagating 

acoustic wave. 

This statement, in terms of stability problem, reads to 

STATEMENT 5.2 

The isothermal solution (5.1) is unstable with respect to the upwards acoustic wave. 

In the case of  the acoustic wave propagat ing with the velocity 2 = - c we have from 
(5.2) changing c ~ - c and x ~ - x 

[a(t)l = c 7 + 1 e_UCt, b(t) = - ~- c .  (5.6) 
2~ 2 

The solution (5.1) is still unstable;  in fact, it is easily verified that  the integral (3.4) is 
convergent  while the condition (3.5) is never satisfied. 

It  is a simple matter  to prove that  the existence of  a critical height is ensured actually 
by the condition 

G ( O ) < O ,  [ G ( 0 ) I >  g - - 7  e - " X ~  g? >g_ (5.7) 
? + 1  ? + 1  2 

having then 

xcr = Xo + - in 1 e -"x~ (5.8) 
IG(O) I ? + 1 



136 A. MURACCHINI AND T. RUGGERI 

with xcr < Xo. The corresponding critical time is actually 

2 (  g ,  ) 
tcr= - - -  In 1 e -~'x~ . (5.9) 

~c Ia(0) l Y + 1 

Therefore, so the following statement holds: 

S T A T E M E N T  5 . 3  

The critical time of the acoustic wave traveling downward exists only for a sufficient large 
initial compressive amplitude of the acceleration jump G(O ). The critical amplitude and the 
critical time are given by (5.7), (5.9), respectively. 

6.  T h e  I s e n t r o p i c  A t m o s p h e r e  

We have performed the calculations also in the case of an unperturbed solution 
corresponding to an isentropic atmosphere although this is of lesser physical interest. 

The static isentropic solution of (1.3) is 

v = O ,  p(x) {~Y-1 g ( ' -  1) } '/~-' = - - -  x , S ( x )  = ~q, (6 .1 )  
~y 

where ~q = constant. In the present case the following hold 

c 2 = ~7p7 -~ , ca(0) = eTp(0)~-I ; (6.2) 

where 

~- t  = p(0)r-~ + g(Y - 1) - -  x o . ( 6 . 3 )  
~7 

By taking into account (4.14) we find 

a * ( ~ ) -  7+  1 c(0) , b * ( ~ ) - 5 - - - 3 Y  g , (6.4) 
2p(~) c(~) 4 c2(~) 

so that, actually, O:, = - go/ca. By proceeding in the same manner of the previous section 

we find that the critical height for the fastest wave exists if 

G(0) > 0.  (6.5) 

Then 

{1 c 2o,0, i 
xcr= x~ + g ~  = i) k , 2 G ~ +  g /  

(6.6) 

The critical time is obtained, as usual, by integrating dx/dt = c. But, in this 
case, c = c ( 0 ) -  fit (with fi= g ( 7 -  1)/2) so that the characteristic line 
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TABLE I 

The terrestrial atmosphere with g = ]G(O)[ = 9.80665 m s 2, 
g = 340.2937 m s l, .~ = 1.4, ~g = 28.9644 g mole-  1, A/J,{ = 287.0524 

I37 

Terrestrial atmosphere at 0 = 288.15 K. 
Critical time and critical height for 2 = c. 

Isothermal Isentropic Height 

x o (km) 
t ,  (s) xc, to, xc, 

0 22.78 7.75 21.93 6.99 
1 20.69 8.04 21.56 7.75 
2 18.77 8.39 21.18 8.52 
3 16.99 8.78 20.79 9.28 
4 15.35 9.22 20.39 10.04 
5 13.85 9.71 19.99 10.81 
6 12A8 10.25 19.58 11.57 
7 11.23 10.82 19.16 12.33 
8 10.10 11.44 18.73 13.09 
9 9.07 12.08 18.29 13.86 

10 8.13 12.77 17.84 14.62 

TABLE II 

The terrestrial atmosphere by assuming the same values of the Table I. Observe 
that, in the isentropic case, the values of Xcr are bounded accordingly to 
(6.12). In fact one has x L = 29.52 km. Furthermore, in this case, xc, must be 
positive (x = 0 is the ground level). In the isothermal case the limiting value of 
x o for which xcr > 0 is x* = 5.83 km. In the isentropic case x~o = 10.94 km. 

Terrestrial atmosphere at 0 = 288.15 K. 
Critical time and critical height for 2 = - c .  

Isothermal Isentropic Height 

x o (km) 
t~ (s) x~ t~ x~ 

6 16.73 0.31 - 
7 14.55 2.05 - 
8 12.69 3.68 - 
9 ll.10 5.22 - 

10 9.73 6.69 - 
11 8.54 8.09 35.72 
12 7.51 9.44 34.74 
13 6.61 10.75 33.74 
14 5.83 12.01 32.70 
15 5.14 13.25 31.63 
16 4.54 14.45 30.52 

0.12 
1.71 
3.29 
4.88 
6.47 
8.06 
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TABLE III 

The solar atmosphere with g = [G(0)[ = 273.6 m s-2 ,  ~ = 6529.734 m s -  1, 
7 = ~, Jg = 1.3 g mole-  ~, N / J / =  6395.615 

Solar atmosphere at 0 = 4000 K. 
Critical time and critical height for it = e. 

Isothermal Isentropie Height 

Xo (km) 
t~ (s) x~r t~ x~, 

0 13.90 90.79 13.14 77.92 
10 12.76 93.35 12.85 84.59 
20 11.70 96.40 12.56 91.25 
30 10.71 99.93 12.27 97.92 
40 9.79 103.92 11.96 104.59 
50 8.93 108.34 11.65 111.25 
60 8.15 113.19 11.33 117.92 
70 7.42 118.43 10.99 124.59 
80 6.75 124.06 10.66 131.25 
90 6.13 130.03 10.30 137.92 

100 5.56 136.34 9.94 144.59 

TABLE IV 

The values of the physical quantities are the same of the Table III. In this ease 
x r = 233.76 km. Furthermore, in the isothermal case x~o = 67.92 km. In the 

isentropic case ~ = 117.00 km. 

Solar atmosphere at 0 = 4000 K. 
Critical time and critical height for it = - c .  

Isothermal Isentropie Height 

x o (km) 
tcr (s) xcr tcr xcr 

100 6.91 54.85 - - 
110 6.13 69.96 - - 
120 5.45 84.43 20.69 6.24 
130 4.84 98.37 19.76 26.24 
140 4.31 111.83 18.78 46.24 
150 3.85 124.89 17.75 66.24 
160 3.43 137.59 16.66 86.24 
170 3.06 149.99 15.49 106.24 
180 2.74 162.12 14.22 126.24 
190 2.45 174.01 12.83 146.24 
200 2.19 185.70 11.27 166.24 
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T A B L E  V 

solar  a tmosphere  with g = 2 7 3 . 6 m s  -2,  c = 7 3 0 0 . 4 6 5 m s  i, 7 = ~ ,  

d g =  1.3 g mole - 1, ~ / J {  = 6395.615 

139 

Solar  a tmosphere  at  0 = 5000 K. 

Cri t ical  t ime and cri t ical  height  f o r / ,  = c, 

I so the rmal  I sen t ropic  Heigh t  

x o (kin)  

0 15.54 113.49 14.69 97.40 

10 14.52 116.00 14.44 104.07 

20 13.55 118.90 14.18 110.73 

30 12.63 122.19 13.91 117.40 

40 11.76 125.86 13.65 124.07 

50 10.94 129.90 13.37 130.73 

60 10.17 134.28 13.09 137.40 
70 9.45 139.00 12.81 144.07 

80 8.77 144.05 12.52 150.73 

90 8.14 149.41 12.22 157.40 

100 7.54 155.07 11.91 164.07 

T A B L E  VI 

The values  of the physical  quant i t ies  are the same of the Table  V. In this case 

x L = 292.19 kin. Fur thermore ,  in the i so thermal  case X~o = 84.58 kin. In the 

isentropic  case x~ = 146,25 km. 

Solar  a tmosphere  at  0 = 5000 K. 

Cri t ical  t ime and critical height  for 2 = - c .  

I so the rmal  I sen t ropic  Height  

x o (kin)  

t~ (s) x~ t .  x~  

100 

110 
I20 

130 

140 

150 

160 
170 

180 
190 

200 

9.89 27.82 - - 
8.95 44.66 - - 

8.11 60.76 - - 

7.37 76.22 - - 

6.69 91.13 - - 

6.09 105.54 23.13 7.80 

5.54 119.52 22.30 27.80 
5.05 133.12 21.44 47.80 

4.61 146.37 20.55 67.80 
4.20 159.32 19.61 87.80 

3.84 171.99 18.62 107.80 
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x = c(O)t - (1~2)fit 2 + x o follows and 

2c(0) {1 - ( 2 G ( 0 )  [2(~,- O/(~,+ 1)l 
t r  _ \ 2 G - ~ ) + g )  } (6.7) 

or, equivalently, by (6.2), (6.3) 

2 x / g 2 - g ( ,  - 1)Xo { 1 - ( 2 G ( 0 )  )[2(,-l)/('y+ 1 ) , }  

t,, = g(-7-- i) \ 2 G ~ +  g/  . (6.8) 

For the wave traveling with the velocity 2 = - c  we obtain the following existence 
condition for the critical height: 

G(0)< 0, IG(0)I >-g . (6.9) 
2 

If (6.9) is satisfied, one has 

Xcr=X o + g ( ~ - ] )  1 -  (6.10) 
21G(0)I - g /  

30 

2 

28 

26 

24 

2 2  

20 

18 

16 

14- 

12. 

10 

8 

6 

4 

I I i I i I i I ~ I ~ I i I i I ' 

O 20 40  60 80 IOQ 120 140 160 180 200 

xo ( ~ m )  

Fig. 1. The  cr i t ical  t ime as a func t ion  o f x  o in the  so la r  a t m o s p h e r e  at  5000 K. (1) I s o t h e r m a l  a t m o s p h e r e  

a n d  2 = v + c. (2) I s o t h e r m a l  a t m o s p h e r e  a n d  ,t = v - c. (3) I s en t rop i c  a t m o s p h e r e  a n d  ,~ = v + c. (4) Isen-  

t rop ic  a t m o s p h e r e  a n d  2 = v - c. 
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and 

Note that from (6.1), because p > 0, it follows that 

(6. t 1) 

0 < x < - -  - = x r ; (6.12) 
g(~/- 1) g ( 7 -  1) 

and, consequently, 

c(0) 
0-< t < ~ tL. (6.13) 

The values of x and t are, at present, bounded. 
We conclude that in the case of an isentropic atmosphere analogous results to those 

of the isothermal case hold with the only qualitative difference of the threshold value 
(6.9) with respect to (5.7). 

Let us summarize these results in the following statements: 

,-2.., 

E .r 

2 4 0  

2 2 0  

2 0 0  

8 0  

80  

1 4 0  

1 2 0  

100  

8 0  

80 

40  

2 0  

0 

Fig. 2. 
and 2 = v + c .  

i 

0 2 0  40  60 8 0  100  120  14-0 1 80  1 8() 

~o (Kin,) 
The cri t ical  height  as a function o f x  o in the solar  a tmosphere  at  5000 K. (1) I so the rmal  a tmosphere  

( 2 ) I s o t h e r m a l  a tmosphere  and 2 = v -  c. ( 3 ) I s en t rop i c  a tmosphe re  and 2 = v + c. 
(4) I sen t ropic  a tmosphere  and  2 = v - c. 

2(]0 
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STATEMENT 6.1 

There exists always the critical time (6.7) for  the upwards propagating acoustic wave: # 

occurs even if  one has an arbitrarily small initial acceleration jump G(O) (>  0). 

STATEMENT 6.2 

The critical time of  the wave traveling downward exists only for  a sufficiently large initial 

amplitude of  the acceleration jump G( O ). The critical amplitude and the corresponding critical 

time are given by the conditions (6.9), (6.11). 

Note  that, in both cases, we have still nonlinear instability for the reasons analogous 

to isothermal case. 
Finally let us observe that for g ~ 0 (5.5), (5.9) and (6.7), (6.11) give the same value 

which represents the critical time in the absence of  gravity: i.e., 

2c 
t c r  - -  (6.14) 

l a(0)l (~ + 1) 

already obtained by Ruggeri (1980). In particular we obtain for the atmosphere of  the 

Earth the value tcr = 28.92 s, and for the Sun at 4000 K and 5000 K the values 

tcr = 17.90 s, tcr = 20.01 s, respectively, by assuming for the physical quantities entering 

in (6.14) the values carried in the captions of  Tables I -VI .  

In Tables I - V I  we display the critical heights and the critical times for various values 

of  x o in an isothermal and isentropic atmosphere. Tables I and II refer to the case of  

the Earth. Tables I I I - V !  describe the wave propagation in the solar atmosphere at 

0 = 4000 K and 0 -- 5000 K. 
Figures 1 and 2 point out the behaviour of  t~r and xcr in function of  x o in the 

atmosphere of  the Sun at 5000 K. Similar graphs are obtained in the case of  the 

terrestrial atmosphere. 
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