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Abstract. The N-body problem does not have an exact and analytic solution, and computer technique or 
computer simulation can be a good candidate to solve it. Computing speed in computer simulation is very 
important. There are many algorithms and computational methods in computer simulation which reduce 
computer time. 

In this report a computer simulation model in a cylindrical coordinate, in which the FACR (Fourier 
Analysis and Cyclic Reduction) method is used, has been proposed and demonstrated the presence of spiral, 
barred, and ringed galaxy. The method using a cylindrical grid has good symmetrical properties specially 
for rotating stellar systems. 

1. Introduction 

The spiral shapes were obtained in the gravitational N-body simulations that handled 
105 particles moving in a plane under 1/r 2 forces (Miller et aL, 1970; Hohl, 1972; Z ang 
and Hohl, 1978). Theoretical studies have also shown that models of disk galaxies, in 
which most of stars are in nearly circular motion, are unstable (Kalnajs, 1972; Bardeen, 
1975; Hunter, 1979). This instability leads to the formation of a global, intense bar 
within a few rotation periods. Ostriker and Peebles (1973) have pointed out that the ratio 
t, of the ordered kinetic energy T, to the potential energy W, must have an absolute value 
of less than 0.14 if the system is to be stable to the formation of a bar, 

t =  T / IWI  < 0 . 1 4 .  

Most of the N-body simulation models are usually based on both two- and three- 
dimensional computer model in a Cartesian coordinate. Lee et al. (1990) have pointed 
out that choice of a suitably boundary condition and the coordinate system which agrees 
with the symmetrical properties of the dynamical system, speeds up numerical simu- 
lation. The newly constructed code for the N-body simulation in a polar coordinate was 
demonstrated to be much better than the code using the rectangular meshes specially 
for a rotating disk. Examples of potential contour plot in various coordinates and 
boundary condition have been given to demonstrate the effect of them on the potential 
calculations in Figure l. Sellwood (1980) also pointed out that a cylindrical polar 
coordinate system is perhaps more natural than the Cartesian coordinate system for the 
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Fig. 1. Results of potential contour plot using (a) periodic boundary condition, (b) constant value boundary 
condition, and (c) isolated boundary condition. 

simulation of a disk galaxy. Miller (1978) has successfully implemented a polar mesh 
for an infinitesimally thin disk model but the straightforward extension of computer 
algorithm to three dimensions would turn out to be very expensive. 

In this paper the simulation methods of the N-body problem in stellar system using 
cylindrical coordinates will be given and tested. Developing to make computer algorithm 
for the N-body problem, the type of grid should be determined at first. The choice of 
grid type is dependent on several conditions; boundary conditions, symmetrical 

properties, computing time, etc. 
There are several advantages if a cylindrical grid is used. Most of galaxies have r - 0 

symmetry and the density distribution o f  stars in a stellar system is similar to the 
Gaussian distribution. Use of cylindrical coordinate system, which can assign dense 
grid points at small r near the center of the grid system, is good for the N-body 
simulations of stellar system because many grid points can be assigned to dense area 
near the origin to give a good spatial resolution. 

Another advantage is concerned about boundary conditions. It is difficult to use an 
isolated boundary condition or it takes much time, ifa Cartesian grid is used. The FACR 
(Fourier Analysis and Cyclic Reduction) method has been used for two-dimensional 
polar coordinates ( r -  0) and eigenfunction expansion method has been used for 

z-coordinates for a cylindrical grid. 
The computational model, used in this paper, is given and computational methods 

will be explained briefly in Section 2. In Section 3 simulation model and results are 
discussed in more detail. Finally in Section 4 a brief discussion and conclusion are given. 

2. Computational Model 

The overall feature of the simulation model developed in this paper is very similar to 
that of the N-body simulation model using a Cartesian coordinate. The N-body simu- 
lation consists of four different steps: (1)assigning mass of particles into mesh, 
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(2) solving Poisson's equation on the mesh, (3) computing forces from mesh-defined 
potential and interpolating forces at particle's position, and (4)pushing particles 
according to a given force. These four steps and leaf-frog scheme of Newton's equation 
of motion will be repeated until the end of computer run. 

By use of the coordinates other than Cartesian coordinates, Poisson's equation and 
equation of motion should be modified in a pertinent coordinate system. Thus a new 
way of numerical analysis should be considered. 

Figure 2 shows the cylindrical grid system of our model where 32 x 32 x 16 (r, 0, z) 

Fig. 2. The grid system of a cylindrical simulation method. 

grid has been generated. The value of coordinate r is from 0 to 1, and that of the 
z-coordinate is in the range of 0 to L. (L can be given as 0.5 or 2.) 

There are many stars in a galaxy. For example, the Milky Way has about 1011 stars. 
Since it is impossible to integrate the trajectories of such many stars, the particle-mesh 
method using superparticles has been used to perform computer simulation (Hohl and 
Hockney, 1969; Hockney, 1970; Birdsall and Langdon, 1985). 

For each iteration the potential will be calculated using Poisson's equation 
724) = 4~kp from given densities assigned at each period. Poisson's equation will be 
transformed into finit e difference equation so that it will be applied into our computer 
simulation model. Potential and Newton's equation of motion push a particle into its 
new position and produce its new velocity. 

2.1. UNITS 

In order to set up an appropriate unit system in the simulation of disk galaxy, unit 
distance, unit time, and unit mass are determined according to the dimension of the 
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Milky Way (Kuhn, 1982). The unit distance is determined by the radius of the Milky 
Way, 

r o = radius of the Galaxy __- 5 x 102~ m = 16 kpc.  

In order to determine the relevant time-scales, it is necessary to consider the motion of 
a star when it is distributed from its circular equilibrium orbit. The unit time is 
determined by the epicyclic time of the Sun, 

t o = epicyclic time of the Sun = 6 x 1015 s = 2.5 x 108 year .  

The unit mass is determined by the requirement that a superparticle's mass is to be 1, 

total mass of galaxy 3 • 1041 
mo= - - -  kg,  

number of superparticles N 

where N is the number of superparticles in computer simulation model. In the case that 
N is sufficiently large, gravitational potential satisfies 

Vz~b = 4rckp, (1) 

where k -- Gmotg/r 3 ~- 5.8/N, G is a gravitational constant and p(r, O, z) is the density 
distribution function. 

2.2. DENSITY CALCULATION 

In order to obtain gravitational potential, Poisson's equation should be solved. To do 
that, the mass density at each grid point should be calculated at first. There can be 
several numerical methods to assign mass density into each grid point. For example, 
the form factor method or the volume weighting method are most frequently used. 

Figure 3 shows how a star's mass is assigned to each grid point. Since the density 
distribution function should be defined at each grid point to evaluate Poisson's equation 
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Fig. 3. Volume weighting method. 

\ \  

\ 



THREE-DIMENSIONAL STELLAR SYSTEMS 221 

in a particle mesh method, an appropriate mass is allocated to the nearest grid points 
with certain ratio. The linear interpolation method has been used in (r, 0, z) directions. 
However, either of the two different schemes of the area weighting method in (r, 0) 
coordinates are selected from the location of a particle as shown in Figure 4. A star's 

~ ~ ~ �9 j-- Area 
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Fig. 4. Area weighting method of (r, 0) plane at a constant  z: (a)typical ease, (b)near  the center. 



222 SEUNGHEON SONG ET AL, 

mass is divided into eight (or six at r < Ar) pieces and each value is added to the mass 
density of each grid point, A through H with certain ratio of volume occupied by each 
point mass as shown in Figure 3. 

2.3. P O T E N T I A L  C A L C U L A T I O N  

The gravitational potential at each grid point can be obtained from the discretized 
version of Equation (1) and density distribution assigned at each grid. There are several 
numerical methods available to obtain gravitational potential - for example, FA (Fourier 
Analysis), CR (Cyclic Reduction), and SOR (Simultaneous Over-Relaxation) methods. 
In this paper, both FA and CR methods have been used because gravitational potential 
q~(r, 0, z) is assumed to be periodic in 0 and z, and have a singular point at r = 0. This 
numerical technique has been numerically implemented in a polar coordinate and is 
applied to explain gravitational instability of spiral galaxy in a two-dimensional stellar 
system (Lee et  al., 1990). The value of the potential at each boundary point is also 
required to be given if CR is used. 

Equation (1) can be written in terms of r, 0, and z (cylindrical coordinate system) as 

r + - -  = 4 n k p .  
r Or O r  r a 002 OZ 2 

This can be transformed into 

A I  . . . .  ~)( l ,  Ill/l, t l )  q- 

+ D,  . . . .  0 ( l ,  m 

where 

(2) 

the finite difference equation as 

Bz . . . .  q~(l + 1, m ,  n)  + C l . . . .  (p(l - 1, m,  n)  + 

+ 1, n) + El . . . .  q ) ( l , m -  1, n ) + F t . , . . . q ~ ( l , m , n +  1)+ 

q- Gl . . . .  q ) ( l ,m ,  n - 1) = 4 n k A r 2 A O 2 A O 2 p ( l ,  m ,  n ) ,  (3) 

A1,  m ,  n = -- 2( AOaAz2 + Az2/12 + Ar2A02), 

B~ . . . .  = A02Az 2 1 + , 

Dt . . . .  = E l  . . . .  = A z 2 / t 2  , 

Ft, m,n = Gl, m, n = A r 2 A 0 2  ; 

q~(l, m, n) and p(l, m ,  n)  are the gravitational potential and density at r = IAr,  0 = m A O ,  

and z = n A z ,  respectively. Note that the coefficients A~ . . . .  through G~, m, n depend on 
only the value of L 

The DFT (Discrete Fourier Transform) of ~p about m and n indices is given by 

~ ( I , M , N ) =  2 2 qS(l,m,n) exp i m M - - + n N  ; (4) 
m=0 n=0 N o  
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and the inverse Fourier transform is given by 

q~(l, m, n) - ~ ~ ( l ,M ,N )  exp - i  r n M - - + n N  . 
N o N~ a4=o N=O N o 

(5) 

Trying DFT of Equation (3) about 0- and z-coordinates, the following equation is 
obtained 

where 

A~IMN~([ + 1, M, N)  + BtlkIN~(l~ m~ N)  + ~m~v~(l - 1, M, N )  = 

-- 4gkArZ AO2 Az2~(l, M, N)  , (6) 

AIMN = •02Az 2 1 + , 

( Az 2 Az  2 ( 2 ~ N ]  
B~M N = 2 cos(MA0) 12 [2 -t~ COS ~ z ,  ] A 0 2 A r  2 - 

_ AO;Ar 2 - AO2Az 2) (7) 

and ~ being discrete Fourier transform of q~ and p, respectively. 
For l, M, and N, all the values of ~ are already known from the density distribution 

assigned at every grid point. The values of ~ for l = 0 and N r are specified from the 
boundary condition. The choice of periodic boundary condition in z-coordinate reduces 
computer time to specify the boundary condition in this simulation model. All the 
coefficients A',  B' ,  and C' in Equation (6) can be calculated. Note that potentials at 
the boundary can be calculated directly so that ~(Nr, M, N) is obtained. 

The cyclic reduction method is applied to the I index for all M and N indices. The 
potential at all grid points can be determined by the discrete inverse Fourier transform 
of ~(l, M, N) already obtained through the cyclic reduction method. 

2.4. I N T E G R A T I O N  OF E QUAT ION OF M OT ION 

By use of the potentials at all grid points, the force which exerts on a particle can be 
calculated by the interpolation method. From the force on a particle, new velocity and 
position of it can be calculated by the Runge-Kutta method. Since the potentials are 
given only on grid points, the interpolation and derivatives of the potential will give a 
force on the particle. In this paper a linear interpolation scheme is used. 

However, a cylindrical grid has a singularity at r = 0. Furthermore, Fomay have large 
error when r is small. Thus another interpolation scheme should be considered for 
r < Ar. In order to perform an interpolation near r = 0, that is r < Ar, a parabolic 
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Fig. 5. Interpolation of potential near the center of this simulation model. 

function for the r - 0-plane, after linear interpolation being performed for the z-axis, is 
used as in Figure 5. For a given z-value, ~b(1, m, z) can be written by 

q)(l, m, z) = C + A m cos(mA0) + B m gin(mA0), (8) 

where Am, Bm, and C are the corresponding Fourier coefficients, respectively. Then at 
the neighbourhood of r = 0, ~p can be reduced to a paraboloid function which is given 
by 

r  y ,  z )  = ( c  - 4 ,o(Z))  - - -  
x 2 + y2 Ax B1 

+ - -  x + - - y + ~ o ( Z ) .  (9) 
A r  2 Ar Ar 

The components Fx, Fy, and F z of a force on a particle can be obtained from the 
derivatives of the potential given by Equation (9). 

~--~'~b. B 

ti ti+�89 ti+i 

Fig. 6+ Second-order Runge-Kut ta  method. 
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Now a force acting on a particle at any position can be provided so that the 
second-order Runge-Kutta method is used to integrate the trajectory of a particle. The 

equation of motion in a cylindrical coordinate system is given by 

dv~ vg dr 
f r  . . . .  , v r = - - ,  

dt r dt 

fo 2 vrv~ dr~ dO 
= - J - - -  ~ C O - - - - Y -  

r dt dt 

dv~ dz 
f z -  , v z = - - ;  

dt dt 

and will be integrated using two time steps (6+ 1/z and ti) in Figure 6 as 

o ; = v r +  + _ - - ,  : r + o r - - ,  
2 

v'~ = v~ + ( f ~  - 2 VrVr~ At2 ' O' = 0 +  rV~ At2 

At At 
v ' = v z +  f z - -  , z' = z + v  z -  , 

2 2 

and 

vr = vv + + A t ,  r" = r + v ' A t ,  

" - t ,  v o = v o + 2 o O" = O +  v~-" A t ,  
y '  

v" = v z + f z ' A t ,  z" = z + v ' A t .  

Since the centrifugal force and Coriolis force are proportional to r -  1, a large error 
can be generated at r < Ar during the integration of equation of motion. In the region 
of r < Ar, cylindrical coordinate system will temporarily be replaced by a Cartesian 
coordinate system to integrate. The way to integrate the trajectory of a particle in a 
Cartesian coordinate is similar to that explained above. 

3. Simulation Results in a Cylindrical Model  

The simulation for a disk galaxy is performed by use of Green's function method and 
by choosing an appropriate boundary condition. The model for a disk galaxy consists 
of a large number of representative stars (here 5000 ~ 20 000) that are confined to move 
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in the three-dimensional galactic disk. An % x N o x N~ (here 32 x 32 x 16) array of  

cells in a cylindrical coordinate is superposed over the volume of  the disk for the purpose 

of  calculating gravitational potential. At  the center of  each cell a mass density is defined 

which is given by the ratio between the number  of  stars and the volume of  that cell. 

The system to be investigated is a disk with a Gaussian volume mass density 
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distr ibut ion given by 

p(r,  O, z) = p(O, O, O) exp - c~(r/ro) 2 - fi z - , (10) 

where  r o is a cut-off  radius,  a and  fi are suitable coefficients,  respectively�9 Fur the rmore ,  
the range of  z is restr ic ted by  

( L )  ( 1 -  ~ e x p ( - r / r o ) a ) ) < z < ( L ) ( l + b e x p ( - ( r / r o ) 2 ) )  (11) 

to give an initial distr ibution of  the disk galaxy. 
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choice of the above-mentioned initial condition, various simulations are performed to 

show the presence of spiral, ringed, barred, and irregular galaxies which are frequently 

observed. 
Figure 7 indicates a two-dimensional projected plot (r, 0) which shows clear pattern 

of the spiral galaxy. The initial condition used in this simulation is given by e = 0.5, 
L = 0.5, N = 5000, e = 1,/3 = 1, ~ = 0, b = 0.5, r o = 0.7, and At(time step) = 0.0005, 
respectively. Initially a clear pattern of collapse towards the center of the galaxy is 
observed because of strong attractive force due to gravitation. As time goes on, the 
pattern of nuclear and inner ring appears due to the instantaneous equilibrium between 
rotation and gravitation. Existence and observation of the ringed galaxy has already 
been confirmed by Buta (1988). Later ring structure disappears and rotating spiral 
pattern has been observed. This may happen due to the fact that any minor leading 
disturbance unwinds and is then swing amplified into a short trailing disturbance which 
propagates through the disk center and emerges as a short leading disturbance. 

Figure 8 indicates a two-dimensional projected plot (r, 0) which shows the evolution 
into rotating barred galaxy. The initial condition used in this simulation is given by 

t=0.0 

~ i ~ �9 

 i iiiii ' ii iiii i!   ;�9 �84 

t=0.1 t=0.2 

Fig. 10. Evolution of the ringed galaxy with the halo component. 
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low surface brightness structures in the outer parts of many early-type disk galaxies; and 
nuclear rings, which are almost exclusively found in bulges. The simulation shows only 
the existence of nuclear and the inner ringed galaxy. The inner ring is especially 
well-defined and conspicuous, the outer ring is very faint. Rings in ordinary galaxies may 
be related to orbital resonances with a bar, oval distortion, or density wave. The 
probable association between rings and resonances has long been studied (Lin, 1971). 
Further dynamical modelling and observations of this kind of galax!es would, therefore, 
be worthwhile. 

In order to investigate the effect of the halo component on the ring galaxy, the 
following initial condition has been used: ~ = 1.4, L = 1.0, N =  20000, ~ = 4.61, 
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/~ = 4.61, 7 = 4.61, b = 0.5, ro = 1, and At = 0.0005, respectively. The number  of  par- 
ticles in the halo component  is chosen as 3000, and they are uniformly distributed inside 

the sphere of  radius 0.4. Figure 10 shows the clear pattern of  nuclear, inner, and outer 

rings. Note  that the presence of  small structure inside the nuclear ring is also detected. 

Figure 11 shows the evolution of  an irregular galaxy. The initial condition used in this 

simulation is e = 0.3, L = 0.5, N = 20000, ~ = fl--- 0.92, 7 = 2.30, ~ = 0.15, r o = 0.7, 
and At = 0.005. As time goes on, collapse towards the center or expansion from the 

center o f  the galaxy continuously occur one after another and finally more than 5 0 ~  

of  the stars in the galaxy begins to shift form the center and to rotate, forming irregular 

pattern. This phenomenon is observed in the Large Magellanic Clouds. 
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Figure 12 shows the mean circular velocity profile of stars versus radial distance r for 
a spiral galaxy. The time history (Vo) shows that the mean velocity is greatly reduced 
for both small and large values of r while it increases for intermediate values. The sharp 
peak of (Vo) for the intermediate value of r at t = 0.2 may be related to the presence 
of inner ring at early stage of the rotating disk galaxy. The sharp peak disappears leading 
to flat velocity distribution with radial distance due to the relaxation process. 

It is of interest to obtain the values of the azimuthal velocity dispersion ((A%)2) 1/2 
The time history of ((AVo) 2 ) 1/2 shows that the azimuthal velocity dispersion sharply 
increases at small values of r, as in Figure 13. A purely rotating stellar disk is stabilized 
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only with very high-velocity dispersions such that more than 50~o of the total kinetic 
energy is in random motion with the remaining kinetic energy in rotation. Note also that 
the bar-forming instability is stabilized by the halo component. 

Two individual star orbits taken at random from the 20 000 stars in the disk galaxy 
are shown in Figure 14. The orbits are plotted by simply connecting the position of a 
star at each time step. The orbits indicate that stars initially near the center of the disk 
have a tendency to become trapped in even tighter orbits in (r, 0)-coordinates as the 
central mass density increases. However, in (r, z)-coordinates it can go freely in the 
direction of z-coordinates. Stars further out have a tendency to escape from the system 
in (r, 0)-coordinates. The frequency of oscillations in the star orbits is similar to that 

deduced from epicyclic theory. 

4. Conclusions 

The simulation code newly constructed for a three-dimensional cylindrical computer 
model has been tested using a rather simple initial condition. The important considera- 
tion of the simulation code lies in the speed as well as accuracy of the simulation model. 
The code developed here may be useful for a simulation of a system with rotational 
symmetry. Further investigation of the disk galaxy simulation will be proceeded. 
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